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Abstract—In this article, we construct a random
number generator using a one dimensional, non-
uniform 4-Neighborhood Cellular Automata (4NCA).
A probabilistic analysis of CA rules has been done to
select the appropriate rules for 4NCA random num-
ber generator (RNG). A comparison is made between
the pseudo random patterns generated by using the
proposed CA RNGs with those obtained using a re-
cent Cellular Programming (CP) evolved CA RNGs.
The results show that our approach outperforms CP
both in terms of average time taken to evolve CA rules
and in terms of quality of pseudo random patterns
generated. The proposed approach is also shown to be
better than the common generators such as Shift Reg-
ister, Congruential Generator and Lagged Fibonacci
Generator.

Keywords: 4NCA, Entropy, Cellular Programming,

Probabilistic Analysis.

1 Introduction

Cellular Automata (CA) has been used for pseudoran-
dom number generation in the past [4]. They are also
used to implement random number generators (RNGs) in
cryptographic devices [6] and in Built-In-Self-Test (BIST)
circuits. With the increase in the computational capabil-
ities of computers, the demand of RNGs have likewise
increased [7] to carry out more sophisticated simulations.
Wolfram [14], in 1986, suggested that CA could be used
for efficient hardware implementation of random number
generation due to their simplicity and regularity of de-
sign.

One dimensional CA based RNGs have been extensively
studied in past [4] and their superiority over other widely
used methods such as linear feedback shift registers (LF-
SRs) has been convincingly established, especially in the
case of delay type faults which require patterns in specific
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order [3]. CA based RNGs can also be evolved automat-
ically by genetic algorithms. Sipper and Tomassine [10]
described a process of evolving the CA truth table using
a co-evolution process termed Cellular Programming.

To provide a standardized means of comparing random
number quality among CA based RNGs, Tomassine et.
al. introduced the use of Marsaglia’s highly regarded
Diehard random number test suite. We also use this ac-
knowledged test suite for evaluating the performance of
our random number generation algorithm.

In this paper we propose a new random number gener-
ation method for 4 neighborhood CA based on a proba-
bilistic analysis of the CA rules. A comparison is made
between patterns generated by some standard RNGs,
CP evolved RNGs and our proposed RNG in terms of
Marsaglia’s Diehard random number test suite intro-
duced by Tomassine et al. as a means of comparing ran-
dom number quality [12]. It is shown that the proposed
method produce patterns that are better in terms of their
randomness as compared to the other techniques.

2 CA Preliminaries

Cellular automata can be thought of as dynamical sys-
tems, discrete in both time and space [13]. It consists
of an infinite, regular grid of cells, each in one of a finite
number of states. The grid can be in any finite number of
dimensions. Time is also discrete and the state of a cell
at time t is a function of the states of a finite number of
cells (called its neighborhood) at time t−1. These neigh-
bors are a selection of cells relative to the specified cell,
and do not change. Here, we will only consider Boolean
automata in which the cellular state, s ∈ {0, 1}.
All cells update its value synchronously in discrete time
steps accordingly to some rule R. Such rule is based on the
state of the cell itself and the state of r of its neighbors:

sj+1
i = R(sj

i−r, ..., s
j
i−1, s

j
i, s

j
i+1, ..., s

j
i+r)

where sj+1
i is a value of ith cell (the state of a cell) in step

j and r is a radius of the neighborhood. Neighborhood
is composed of m = 2 ∗ r + 1 cells. This makes n = 2m
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Figure 1: 4NCA with two right neighbors

Figure 2: 4NCA with two left neighbors

possible configurations of that neighborhood [8]. Rules
are usually named using standard convention.

