
 
 

 

  
Abstract— Parameter estimation technique is an 

indispensable computational tool not only in aerospace research 
activities but also industrial activities such as control law 
design, handling qualities evaluation, model validation, and 
flight-vehicle design and certification. The estimation methods 
yield different levels of associated error with the estimated 
parameters. The primary reason for this is linked to the 
presence of measurement and process noise with the real flight 
data. Equation Error Method cannot handle either process 
noise or measurement noise. Output Error Method can handle 
measurement noise but not process noise. Filter Error Method, 
a special case of Output Error method, can be advantageously 
used to estimate parameter from flight data having both process 
and measurement noise. This paper presents issues related to 
the application of FEM with Gauss Newton (GN) and 
Levenberg-Marquardt (LM) optimization in estimating 
aerodynamic parameters from in-house generated flight data. 

 
Index Terms—Parameter Estimation, Equation Error 

Method, Output Error Method, Filter Error Method 
 

I. INTRODUCTION 
Since mid-sixties the field of system identification has 

developed into an indispensible tool with application to 
engineering systems like aerospace vehicles. One of the first 
definitions of system identification was given by Zadeh[1] : 
“Identification is the determination, on the basis of input and 
output, of a system within a specified class of systems to 
which the system under test is equivalent”. Broadly speaking, 
system identification, as it is termed today, is a scientific 
discipline which provides answer to the age-old inverse 
problem of obtaining a description in some suitable form for 
a system given its behavior as a set of observations [2]-[3]. 
There are three elements essential to a system identification 
problem, a system (model), an experiment and a response 
(output or measurement). The most widely applied subfield 
of system identification is the filed of parameter 
identification wherein an assumed mathematical model based 
on the phenomenological considerations is used to estimate 
the properties of the dynamic system [3]-[4]. The model 
contains a finite number of parameters, the values of which 
must be deduced from measured data. The assumed model, 
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however, will not be an exact representation of the system, no 
matter how careful its selection is. Furthermore, the 
experimental data made with real, and thus imperfect 
instruments will not be consistent with the assumed model 
form for identified values of system parameters. So the 
revised task of determining the best estimates, rather than the 
exact values of the parameters is more properly called 
parameter estimation. The two most important sub-problems 
of parameter estimation are: the definition of the criteria for 
the best, and the characterization of potential errors in the 
estimation. 

Aircraft parameter estimation is probably the most 
outstanding and illustrated example of the system 
identification methodology: The highly successful 
application of system identification to flight vehicle has been 
possible partly due to better measurement techniques and 
data processing capabilities provided by the digital 
computers, partly due to the ingenuity of engineers in 
advantageously using the developments in other fields such 
as estimation and control theory, and partly due to fairly well- 
understood basic physical principles leading to adequate 
aerodynamic modeling, and design of appropriate flight tests 
[4]-[6]. The equations of motion of flight vehicle are derived 
from Newtonian Mechanics [7]-[8], usually assuming flight 
vehicle to be rigid body. The mathematical models based on 
such equations of motion assume that the forces and the 
moments acting on the flight vehicle can be synthesized. Out 
of the various forces and moments (aerodynamic, inertial, 
gravitational and propulsive) acting on a flight vehicle, it is 
the determination of the aerodynamic forces that poses the 
most difficult challenge till date. To a large extent, it is the 
adequacy and accuracy of modeling the aerodynamic forces 
and moments that would determine the validity and utility of 
the mathematical models.  

After a-priori fix of the model, the next task of estimating 
parameters (stability and control derivatives) has been 
attempted by three different but complimentary techniques: 
analytical methods, wind-tunnel methods and flight test 
methods. At initial stages of aircraft design, analytical 
methods [9]-[11] provide the only convenient way of 
estimating the aircraft parameters. However the accuracy of 
such theoretical estimates being not so high, there is a need to 
verify these estimates with those obtained from wind-tunnel 
testing and flight tests. Although wind-tunnel methods 
improve the accuracy of estimation of parameters, they are 
time consuming and expensive. Furthermore, simulation of 
control surfaces, power effects and stringent flight conditions 
are difficult to simulate satisfactorily. Wind-tunnel estimates 
also suffer from discrepancies due to interference effects of 
support systems, wall effects, turbulence level, etc. It is, 
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therefore, desirable that the wind-tunnel estimates be 
validated against the estimates from flight test data. 

