
 
 

  
Abstract— This paper presents research on the Vehicle 

Routing Problem (VRP) using a sweep heuristic method with 
2-opt exchange and traveling salesman tours and an integer 
programming model for split delivery VRP model to select the 
best route to pick up and delivery customers from/to desired 
destination and depot. The modeling language, AMPL with 
CPLEX is used to develop the model and implement the sweep 
heuristic.  The research found that the integer programming 
model produced the optimal result for some cases and failed to 
produce the optimal result for some cases. However, the sweep 
heuristic gave good solutions for all cases within a small amount 
of computational time. The research also investigated sensitivity 
analysis with respect to the vehicle capacity.  The results 
indicate a savings in number of vehicle used with a small 
increase in vehicle capacity.  The case study of University of The 
Thai Chamber of Commerce (UTCC) which provides bus 
services to pick up and deliver staff from/to home and 
university is selected to present in this paper. 
 

Index Terms— Vehicle Routing Problem (VRP), Sweep 
Heuristics Method, Integer Programming Model, Split Delivery 
VRP Model  

 
I. INTRODUCTION 

The Vehicle Routing Problem (VRP) is a well-known 
problem studied by researchers in different areas such as 
Operations Research, Decision Support Systems, and 
Artificial Intelligence.  The VRP deals with distribution of 
goods from a depot to a set of customers in a given time 
period by a fleet of vehicles which are operated by a set of 
drivers who perform movements on an appropriate road 
network.  The solution of a VRP is a set of minimum cost 
routes, which satisfy the problem’s constraints, and fulfill 
customers’ requirements. 

 In the VRP, the road network is represented by a graph 
with arcs and vertices.  Arcs represent roads and vertices 
represent road intersections, junctions, customer locations, 
and the depot.  Each arc has an associated cost.  Each 
customer location vertex has an associated number of goods 
to be delivered.  Every vehicle has its own capacity and cost 
associated with its utilization. There are objectives other than 
minimizing the transportation cost that may arise in vehicle 
routing problems such as minimizing the number of vehicles 
required to serve all customers, balancing the routes, or 
minimizing a penalty associated with partial service of the 
customers. 

The VRP may be defined mathematically as follows.  Let 
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G = (V, A) be a network where V = {0, 1, … , n} is the vertex 
set and A ⊆ V×V is the arc set.  Vertex 0 is the depot and V\{0} 
is the set of customer locations on the road network.  
Associated with vertex i ∈ V\{0} is a non-negative demand di.  
The parameter cij represents a non-negative cost or distance 
between vertices i and j.  The parameters K and Uk are the 
number of vehicles and the capacity of vehicle k, 
respectively.  Reference [1] describes the VRP with an 
integer programming formulation using a three-index vehicle 
flow formulation where binary variables xijk count the 
number of times arc (i,j) ∈ A is traversed by vehicle k (k = 
1,…,K) in the optimal solution .  In addition, there are binary 
variables yik (i ∈ V; k = 1,…,K) that  take a value of 1 if vertex 
i is visited by vehicle k in the optimal solution and take a 
value of 0, otherwise.  The formulation is as follows: 
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Constraints (2) - (5) ensure that each customer is visited 
exactly once, that K vehicles leave the depot, and that the 
same vehicle enters and leaves a given customer vertex, 
respectively.  Constraints (6) are the capacity restrictions for 
each vehicle k, whereas constraints (7) are sub-tour 
elimination constraints for each vehicle.  Note that in (7), S is 
a subset of the stops that does not contain the depot. 
Three-index vehicle flow models have been extensively used 
to model more constrained versions of the VRP, such as the 
VRP with time windows (VRPTW). 

The VRP is an NP-hard problem [2], and so it is difficult to 
solve.  There are many variations on the basic VRP as stated 
above such as the traveling salesman problem (TSP), the arc 
routing problem, and the VRP with time windows.  Each type 

A Sweep Algorithm for the Mix Fleet Vehicle 
Routing Problem 

N. Suthikarnnarunai 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008



 
 

of problem has its own characteristics. 
The capacitated VRP (CVRP) is a problem in which all 

customer demand must be satisfied, all demands are known, 
all vehicles have identical, limited capacity and are based at a 
central depot.  The objective of CVRP is to minimize total 
transportation cost or time [1].  The VRPTW is an extension 
of CVRP with a time constraint for reaching each customer 
[1].  The service can be performed only within a specified 
time interval.  A vehicle is permitted to arrive before the 
opening of the time window, but must wait, at no cost, until 
service becomes possible. Arrival after the latest time 
window is not permitted [3]. 