A CA characterized by EXOR and/or EXNOR depen-
dence is called an additive CA [4]. If in a CA the neigh-
borhood dependence is EXOR, then it is called a non
complemented rule. For neighborhood dependence of
EXNOR (where there is an inversion of the modulo-2
logic), the CA is called a complemented CA. The corre-
sponding rule involving the EXNOR function is called a
complemented rule. If in a CA same rule applies to all
cells, then the CA is called a uniform CA; otherwise the
CA is called a hybrid CA. There can be various bound-
ary conditions; namely, null ( where extreme cells are
connected to logic ‘0’), periodic ( extreme cells are ad-
jacent ) etc [4]. Nonuniform, or inhomogeneous, cellular
automata function in the same way as uniform ones, the
only difference being in the cellular rules that need not
be identical for all cells. Nonuniform CAs share the basic
“attractive” properties of uniform ones: simplicity, par-
allelism and locality [9].

2.1 4-Neighborhood Cellular Automata

4NCA is special type of CA in which the state of cell i
at time t + 1 depends on states of cells i− 2, i− 1, i and
i + 1 or cells i− 1, i, i + 1 and i + 2 at time t [1].

q[i](t + 1) = f(q[i− 2](t), q[i− 1](t), q[i](t),
q[i + 1](t), q[i + 2](t))

where f defines the CA rules.

The 4NCA consist of an array of identical memory cells
arranged in one dimensional fashion. In 4NCA a cell de-
pends on 4 of it’s neighbors. This is done by adding one
more neighbor either from left or from right but not both.
Each cell may have either of the following neighborhood
dependencies:
(1) Two left neighbors, self and one right neighbor de-

pendency.

q[i](t + 1) = f(q[i− 2](t), q[i− 1](t), q[i](t), q[i + 1](t)).

(2) Two right neighbors, self and one left neighbor de-
pendency

q[i](t + 1) = f(q[i− 1](t), q[i](t), q[i + 1](t), q[i + 2](t)).

The proposed model of cellular automata may use both
the above dependencies interchangeably but the left of
the immediate left and right of the immediate right cells
of cell i must not be connected to cell i at the same time.
As a consequence though it is not configured in this mode,
it can exploit 5 neighborhood dependency.

In this paper we use CA having additive rule. An additive
CA rule can be defined by following equation:

q[i](t + 1) = M ⊕ P • q[i− 2](t)⊕Q • q[i− 1](t)
⊕R • q[i](t)⊕ S • q[i + 1](t)
⊕T • q[i + 2](t)

q[i](t) means the state of cell i at time t.
M = 0; indicates linear additive rules .
M = 1; indicates non linear additive rules.
P , Q, R, S and T can be either 0, meaning no connec-
tivity, or 1 meaning connectivity. They are called the
impact coefficients for cell i.
⊕ denotes XOR
• denotes AND
where P • T �= 1.

For a 2 state 4NCA there are 25 distinct configurations
and 225

distinct mappings from all these neighborhood
configuration to the next state.

2.2 Classification of 4NCA rules

In this section we define the naming convention for dif-
ferent types of connectivities each cell of a linear 4NCA
can have with its neighboring cells. Denoting the state
of cell i at time t by q[i](t), the next state of cell i can
depend on 4 cells (including any three neighboring cells
and itself). Based on neighborhood dependency each CA
cell can have one of the 4 classes of connectivity.

If the next state of cell i depends on only one of the 4 cells,
the corresponding cell is said to have Class 1 connectiv-
ity. If next state depends on 2, 3 or 4 neighbors then the
corresponding cell has Class 2, Class 3 or Class 4 con-
nectivity respectively. A rule having Class i connectivity
for each cell is called Class i rule, where 1 ≤ i ≤ 4. For
example 2863311530 is a Class 1 rule and 1019462460 is
a Class 4 rule. There are 23 different connectivities each
cell can have for our present model of the 4NCA. There-
fore 23 different rules are applicable for a cell. Out of
these, 5 rules belong to Class 1, 9 belong to Class 2, 7
belong to Class 3 and 2 belong to Class 4.
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2.3 Entropy as a Measure of Randomness