Modern methods of aircraft parameter estimation can be 
broadly classified into three categories [2]: (i) Equation Error 
Methods (EEM), (ii) Output Error Methods (OEM) and (iii) 
Filter Error Methods (FEM). These methods belong to a class 
called “direct-approach”. Another approach wherein a 
nonlinear filter provides estimates of parameters which are 
artificially defined as additional state variables is sometimes 
referred to as “indirect-approach”. While the EEMs represent 
a linear estimation problem, the remaining methods belong to 
a class of nonlinear estimation problems. The EEMs and 
OEMs are deterministic methods, as opposed to the 
stochastic approach of FEMs. The EEMs are based on linear 
regression using ordinary least squares technique. Its main 
advantage lies in its computational simplicity and 
non-iterative nature. However in presence of measurement 
noise, the least square estimates are asymptotically biased, 
inconsistent and inefficient [5]. The OEM is probably the 
most frequently used method for aircraft parameter 
estimation. The OEMs search for those values of parameters 
that minimize the error between flight measured responses 
and corresponding responses of the assumed mathematical 
model. Various aspects of the OEM approach and its most 
employed version, the Maximum Likelihood (ML) Method, 
are well documented by Maine and Iliff [5]. The main 
advantage of the ML Method is that the parameter estimates 
are asymptotically unbiased, consistent and efficient. The 
method also provides a measure of accuracy in terms of 
Standard Deviation as in the computations in this paper [5]. 
The ML estimates of model parameters accounting only for 
measurement noise can be effectively used for linear and 
general nonlinear systems [12]. In the presence of 
atmospheric turbulence, the OEM yields poor results. 

Accuracy of parameter estimates is directly dependent on 
the quality of the flight data and hence (i) it requires highly 
accurate measurements of control and motion variables (ii) 
the maneuvers should be carried out under calm atmospheric 
conditions. Both these above requirements are difficult to 
meet practically. The measurement error can be minimized 
by appropriate selection of sensors and by following 
dedicated sensor calibrations. However, it is generally 
difficult to completely account for the turbulence through 
a-priori modeling. FEM in such situations can 
advantageously be applied. FEM is perhaps the most general 
stochastic approach to aircraft parameter estimation [12], 
which accounts for both process and measurement noise and 
was proposed by Balakrishnan [13]. 

In the present work, parameter estimation exercise has 
been carried out by applying EEM, ML method of OEM, and 
FEM on measured longitudinal flight data. The flight data has 
been generated by carrying out longitudinal maneuvers using 
in-house HANSA-3 [14] aircraft. 

 

II. GENERATION OF FLIGHT DATA 

The proposed method is investigated using real flight data 
(longitudinal mode) generated using research aircraft 
(HANSA-3) available with Indian Institute of Technology 
Kanpur [14], a research aircraft designed and developed by 
National Aerospace Laboratories (NAL), India.  

A flight data base for identification studies was gathered 
from flight maneuvers with the test aircraft. Typically, 
starting from trim flight conditions, the pilot applied control 
input in an attempt to excite the chosen dynamic modes. An 
onboard measurement system installed in the research 
aircraft measured , , , , , ,z x eV q a aα θ δ . The measurement 

of airspeed ( )V , angle of attack (α ) were obtained with 
flight log mounted on a boom fixed to the tip of the wing. The 
angular rate q   was obtained from the measurements 
available from the inertial platform. The accelerations along 
the three body axes were measured using an accelerometer 
triad located near the CG of the aircraft. The rate of angular 
rate q& was obtained by numerical differentiation of q . The 

control surface deflection eδ was measured using 
potentiometer. The temperature T was recorded using the 
standard cockpit outside air temperature (OAT) gauge. Two 
sets of flight data simulating short period longitudinal 
dynamics were generated at an altitude 6000 feet. The cruise 
speed at which the perturbations were initiated was fixed at 
nearly 56 m/s.  

