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Abstract— This paper proposes a new location
problem of competitive facilities, e.g. shops. In the
most studies of competitive facility location, the dis-
tance between the facilities and their customers is rep-
resented as the Euclid distance. The proposing loca-
tion problem introduces the A-distance, proposed by
Widmayer etc., for representing the situation that the
directions which customers can move are given. For
solving the formulated facility location problem effi-
ciently, it is shown that the problem is reformulated
as a combinatorial optimization problem, and its solv-
ing method based on genetic algorithms is proposed.
The efficiency of the solving method is shown by ap-
plying to several examples of the competitive facility
location problems.
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1 Introduction

A competitive facility location problem (CFLP) is one of
optimal location problems for commercial facilities, e.g.
shops and supermarkets, and an objective for CFLPs is
mainly to obtain as many customers as possible. Mathe-
matical studies on CFLPs are originated by Hotelling [6].
He considered CFLPs under the conditions that (i) cus-
tomers are uniformly distributed on a line segment, (ii)
each of decision makers (DMs) can locate and move
her/his own facility at any times, and (iii) all customers
only use the nearest facility. CFLPs on a plain were
studied by Okabe and Suzuki [12], etc. As extension of
Hotelling’s CFLP, Wendell and McKelvey [17] assumed
that there exist customers on a finite number of points,
called demand points (DPs), and they considered CFLPs
on a network whose nodes are DPs.

Based upon CFLPs by Wendell and McKelvey, Hakimi [5]
considered CFLPs under the conditions that the DM
locates her/his facilities on a network that competitive
facilities were already located. Drezner [3] extended
Hakimi’s CFLPs to CFLPs on a plane that there are DPs
and competitive facilities. As extension of their CFLPs,
CFLPs with quality or size of facilities are considered
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by Uno et al. [15], Fernández et al. [4], Bruno and Im-
prota [1], and Zhang and Rushton, CFLPs with fuzziness
are considered by Moreno Pérez et al [11], and CFLPs
based on maximal covering are considered by Plastria
and Vanhaverbeke [13].

In the studies of CFLPs including the above CFLPs, the
distance between the facilities and their customers is an
important factor and usually represented as the Euclid
distance. However, if the facilities are located in urban
areas, CFLPs with the Euclid distance may be often un-
suitable because such problems are not considered a limi-
tation of the direction that customers can move in urban
areas. For cases that the facilities are located in the city
whose streets are set out neatly in a grid, e.g. Manhattan
and Kyoto, CFLPs with the rectilinear distance are suit-
able [18]. By extending the definition of the rectilinear
distance, Widmayer et al. [19] proposed “the A-distance”,
which is a distance for the situation that customers can
move at given several directions. Matsutomi and Ishii [10]
proposed a location problem of public facilities, e.g. hos-
pitals, fire department, and ambulance service, with the
A-distance, and Uno et al. [16] extended the above prob-
lem to a multiobjective problem. For the details of the
relation between optimal location problems and various
types of distance, the readers can refer to the survey of
Martini et al. [9].

In this study, we propose a new location problem of com-
petitive facilities by introducing the A-distance. Since
the formulated CFLP is a nonlinear programming prob-
lem, it is difficult to find a strict optimal solution of the
problem directly. Then, we show that the CFLP can be
reformulated as a combinatorial optimization problem.
In order to solve the combinatorial optimization problem
efficiently, we propose an efficient solving method based
upon genetic algorithms by utilizing characteristics of the
CFLPs. For details of the genetic algorithms, the readers
can refer to the studies of Sakawa et al. [14]. We apply
the solving method to examples of the CFLPs in order to
show its efficiency.

The remaining structure of this article is organized as
follows: In Section 2, we describe the definition of the A-
distance proposed by Widmayer et al. [19]. In Section 3,
we formulate the CFLP with the A-distance into a non-
linear programming problem. Since it is difficult to solve
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the formulated problem directly, we show that one of its
optimal solutions can be found by solving a combinato-
rial optimization problem in Section 4. In Section 5, we
propose an efficient solving method based upon genetic
algorithms by utilizing characteristics of the CFLPs. We
show the efficiency of the solving method by applying to
several examples of the CFLPs with the A-distance in
Section 6. Finally, in Section 7, concluding comments
and future extensions are summarized.

2 A-distance

In this section, we will describe the definition of the A-
distance proposed by Widmayer et al. [19] in order to
introduce the A-distance into the CFLP in the next sec-
tions.