The VRP with backhauls (VRPB) is a VRP with customers 
separated into two groups – linehaul customers who are 
demanding goods and backhaul customers who are returning 
goods.  The operations of this problem must be delivery first 
and pick up later (i.e., linehaul first and backhaul later).  The 
objective of VRPB is to find a set of routes that minimizes the 
total cost, time, or distance traveled [1]. 

The VRP with pickup and delivery (VRPPD) requires 
delivery of goods to the customers at one location and then 
picking up other types of goods from them to be brought back 
to the depot.  The objective of VRPPD is to minimize the 
vehicle fleet size and total cost/time/distance traveled [1]. 

In the split delivery VRP (SDVRP), customers at each 
point may be served by different vehicles.  This is necessary 
if the requirement at any customer vertex exceeds the vehicle 
capacity [4].  The fleet size and mix VRP (FSMVRP) or 
vehicle fleet mix problem is another variant of VRP in which 
the vehicles have different capacities, different fixed costs, 
and different variable costs [5]. 

 
II. SURVEY OF VRP LITERATURE 

VRP was first studied by [6].  Since then, there have been 
many VRP studies reported in the literature.  References [7], 
[8], and [9] apply VRP models to school bus routing.  Other 
applications include inventory and vehicle routing in the 
beverage, food, and dairy industries, distribution and routing 
in the newspaper industry [10], railroad industry [11], transit 
bus services [12], grass mowing industry [13], public library 
systems [14], post service [15], and grocery delivery [16].  
More comprehensive surveys of the VRP literature may be 
found in [4], [12],[17], [18], and [19]. 

VRP solution methods fall into two main categories: exact 
methods and heuristics.  Branch-and-bound and 
branch-and-cut, are both exact methods which have been 
proposed for VRP by many researchers such as [1], [20], 
[21], [22], and [23]. 

Heuristics are methods which produce good solutions in 
practice but do not guarantee optimality.  Reference [1] 
defines classical heuristics as methods which quickly provide 
good solutions by limiting the search space.  Classical 
heuristics fall into three subcategories: constructive 
heuristics, two-phase heuristics, and improvement methods.  
Examples of classical VRP heuristics in the literature include 
[5], [24], [25], [26], and [27].  Metaheuristics give better 
solutions than classical heuristics, but consume more 
computational time.  Some of the most popular 
metaheuristics are simulated annealing (SA), deterministic 
annealing (DA), tabu search (TS), generic algorithms (GA), 
ant systems (AS), constraint programming, and neural 
networks (NN). 

Several researchers use SA to solve VRPTW such as [13] 
and [28].  Applications of TS to VRP include [29], [30], and 
[31].  References [32], [33], and [34] apply GA to solve VRP.  
References [35], [36], and [37] use AS to solve VRP.  A 
constraint programming method for VRP has been proposed 
by [38].  Neural Networks for VRP are mostly used in 
combination with other methods to solve the problem.  For 
example, [39] used NN together with AS to solve VRPTW.  
Reference [40] used NN and GA to solve the multi-depot 
vehicle routing problem.  

 
III. A VRP CASE STUDY OF UTCC’S BUS SERVICE 
University of the Thai Chamber of Commerce (UTCC) is a 

private non-profit higher education institution in Bangkok 
offering degrees in Business Administration, Accountancy, 
Economics, Humanities, Science, Communication Arts, 
Engineering, and Law.  Currently, the UTCC provides bus 
services to pick up and deliver staff from/to home and 
university in the morning and evening periods.  There are 4 
routes currently in service and each route has been 
established by an intuitive method.  A recent survey of UTCC 
bus riders revealed widespread dissatisfaction with the 
service.  Riders complained about the limited number of 
routes, stops, and vehicles. 

UTCC currently has a fleet of 12 vehicles of which 4 are 
used to service these customers.  These 12 vehicles consist of 
2 Scania buses with a capacity of 40 seats each, 2 BMC buses 
with a capacity of 30 seats each, and 8 vans with a capacity of 
12 seats each.  The buses may not be available on any given 
day since they are used in other university operations, but at 
least 4 vans are available everyday.  The following is the list 
of assumptions that shaped our formulation of the VRP 
model for UTCC: 

• Each route will start from and end at UTCC. 
• The cost of a route is proportional to the time traveled. 
• Travel times between each stop are known and accurate. 
• Demands (i.e., number of passengers) at each of the 

stops are known. 
• The demand at each stop can be split.  That is, multiple 

vehicles may be used to pickup passengers at any given 
stop. 