The quality of random numbers can be measured in a
variety of ways. One common method is to compute the
information density, or entropy, in a series of numbers.
The entropy of X is the uncertainty about the outcome
before an observation of X. In other words entropy is
a measure of the amount of unpredictable information
there is in a data source. A sequence of good random
numbers will have a high level of entropy.
Let k be the number of possible state values of each cell.
The cell state sequences (bit strings) are divided into sub-
sequences of length h, denoted by Eh to calculate the en-
tropy of the cell’s state sequence. So there are kh possible
subsequences of length h. Thus, entropy of bit string Eh

can be given by:

Eh = −Σkh

j=1phj log2phj .

where hj is the jth subsequence, 1 ≤ j ≤ kh and phj

is the probability of subsequences hj . The entropy Eh

attains the maximum value when the probabilities phj

are same and equal to 1/k. Thus, the randomness of the
sequences of state of a cell can be judged according to
the value of entropy. High entropy is a necessary, but by
no means sufficient, condition for obtaining high-quality
RNGs. In general, a battery of tests must be applied to
this pattern to ascertain whether the evolved RNGs are
indeed of high quality.
Once a high quality RNG is designed it is used to produce
pseudorandom patterns in the following way:

1. The obtained n cell CA is initialized with a random
seed.

2. It is then run for l time steps, to produce n random
sequences of l bits.

3. These sequences are connected to form one long se-
quence of n ∗ l bits.

4. This process is repeated m times, thus a binary pat-
tern of m ∗ n ∗ l binary bits are obtained.

3 Probabilistic Analysis of 4NCA rules

The following notations hold for the present discussion on
probabilistic analysis of 1-dimensional 4NCA rules having
n cells with each cell having the same class of connectiv-
ity.
q(t) represents the state of CA at time t.
p(t) represents the frequency count of 1 in q(t) i.e,

p(t) =
Numbers of cells having 1

Total number of cells
.

pi(t) denotes the probability of occurrence of 1 in ith cell
at time t.

piavg (t) can be deduced from pi(t) as follows:

piavg
(t) =

Σn
i=1pi(t)

n
.

ci denotes the count value for cell i.
δ(t) represents the deviation of p(t) from 0.5 i.e,

δ(t) = p(t)− 0.5.

|δiavg (t)| represents the average of the modulus of the
deviation of pi(t) from 0.5 at time t i.e,

|δiavg (t)| = Σn
i=1|pi(t)− 0.5|

n
.

In the sections to follow it is mathematically shown and
experimentally verified that for the ith cell pi(t + 1) de-
pends on p(t) and the class of rule the cell is having.
Let us explain how pi(t + 1) is obtained from p(t) for a
non complemented linear CA. We take the example of a
Class 4 rule.
Assume that the cell i is connected to cells i − 1, i + 1,
i + 2 and itself. Since we are considering only linear CA,
cell i will have a 1 in it at time t + 1 if and only if out of
cells i− 1, i, i + 1 and i + 2:

1. Any one of the cells has a 1 in it at time t.

2. Any three of the cells have 1s in them at time t.

Mathematically,

pi(t + 1) = 4(p(t)(1− p(t))3 + (1− p(t))p(t)3)
= 4p(t)(1− p(t))(2p(t)2 − 2p(t) + 1)

Theoretically, for an n cell CA, piavg
(t + 1) is calculated

as follows:

piavg (t + 1) =
Σn

i=1pi(t + 1)
n

.

For experimental purpose piavg (t+1) is calculated as fol-
lows:

1. For i = 1, 2, . . . n do

(a) ci = 0.

(b) For a fixed value of p(t) repeat m times.

i. Initialize CA with a random seed and
evolve the CA for 1 time step. Increment
ci if qi(t + 1) is 1.

(c) Set ci to ci

m .

2. piavg
(t + 1) = Σn

i=1ci

n .
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For an n cell CA, the above procedure is repeated n + 1
times, each time with a different value of p(t). Initially
with p(t)=0 and incrementing p(t) by 1/n at each itera-
tion we get n + 1 values of piavg

.