We consider the case that there are β directions that
customers can move in any points of the plane R2. Let
α1, . . . , αβ be the directions which are satisfied 0 ≤ α1 <
. . . < αβ < π, and let A ≡ {α1, ..., αβ} be the set of the
directions. The line segment between p1 and p2 ∈ R2 is
denoted by p1p2. If the direction of p1p2 is in A, the line
segment is called “A-oriented.”

Definition 1 For p1 and p2 ∈ R2, the A-distance be-
tween these two points is defined as follows:

dA(p1, p2) ≡


||p1 − p2||,

if p1p2 is A-oriented,
min

p3∈R2
{dA(p1, p3) + dA(p3, p2)},

otherwise,

(1)

where || · || is the Euclid norm.

An example of the A-distance is shown in Fig. 1. Wid-
mayer et al. [19] shows that one of the shortest paths by
means of the A-distance between any two points is the
combination of at most two line segments.

Figure 1: A-distance

The A-distance can be considered a generalization of the
rectilinear distance (the Manhattan distance), because

the rectilinear distance is represented as the A-distance
for cases that A = {0, π/2}. On the other hand, the
Euclid distance is represented as the A-distance for cases
that A = [0, π).

Definition 2 For a point p ∈ R2 and r > 0, the locus
of points whose A-distances to p are r is called “the A-
circle” whose center and radius are p and r, respectively.

An example of the A-circle is shown in Fig. 2.

Figure 2: A-circle (A = {π/3, π/2, 3π/4})

Let p = (p1, p2) and r > 0 be the center and radius of
an A-circle, respectively. Then, the region in the A-circle
not including its boundary is represented as follows:

{(z1, z2) | al1z1 + al2z2 < bl, l = 1, . . . , 2β} , (2)

where for each l = 1, . . . , β,

al1 = sin αl+1 − sin αl, al2 = cos αl − cos αl+1,
bl = p1al1 + p2al2 + r sin(αl+1 − αl),
al+β,1 = −al1, al+β,2 = −al2,
bl+β = 2 sin αl − bl.

 (3)

3 Formulation of CFLP with the A-
distance

In our CFLPs, we assume that all customers only exist
on DPs in plain R2. For convenience sake, by aggregating
all customers on the same DP, we regard one DP as one
customer.

There are n DPs in R2, and let D = {1, · · · , n} be a
set of indices of the DPs. Let m denote the number of
new facilities that the DM locates, and let k denote the
number of competitive facilities which have been already
located in R2. The sets of indices of the new facilities and
the competitive facilities are denoted by F = {1, . . . , m}
and FE = {m + 1, · · · ,m + k}, respectively.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008



Let ui ∈ R2 be the site of DP i ∈ D, and let xj ∈ R2

be the site of facility j ∈ F ∪ FE . Then, the A-distances
between DP i to facility j is represented as dA(ui, xj).
It is assumed that DP i uses facility j if the following
relations are satisfied:

dA(ui, xj) < dA(ui, xl), ∀l > j, (4)

dA(ui, xj) ≤ dA(ui, xl), ∀l < j. (5)

Both (4) and (5) represent that all customers use the
nearest facility in the sense of the A-distance and they
give priority to the competitive facilities if the two or
more A-distances are the same.

Let x = (x1, . . . ,xm) be the location of the new facili-
ties. Then we use the following 0-1 variable to represent
whether or not DP i uses new facility j ∈ F :

φj
i (x) =

{
1, if DP i uses the new facility j,
0, otherwise. (6)

Let wi > 0 be the buying power (BP) of DP i. New
facility j ∈ F can obtain the BP wi if DP i uses the
facility j. The objective of the DM is maximizing the
sum of BP that all the new facilities obtain. Then, the
CFLP with the A-distance is formulated as the following
optimization problem:

maximize
n∑

i=1

m∑
j=1

wi · φj
i (x)

subject to x ∈ R2m

 (7)

Problem (7) is a nonconvex nonlinear programming prob-
lem and we need to find at least one optimal solution
of (7). However, for most CFLPs with the Euclid dis-
tance [3, 15], it is difficult to find an optimal solution by
using general analytic solving methods with derived func-
tions of the objective function, Kuhn-Tucker conditions,
etc. The above difficulty is also true of the CFLPs with
the A-distance. Moreover, as shown in Section 6, it is
also difficult to find an optimal solution by using heuris-
tic solving methods for nonlinear programming problems,
e.g. genetic algorithm for numerical optimization for con-
strained problem (GENOCOP) [8]. In the next section,
we show that (7) can be reformulated as a combinatorial
optimization problem.