• Loading time per passenger is constant for every 
passenger. 

The constraints in this problem are: 
• The capacity of the vehicles is strictly enforced, a 

customer may not stand up on the vehicle. 
• Hour of operations – there is a time window for 

delivering passengers to UTCC in the morning and 
evening. 

In the case of UTCC, in which the demand at each stop can 
be split, the binary variable iky  is replaced with the integer 

variable ikz (i ∈ V; k = 1,…,K), which indicates the number 
of passengers at stop i that are picked up by vehicle K.  We 
use a loading time of 6 seconds (0.1 minute) per passenger as 
recommended in the literature [41].  The parameter t is the 
time window.  Therefore, the equations (2) – (6) and equation 
(8) must be dropped and the following equations will be 
added:  
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Constraints (10) and (11) ensure that the passengers at all 
stops will be picked up and the capacity restriction for each 
vehicle k is enforced, respectively.  Variables ijkx and ikz are 
linked by constraint (12).  Constraint (13) is the flow balance 
constraint which means the same vehicle enters and leaves a 
given customer vertex.  Constraint (14) shows that all 
vehicles must start at the depot.  The time window constraints 
are (15), where t is 150 minutes for the morning run and 180 
minutes for the evening run. The travel time is (2.1) plus 0.1 
times the total demand 

The overall goal of this research is to develop a plan for the 
university’s bus service to be able to serve all customers in 
the most efficient way.  New and improved sets of routes are 
created with all possible fleet configurations as following. 

1. Only vans are available. 
2. 1 Scania bus and 8 vans are available. 
3. 2 Scania buses and 8 vans are available. 
4. 1 BMC bus and 8 vans are available. 
5. 2 BMC buses and 8 vans are available. 
6. 1 Scania bus, 1 BMC bus, and 8 vans are available. 
7. 2 Scania buses, 1 BMC bus, and 8 vans are available. 
8. 1 Scania bus, 2 BMC buses, and 8 vans are available. 
9. 2 Scania buses, 2 BMC buses, and 8 vans are available. 

 
IV. A DECOMPOSITION ALGORITHM FOR VRP 
As mentioned earlier, there are many methods used to 

solve VRP problems, the idea of cluster first and route second 
had been employed in this research. The sweep algorithm 
was used for clustering, while traveling salesman tours were 
used to order the stops in the clusters found by the sweep.  In 
some cases, 2-opt exchanges was used to adjust the clusters, 
resulting in improved solutions. The following is the 
description of the decomposition algorithm for our problem. 
 
    A. Sweep Algorithm 

The sweep algorithm is a method for clustering customers 
into groups so that customers in the same group are 
geographically close together and can be served by the same 
vehicle.  The sweep algorithm uses the following steps. 

1. Locate the depot as the center of the two-dimensional 
plane. 

2. Compute the polar coordinates of each customer with 
respect to the depot. 

3. Start sweeping all customers by increasing polar angle. 
4. Assign each customer encompassed by the sweep to the 

current cluster. 
5. Stop the sweep when adding the next customer would 

violate the maximum vehicle capacity. 

6. Create a new cluster by resuming the sweep where the 
last one left off. 

7. Repeat steps 4 – 6, until all customers have been 
included in a cluster. 

In our case, the demand at some stops may exceed the 
capacity of the vehicles. The modification to the sweep 
algorithm that we have made for this specific case study is to 
add the preprocessing step. In general, if any stop has 
demand greater than or equal to the capacity of the vehicle, 
then we assign a vehicle to pick up customers at that stop in 
the amount equal to the capacity of the vehicle and leave the 
rest of the demand for the regular sweep steps.  

From the characteristics of the problem there are several 
cases that might happen when there is a mix of vehicle types 
in the fleet.  When we have a mixed fleet, we need to do the 
sweep more than one time to get the result. The general steps 
of solving a mixed fleet model by using the sweep algorithm 
are as follows. 

1. Start the first sweep by using the highest vehicle 
capacity in the fleet as the capacity limitation. 

2. From the result, choose the route with the highest 
number of customers as part of our solution, and then 
discard the data of all stops in our chosen route. 