The longitudinal flight data (FLT1) was generated using 
multi step elevator input ( )max

7degeδ = having total duration 

of 4s only. Another flight data set (FLT2) was generated with 
two similar looking double pulse input having almost same 
magnitude. These two pulses although look similar but have 
opposite elevator deflection to excite the longitudinal 
dynamics. In this paper two sets of flight data (FLT1 and 
FLT2) having input application during of 4 and 2s are 
considered for analysis and investigation. The acquired flight 
data (FLT1 and FLT2) are presented in Fig. 1 and Fig. 2.  

 

 
Figure 1:  Generated Flight Data for Maneuver FLT1 showing 

observed variables 

 
Figure 2:  Generated Flight Data for Maneuver FLT2 showing 

observed variables 
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III. EQUATIONS OF MOTION AND AERODYNAMIC MODEL 

The aerodynamic derivative in the wind axis system (lift 
and drag derivatives) are obtained through standard axes 
transformation from body axis non-dimensional derivatives 

xC and zC . So for the longitudinal parameter estimation the 
following wind axis model has been used [8], [12]. 

( ) ( ) ( )sin cosD eV qS m C g F mα θ α= − + − +&                        (1) 

( ) ( ) ( ) ( )cos sinL eqS mV C q g V F mVα α θ α= − + + − −& (2) 

qθ =&                                                                     (3) 

( ) ( )y m e y tzq qSc I C F I= +& l                                     (4)  
Where, the lift, drag and pitching moment coefficients are 
model in Eq. (5-7). 

0 eD D D D eC C C C
α δ

α δ= + +                                               (5) 

( )0
2

q eL L L L L eC C C C qc V C
α δ

α δ= + + +                         (6) 

( )0
2

q e

CG
m m m m m eC C C C qc V C

α δ
α δ= + + +                  (7) 

The longitudinal and vertical force coefficients XC and  

ZC are given in Eq.(8-9).  

sin cosX L DC C Cα α= −                                                  (8) 
cos sinZ L DC C Cα α= − −  (9)  

X zC  Cand  are calculated as per in Eq.(10-11) 

( )cos /
CGX x eng engC ma F qSσ= −             (10) 

( )sin /
CGZ z eng engC ma F qSσ= +             (11) 

So for the longitudinal case the unknown system parameter, 
which have to be estimated are given in Eq. (12) 

0 0 0
                  

q qe e e

T

D D D L L L L m m m mC C C C C C C C C C C
α δ α δ α δ

⎡ ⎤Θ =
⎣ ⎦

 (12) 

During the parameter estimation using the above postulated 
model described in Eqs. (5-7) , ,V α θ and q are considered as 
state variables. The process noise is influenced by the process 
or state variable. So, the initial process noise matrix is the 
maximum difference of the measured data of , ,V α θ and q . 
The element of process noise matrix is dependent on 
corresponding state variables. 

IV. METHODS OF DATA ANALYSIS 

The various parameter estimation methods can be broadly 
classified into three categories [2]: i) Equation Error Methods 
(EEM) ii) Output Error Methods (OEM) iii) Filter Error 
Methods (FEM). 