For our experiment we have n=100 and m=100. Table 1
gives the relationship between piavg

(t+1) and p(t) for an
n cell periodic boundary, non complemented CA. Fig. 3
shows the ideal plot of piavg (t+1) against p(t) with p(t) on
x-axis and p(t + 1) on y-axis. In order to experimentally
verify the theoretical results, experiments were carried
out to obtain various values of piavg

(t + 1) for different
values of p(t) for a CA of size n=100. Fig. 4 shows
the plot of pavg

(t + 1) against p(t) for the experiments
conducted. As can be seen from Fig. 3 and Fig. 4, the
experimentally obtained plot for the different classes of
rules closely follow the theoretically obtained plots.

Table 1: piavg
(t + 1) represented in terms of p(t)

Class piavg
(t + 1)

Class 1 p(t)
Class 2 2p(t)(1− p(t))
Class 3 p(t)(4p(t)2 − 6p(t) + 3)
Class 4 4p(t)(1− p(t))(2p(t)2 − 2p(t) + 1)

Figure 3: Theoretical plot of piavg
(t + 1) Vs p(t)

Figure 4: Experimental plot of piavg
(t + 1) Vs p(t)

Table 2 represents |δiavg (t + 1)| in terms of δ(t) for n
cell periodic boundary, non complemented CA for various

classes of rules. Fig. 5 shows the ideal plot of |δiavg (t+1)|
against δ(t) with |δiavg (t+1) on y-axis and δ(t) on x-axis.
In order to experimentally verify the theoretical results,
experiments were carried out to obtain various values of
|δiavg

(t + 1)| for different values of δ(t) for a CA of size
n=100. Fig. 6 shows the plot of |δiavg (t + 1)| against
δ(t) for the experiments conducted. As earlier, the ex-
perimentally obtained plots closely follow the theoretical
ones.

Table 2: |δiavg (t + 1)| expressed in terms of δ(t)

Class |δiavg
(t + 1)|

Class 1 |δ(t)|
Class 2 |2δ(t)(1− δ(t))|
Class 3 |δ(t)(4δ(t)2 − 6δ(t) + 3)|
Class 4 |4δ(t)(1− δ(t))(2δ(t)2 − 2δ(t) + 1)|

Figure 5: Theoritical plot of |δiavg (t + 1)| Vs δ(t)

Figure 6: Experimental plot of |δiavg
(t + 1)| Vs δ(t)

From the above discussion it can be seen that δiavg (t+1)
is the minimum for any value of δ(t) for Class 4 rules
followed by Class 3, 2 and 1 rules in that order. Hence
substitution of Class 4 rules tends to equalize the proba-
bility of occurrence of 0 and 1 more than any other class
of rule. This leads to maximization of entropy which is
necessary (but not sufficient) criterion to ensure random-
ness. This forms the basis of the proposed rule selection
algorithm discussed in the next section.
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4 Proposed Rule Selection Algorithm
(PRSA)

The proposed rule selection algorithm works as follows.

1. Select a Class 4 connectivity and substitute it to all
the cells.

2. Select m = (.1 ∗ n) cells randomly. For each of the
selected cells choose one of its impact coefficient (de-
scribed in section 2.1) randomly and invert it, still
producing a valid rule.

3. If resultant rule has entropy ≥ .998 * MAXIMUM
ENTROPY, then stop the process else go to Step 1.

5 Results

The experiments were carried out for a 4NCA having 50
cells. The 50 cells were initialized with a random seed.
The 4NCA was executed for 65536 time steps to pro-
duce 50 random sequences of 65536 bits. These 50 bit
sequences are concatenated to form one long sequence of
3276800 bits. This process is repeated 30 times. Thus we
obtain a sequence of little more then 98 million binary
bits. This produces random data of 11.7 MB.

For evaluating the randomness of the generated bit string,
we used what is probably the most stringent suite of ran-
domness tests presented to date: Marsaglia’s Diehard
suite [5]. A detailed description of the tests is beyond
the scope of this paper and the interested reader is re-
ferred to [5].