3. Do the next sweep by using the next highest vehicle 
capacity in the fleet as the capacity limitation. 

4. Repeat steps 2 and 3 until all vehicle sizes have been 
considered or there are no customers left. 

 
B. Traveling Salesman 
The famous traveling salesman problem, is solved to route 

the shortest tour in each cluster in the second phase.  The TSP 
is known as the method used to find the cheapest way of 
visiting all of a given set of cities and returning to the starting 
point.  The cheapest way may refer to cost, distance or time of 
traveling in each route.  Since the clusters in the UTCC 
problem are relatively small, we solve the resulting TSP 
instances with a straightforward integer programming model. 
 

C. 2-Opt Exchange 
The 2-opt exchange is a method for exchanging two 

groups of customers in different routes, resulting in lower 
mileage, cost, or time in each route.  The process will be 
repeated until no more exchanges produce a decrease in 
mileage, cost, or time. This will result in a new set of clusters. 
Reference [42] shows what two routes would look like after 
performing a 2-opt exchange as in Figure 1. 

 
Figure 1  2-opt Exchange Swapping Customers A and B 

 
V. INITIAL RESULTS 

Figure 2 and Table 1 show the solutions to the vans-only 
morning run case as the example for all other cases we 
mentioned earlier in section 3. Each table contains four 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008



 
 

columns: the vehicle used, route, total number of passengers 
in each vehicle, and total time used by the vehicle. The table 
shows the stops by order received from the TSP algorithm, 
along with the number of passengers picked up at each stop.  
We use the notation “L(N)”, in which L refers to the stop 
location and N refers to the number of customers that will be 
picked up at stop L. For example, “4(6)” means 6 people will 
be picked up at stop number 4.  
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Figure 2  Vans-Only Morning Run 

 
Table 1 Vans-Only Morning Run 

 
 

VI. EXACT METHODS 
Exact methods for solving VRP are quite limited, because 

of the combinatorial explosion [43].  Many successful 
heuristic methods have been developed to solve VRP.  In our 
investigation, a heuristic composed of the sweep method, 
traveling salesman tours, and 2-opt exchanges has been 
selected to solve our problem.  The results of the heuristic in 
the van-only case, 9 vans are required for serving all 
customers in the morning run.  The total travel time in the 
solution from the heuristic is 822.2 minutes.  This result was 
obtained on a Pentium 4 PC with 512 MB of RAM in about 3 
seconds of computational time. 

For the exact method, we replaced constraint (7) with the 
following equation  
   ∑ ∑

′∈ ′∈

−′≤
Si iSj

ijk Sx
}\{

1  KkS ,...,1, =′∀   (16) 

where S ′  is a given set of subtours.  Then, we implemented 
a subtour generation procedure for VRP as follows: 

1. Let φ=′S . 
2. Solve model (10) – (16). 
3. Check the solution for subtours. 
4. If any subtours are found, add them to S ′  and go to step    
     2. 
5. Stop, current solution is optimal.  
The best solution received from the solving method 

mentioned above is to use 8 vans to serve all customers in the 
morning run.  There are 3,696 binary variables, 176 integer 
variables and 3,757 constraints in the IP model when 

φ=′S . The IP model was too large to solve on the PC used 
to obtain the results in Appendix A.  To solve it, we used a 
Dell PE 2650 with 4,096 MB of RAM and dual Intel Xeon 
processors running at 3.0 GHz.  The total travel time in the IP 
solution is 776.2 minutes with a 10% optimality gap.  The 
computational time using AMPL with CPLEX 10.0 was 
35,109.07 seconds which is almost 10 hours.  If 9 vans are 
used in the exact method, the total travel time with a 10% 
MIP gap is 749.2 minutes.  The computational time for the 
latter case was 11,418.25 seconds (3.17 hours).  This shows 
that the results received from our heuristic are good enough 
compared to the results from the exact method, and that the 
heuristic uses considerably less computational time and 
memory.  Figures 3 and 4 show the routes produced by the 
exact method using 8 vans and 9 vans, respectively. 
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Figure 3   Exact Method Result: 8 Vans Morning Run 