A. Equation Error Method 

At any time kt , the dependent variables )(ty can be 

expressed in terms of the independent variables )(tx as, 
( ) ( ) ( ) ( ) ( )i 1 1 2 2y ;   1,2,n nk X k X k X k k k Nθ θ θ ε= + + ⋅⋅⋅⋅ + + = ⋅⋅⋅

                         ……..(13) 
Where ε denotes the stochastic equation error. 
Also, 1[θθ =  T

n ]........2 θθ  denotes the vector of unknown 
parameters (the unknown stability and control derivatives to 
be estimated). 
The equation (13) can be represented in matrix notation as 

( ) ( ) ( )Ty k X k kθ ε= +  (14) 

So for N discrete time points we can prepare a matrix 
notation like 
Y Xθ ε= +  (15) 
Y and ε are 1N × size vectors and X  is the 

qN n× matrix of independent variables: 

1 2

1 2

1 2

1 2

(1)(1) (1)
(2) (2) (2)

(3) (3) (3)

( )( ) ( )

nq

nq

nq

nq

xx x
x x x

X x x x

x Nx N x N

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

L

L

L L

LL L

L

 (16) 

Equation error is given by 
Y Xε θ= −  (17) 

Then by minimizing sum of the squares of the residuals, 
we shall arrive at the desired parameters. The cost function is 
defined as  

( ) 1
2

TJ θ ε ε=  (18) 

For minimum error, 
( ) 0J θ
θ

∂
=

∂
 (19) 

From which we obtain the normal equation: 

( ) 1ˆ T TX X X Yθ
−

=  (20) 

Equation (20) is our required working equation, where 
[ ]e1    qc/2V   X α δ=                (21) 

[ ]L mC  CDY C=                 (22) 

B. Output Error Method 
Calculation of values of parameters in this case was done 

with maximum Likelihood (ML) method, a variant of OEM. 
Equations of motion of aircraft in state space are given by the 
equations [2]: 

0 0( ) ( ) ( ) , ( )xx t Ax t Bu t b x t x= + + =&    (23)

( ) ( ) ( ) yy t Cx t Du t b= + +                                            (24) 

( ) ( ) ( )z k y k kν= +                                                       (25)
Where x and y are the state and observation vectors 

respectively and u  is the control input. , ,A B C and D  are 
the matrices containing the unknown parameters, and z is 
the measured variable, with ν being the measurement noise 
matrix. 
Estimates of parameter vector 1[θθ =  T

n ]........2 θθ  is 
obtained on minimizing cost function 

[ ] [ ]11
2

1

( , ) ( ) ( ) ( ) ( )
N

T
k k k k

k

J R z t y t R z t y t−

=

Θ = − −∑ % %           (26) 

Where R is the measurement noise covariance matrix, given 
by 

[ ][ ]
1

1 ( ) ( ) ( ) ( )
N

T

k

R z k y k z k y kN =

= − −∑                         (27) 

Where ( )y k is the measured variable and ( )z k  is the 

observed variable for any time kt . 
Updation of parameters is given by Gauss Newton 
formulation 

1 ,  and i i+Θ = Θ + ΔΘ ΔΘ −F = G                              (28) 
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Where  

1

1

( ) ( )T
N

k

y t y tk kR−

=

∂ ∂⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥∂Θ ∂Θ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑
% %

F                                      (29) 

And  

[ ]1

1

( )
( ) ( )

T
N

k k
k

y tk R z t y t−

=

∂⎡ ⎤
− −⎢ ⎥∂Θ⎢ ⎥⎣ ⎦
∑

%
%=G                          (30) 

C. Filter Error Method 
The mathematical model of nonlinear system in state 

space is given by the stochastic equations [12], [15]: 
[ ] 0 0( ) ( ), ( ), ( ), ( )x t f x t u t Fw t x t xβ= + =&    (31) 

[ ]( ) ( ), ( ),y t g x t u t β=  (32) 

( ) ( ) ( )k k kz t y t Gv t= +  (33) 

Where f and g are the xn and yn  dimensional general 
nonlinear real valued vector functions 
Prediction step 

( )

( )

1

1

0 0

ˆ( ) ( ) , ( ), ,  

ˆ 

k

k

t

k k k kt
x t x t f x t u t dt

x t x

β+

+ ⎡ ⎤= + ⎣ ⎦

=

∫%
 (34) 

[ ]( ) ( ), ( ),k k ky t g x t u t β=% %  (35) 

Correction step 

( ) ( ) ( ) ( )ˆ k k k kx t x t K z t y t= + −⎡ ⎤⎣ ⎦% %  (36) 

The steady state Kalman gain matrix K is  
1TK PC R−=  (37) 

The covariance matrix of the state prediction error, P, is 
obtained by solving a Riccati equation.  