A comparison of the performance of the proposed tech-
nique is made with those of some common generators
namely Shift Register Generator (SR), Extended Congru-
ential Generator (EC) and Lagged Fibonacci Generator
(LF). The results for these generators are taken from [15].
Another CA based RNG using an evolutionary technique
is called cellular programming has been proposed in the
literature [11]. The goal of the evolutionary algorithm is
to evolve “good” rule tables for a nonuniform CA, i.e.,
rules that give rise to high-quality sequences of random
numbers. For the purpose of comparison, the results for
CP evolved CAs, CA1, CA2, CA3 are taken from [2].
Using the CA based approaches namely PRSA and CP,
three different CAs are evolved thus providing three sets
of results each. The diehard tests results are provided
in Table 3. The results show that the bit patterns gen-
erated using PRSA evolved CA passes more number of
diehard tests than any other competing method. PRSA
is found to provide quite consistent test results for the
three CAs, CA1, CA2 and CA3, while those obtained us-
ing CP provide varying performance. This indicates the
effectiveness of the proposed RNG.

Comparing the timing requirements of the proposed and
50 cell CP based RNG, we found that while the former

Table 3: Test results. NA stands for Not Applied

Test Name SR EC LF CP PRSA
CA1 CA2 CA3 CA1 CA2 CA3

Birthday Spacing Y Y N Y Y Y Y Y Y
Tough Birthday Spacing NA NA NA N Y Y Y Y Y
OPERMS Permutation 1 Y Y Y Y Y Y Y Y Y
OPERMS Permutation 2 Y Y Y Y Y Y Y Y Y
Binary Rank for 31X31 Matrices N Y Y Y Y Y Y Y Y
Binary Rank for 32X32 Matrices N Y Y Y Y Y Y Y Y
Binary Rank for 6X8 Matrices Y Y Y Y Y Y Y Y Y
Bitstream Test NA NA NA N N N N N Y
OPSO NA NA NA N N N N N Y
OQSO NA NA NA N N N N N Y
DNA NA NA NA N N N N N Y
Count The 1’s Y Y N Y Y Y Y Y Y
Parking Lot Y Y Y Y Y Y Y Y Y
Minimum Distance Y Y N N N N N N Y
3D Sphere Y Y Y Y Y Y Y Y Y
Squeeze Y Y Y Y Y Y Y Y Y
Overlapping Sums Y Y Y Y Y Y Y Y Y
Runs up 1 Y Y Y Y Y Y Y Y Y
Runs down 1 Y Y Y Y Y Y Y Y Y
Runs up 2 N N Y Y Y Y Y Y Y
Runs down 2 Y Y Y Y Y Y Y Y Y
Craps Test1 Y Y N Y Y Y Y Y Y
Craps Test2 Y Y N Y Y Y Y Y Y

took 6 seconds, the latter required 12 minutes and 4 sec-
onds to evolve the CAs on a 3GHz Intel Pentium 4 ma-
chine

Table 4: Comparison between average CPU time taken
by PRSA and CP to evolve CA rules

PRSA CP
Average CPU Time 6(sec) 12(min) 4(sec)

6 Conclusion

Based on a probabilistic analysis, we construct a random
number generator using a one dimensional, non-uniform
4NCA. The analysis points to the fact that Class 4 rules
are likely to provide better random patterns than Class
3, 2 or 1 rules. The random patterns generated using the
proposed method are compared with those generated us-
ing a CP based method and several other existing meth-
ods. The results show that the present approach outper-
forms CP both in terms of average time taken to evolve
CA rules and in terms of quality of pseudo random pat-
terns generated. The generator based on 4NCA can pro-
duce a high quality of random patterns which pass most
of, sometimes all, the tests. The 4NCA generator can pro-
duce random numbers quickly and can be implemented
conveniently by hardware, and can be used in many fields
such as built-in-self-test of VLSI and Cryptography. The
authors are working in these directions.
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