 
Table 2  Recommended Van Capacity to all cases 

 
In the evening run, the subtour generation procedure failed 

to find a feasible solution.  AMPL with CPLEX 10.0 failed to 
produce a solution within a reasonable time limit of 3,600 
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seconds (1 hour) in each subtour elimination iteration (steps 2 
– 4).  We tried to increase the processing time per iteration to 
15,000 seconds but the program terminated before finding a 
feasible solution (i.e., it never got to step 5).  Therefore, we 
used another program to generate the subtour elimination 
constraints for all subtours with 5 or fewer stops before 
solving the model.  This gave us 75,777 subtours.  This 
process took one day of CPU time.  When we solved this 
model, the best solution we got had a 19.17% optimality gap 
with a total travel time of 714.7 minutes for the van-only case 
(This solution was obtained using a van capacity of 17 during 
the sensitivity analysis described in section 7). The 
computational time was 74.67 hours.  While we got the total 
travel time of 1,063.7 minutes from the sweep method, with 
the computational time of 16 seconds.  However, we obtain 
results of all cases from the sweep method.  In the evening 
run, both sweep and exact procedure was too large to solve 
on the PC, and so we used a Dell PE 2650 with 4,096 MB of 
RAM and dual Intel Xeon processors running at 3.0 GHz is 
used to run the algorithm.   
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Figure 4  Exact Method Result: 9 Vans Morning Run 

 
VII. SENSITIVITY ANALYSIS FOR UTCC’S BUS 

SERVICE 
In this section, we present alternative solutions for 

UTCC’s bus service.  Sensitivity analysis gives alternative 
solutions in accordance to changes in vehicle capacity.  
Considering UTCC’s current operations and the size of Thai 
people, we saw that the capacity of the buses and vans may be 
expanded.  The vans may be able to load up to 17 people and 
10 more customers may be allowed to stand on the bus when 
the seats are full.  The sweep results when we assigned the 
bus capacity a large number (capacity of 60) reveal that no 
matter how much extra capacity we assigned to the buses, the 
number of customers that the Scania bus can pick up under 
our time constraint will not exceed our current maximum 
capacity of 40 seats. Therefore, our sensitivity analysis is 

only performed on the van capacity.  In case of the BMC bus, 
we can use the solution with the Scania bus if we allow 
customers to stand on the bus. The results reveal that in most 
of the cases, the more capacity of the van, the less number of 
vehicles required. Table 2 is our recommendation to UTCC 
for every case we mentioned in section 3, considering the 
comfort of the customer. 

 
VIII. SUMMARY AND RECOMMENDATION 

From the organized of this paper, several tasks have been 
accomplished. A comprehensive literature review is reported 
in section 2.  The sweep method followed by the traveling 
salesman, and 2-opt exchange has been implemented  to 
solve all cases of our problem.  An exact method using 
integer programming has been applied to the van-only 
morning run case.  The modeling language for mathematical 
programming called AMPL has been used for this propose.  
Also, the sensitivity analysis option for UTCC have been 
purposed in section VII.  This section presents a 
recommendation to UTCC for a cost effective way to 
implement new routes given UTCC’s current resources, and 
also to make a recommendation for expanding the service in 
the future. The recommendation about the future research in 
the area of VRP is also mentioned in this section. 
 One interesting option for UTCC’s service is not to start 
vehicles at the depot.  Our method for this idea is to find 
routes in the morning in which the first stop in each route is 
not at the depot.  Then, the vehicles will pick up customers at 
other stops along the route and end at the depot, while not 
exceed the vehicle capacity and the time limit of 150 
minutes.  In the evening run, all the vehicles will start at the 
depot, drop the customers at their stops, and end the routes at 
the stops which are the starting stops in the morning.  If the 
evening run uses more vehicles than the morning run, the 
extra vehicles must go back to the depot.  However, in both 
cases, all routes must be created under the objective function 
of minimizing the total travel time of all vehicles.  

In the area of VRP, the sweep heuristic method might not 
produce the optimal solutions due to the searching scope is 
limited in the local neighborhood. However, it produces good 
solution within the reasonable time limit. Therefore, another 
recommendation is based on the sweep heuristic method. In 
our original sweep method, the cluster is created by adding 
customers into the vehicle according to the increasing in 
degree angle of the stops.  The rules in terminating each 
cluster depend on 1) the number of customer in the next stop 
and 2) the travel time to the next stop.  In the new idea, the 
first cluster termination rule as mentioned above still holds. 
However, it allows the sweep to skip a stop when the travel 
time to that stop would exceed the time limit.  The next stop 
after the skipped stop will be tested by the same termination 
rules.  If it exceeds the capacity then the sweep terminates, 
and the stop which has the least degree angle which is not 
include in any cluster yet will be used as the starting stop in 
the next cluster.  The sweep considers the stops in increasing 
angle until one is found that does not violate the time limit.  If 
no such stop is found, the cluster is terminated and the next 
cluster is started at the stop with lowest degree angle which 
has not been included in previous cluster yet.  The 
preliminary experiments with this idea show that the vehicles 
will be used at their maximum capacity in most cases.  In 
some cases, the total travel time is lower than our original 
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sweep method. 
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