11 0T T T
tAP PA PC R CP FF−

Δ+ − + =  (38) 

According to definition, the residual error and covariance 
matrix of the residuals (R) between measured output and 
predicted output from the prediction step setting / 0J R∂ ∂ = , 
are represented respectively as 

[ ][ ]
1

1 ( ) ( ) ( ) ( )
N

T

k

R z k y k z k y kN =

= − −∑  (39) 

Where, the cost function J is defined as 

[ ] [ ]11
2

1

( , ) ( ) ( ) ( ) ( )
N

T
k k k k

k

J R z t y t R z t y t−

=

Θ = − −∑ % %  (40) 

Parameter update  
We apply Gauss-Newton method to update the parameter 
vector Θ. 

1 ,  and i i+Θ = Θ + ΔΘ ΔΘ −F = G  (41) 
Or else, we can apply Levenberg-Marquardt (LM) method of 
solution 

λ ΔΘ −(F + I) = G                 (42) 

Where, i is the iteration index and λ is the LM parameter. 
The information matrix or Hessian matrix F  and the 
gradient vector G  are computed using the Eqs.(43) and (44) 
respectively. 

1

1

( ) ( )T
N

k

y t y tk kR−

=

∂ ∂⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥∂Θ ∂Θ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑
% %

F  (43) 

[ ]1

1

( )
( ) ( )

T
N

k k
k

y tk R z t y t−

=

∂⎡ ⎤
− −⎢ ⎥∂Θ⎢ ⎥⎣ ⎦
∑

%
%=G  (44) 

The following heuristic procedure is applied to estimate the 
new F-matrix, whenever R is revised [12]: 

2

1

2

1

y

y

n
o ld old new

ij j j j
jnew old

i i n
o ld

ij j
j

C r r r
F F

C r

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑
l l

 (45) 

Where jr is the jth  diagonal element of R-1, Cij the(i,j)th 

element of C, and the superscripts “old” and “new” denote 
the previous and revised estimates respectively.  

V. RESULTS AND DISCUSSION 

Flight Test Data (FLT1 and FLT2) contained information 
about motion and control variables ( exz qaaqV δθα ,,,,,,, & ) 
The gathered flight data are then processed and checked for 
kinematic consistency before applying to extract linear 
models through EEM, OEM and FEM with update of 
parameters by LM and GN methods. 

To predict the aerodynamics, the proposed model in 
section III was used. 

During the parameter estimation it was observed that the 
convergence of estimation algorithm (FEM and OEM) was 
highly dependent on the initial guess values of the 
parameters. 
Estimated values of parameters obtained by applying EEM 
and OEM and FEM to flight data FLT1 and FLT2 are 
presented in Table 1. The table also lists the accuracy of the 
estimates in terms of Standard Deviation. Further, number of 
iterations required for convergence and the absolute values of 
the cost function are also presented in the same table.  

FEM was run with GN and LM for parameter updation. A 
comparison between estimates obtained using GN and LM 
methods for optimization is also presented in the same table. 

Referring to Table 1, it can be apparently seen that in 
general, all the three methods estimate parameters are having 
similar sign and order of magnitude. However while 
comparing the values of the strong derivatives obtained 
through FLT1 and FLT2, it was observed that the variation 
among themselves lie within 10-15%. 

As per the convergence is concerned, OEM for the case 
FLT2 took 27 iterations. However for other cases, FEM with 
GN and LM and OEM took similar number of iterations.  

It is at this point we decided to go for a model verification 
using Proof-of-Match [12], a widely used approach based on 
comparison of model predictions with the flight 
measurements. Flight data omitted from the identification 
studies is selected to ensure that the model is not tuned to a 
specific data record or input form. In the present study, the 
Proof-of-Match validation of the longitudinal derivative 
model, identified from FLT1 and validated for FLT2 is 
illustrated in fig 3 and that for FLT2 is validated for FLT1 in 
fig. 4.Using the estimated aerodynamic model (obtained 
through FLT1), equations of motion were solved for eδ input 
and similar initial conditions used in generating FLT1, and 
vice versa, and the equations of motion were solved. In 
general, referring fig 3 and 4, it could be seen, as expected, 
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that the predicted response using model estimated through 
FEM were closer to the actual measured flight data. EEM is 
expected to be inefficient in presence of measurement noise. 
The predicted response obtained using aerodynamic model 
via EEM confirms this. The matching between predicted and 
measured response using EEM model is consistently inferior. 

Output error method (ML) is capable of handling 
measurement noise. During the Proof of Match, it can be 
easily seen (fig 3 and 4) that the matching during 
Proof-of-Match is although better than those obtained using 
EEM, but definitely inferior to those obtained using FEM. 

 
Figure 3:  Validation cycle: use of parameters estimated from 

FLT2 maneuver to be validated via FLT1 maneuver. 
(_._._.  FEM   ……. OEM  - - - EEM             Measured) 

 
 
Figure 4:  Validation cycle: use of parameters estimated from FLT1 

maneuver to be validated via FLT2 maneuver. 
(_._._.  FEM   ……. OEM  - - - EEM        Measured) 

This trend is consistent with the understanding that FEM 
can handle both process and measurement noise while 
estimating the parameters from real flight data. 

To investigate whether one can have advantage of using 
LM method for updation while using FEM, it was decided to 
estimate parameters using both the algorithms. Comparative 
results showing the values of the derivatives obtained using 
FEM with GN and with LM methods are also presented in 
table1. 
 

Table1: Comparison of estimated parameters (FEM, OEM &EEM) 

 
*figures in parenthesis indicate standard deviation 
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Figure 5:  Comparison of parameter values estimated through LM 
and GN optimization for FLT1, using various initial guess values of 

parameters 
 

The variation among the estimates obtained using LM and 
GN methods of updation of parameters is illustrated 
graphically in Fig. 5 for various cases of initial guess values. 
As seen in table 1, there was no appreciable difference 
observed among the derivatives obtained through LM and 
GN separately. 

The estimated model obtained using FEM can be used to 
develop a mathematical model simulating longitudinal 
dynamics of HANSA-3 aircraft. 

VI. CONCLUSION 

The present task was to estimate and compare the 
numerical values of the estimated parameters obtained using 
EEM, OEM and FEM methods. To investigate the accuracy 
of the estimated model, Proof-of-Match exercise [12] was 
carried out.  

It was observed that due to the turbulence in the 
atmosphere, an amount of process noise was introduced into 
the observation, along with certain measurement noise that 
was indispensible in the instrumentation of the aircraft.  

EEM was first used for parameter estimation. Since EEM 
does not account for either measurement noise or process 
noise; the Proof-of-Match exercise clearly shows a large 

deviation of the predicted variables through EEM from the 
measured variables. 

Next, the Maximum Likelihood (ML) method (a variant of 
OEM) was used to estimate the values of the parameters. The 
system was assumed to be corrupted with measurement 
noise, which the method can duly handle. However in 
presence of turbulence OEM yields poor results in terms of 
convergence and estimate. 

FEM yields satisfactory results even in presence of 
atmospheric turbulence, as it has capability to handle 
measurement and process noise. It was seen that by LM or by 
GN optimization, the present case did not prove to have much 
of advantages. However it is strongly believed that the LM 
method may be advantageous in presence of highly turbulent 
and highly nonlinear data in terms of convergence. 
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