4 Reformulation to a combinatorial opti-
mization problem

For DP i ∈ D, the A-distance to the competitive facilities
is denoted as follows:

d̄E
i ≡ min

j∈FE

{dA(ui,vj)}, (8)

Let Ci ⊆ R2 be the region in the A-circle whose center
and radius are ui and d̄E

i , respectively, which does not
include the boundary. Then, the following theorem plays
an important role to find an optimal solution of (7).

Theorem 3 For a set of DPs D̂ ⊆ D, one of the new
facilities can obtain BP from all DPs in D̂ by locating in
Cir(D̂) if the following equation is satisfied:

Cir(D̂) ≡
∩
i∈D̂

Ci ̸= ∅ (9)

Proof: For obtaining BP from DP i ∈ D̂, a new facility

needs to be located at points whose A-distances from DP
i are less than d̄E

i , that is, located in Ci. Therefore, one
of the new facilities can obtain BP from all DPs in D̂ by
locating in Cir(D̂) if (9) is satisfied. ¤

Let IC be the family of the set of DPs satisfying (9).
Then, from Theorem 3, there exist D̂1, . . . , D̂m ∈ IC

such that an optimal solution of P is obtained if the DM
locates new facilities 1, . . . ,m in Cir(D̂1), . . . , Cir(D̂m),
respectively. Therefore, (7) can be reformulated as the
following combinatorial optimization problem:

maximize
n∑

i=1

m∑
j=1

wi · φj
i (x)

subject to xj ∈ Cir(D̂j),∀j = 1, . . . ,m,

D̂j ∈ IC ,∀j = 1, . . . ,m

 (10)

For DP i, we use (3) in Section 2 for representing the A-
circle Ci. Then, we can examine whether D̂j is included
in IC and then find a point in Cir(D̂j) if D̂j ∈ IC by
using the first phase of the two phase simplex method,
that is solving the following linear programming problem
with auxiliary variables τ1, . . . , τ2β ≥ 0:

minimize τ1 + · · · + τ2β

subject to al1z
j
1 + al2z

j
2 + ε + τl

≤ mini∈D̂{bi
l},∀l = 1, . . . , 2β,

τ1, . . . , τ2β ≥ 0,

 (11)

where ε is a sufficiently small positive number. Let
(zj∗

1 , zj∗
2 , τ∗

1 , . . . , τ∗
2β) be an optimal solution of (11).

Then, if the optimal value of (11) is 0, Cir(D̂j) is a
nonempty set and (zj∗

1 , zj∗
2 ) is a location of facility j that

can obtain BP from all DPs in D̂j . Thus we can find an
optimal solution of (10) by solving (11) for all subsets of
the set of DPs and then choosing m optimal solutions in
all given optimal solutions.

Because the number of the all subsets of DPs is 2n − 1,
the computational complexity of choosing m optimal so-
lutions is 2m−1Cm. Then, it is NP-hard to find a strict
optimal solution of (10). In the next section, we pro-
pose an efficient solving method to find an approximate
optimal solution of (10).
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5 Solving method based on genetic algo-
rithms

Problem (10) is a combinatorial optimization problem
and can be regarded as a nonlinear 0-1 programming
problem by representing D̂1, . . . , D̂m as a set of 0-1 vari-
ables. For nonlinear 0-1 programming problems, a genetic
algorithm is one of the efficient solution algorithms. In
this section, we propose an efficient solving method based
upon the genetic algorithm with double strings [14] by
utilizing characteristics of the CFLPs.

5.1 Coding

We use the following 0-1 variable to represent whether
DP i is included in D̂j :

sj
i =

{
1, if i ∈ D̂j ,

0, if i ̸∈ D̂j .
(12)

Then, we represent the solution of (10) D̂1, . . . , D̂m as
the individual represented as the following status matrix:

S =

 s1
1 · · · sm

1
...

. . .
...

s1
n · · · sm

n

 . (13)

5.2 Generation of the initial population

We propose the following method in order to generate
initial individuals in the feasible set of (10):

Step 1: Set the location of new facility x randomly.

Step 2: Give an individual as the following status ma-
trix:

S =

 φ1
1(x) . . . φm

1 (x)
...

. . .
...

φ1
n(x) . . . φm

n (x)

 . (14)

For S given by the above method, it is clearly satisfied
that D̂1, . . . , D̂m ∈ IC .

5.3 Fitness function

In usual genetic algorithms, an objective function is used
as a fitness function. We also use the objective function
as the fitness function basically. However, for individual
S ∈ {0, 1}mn, there is no suitable location of new facility j
if Cir(D̂j) = ∅. Such individuals are usually enumerated
by either the following two methods:

• The individuals have fatal genes, that is, the fitness
value of the individuals is 0.

• Facility j is not located on any points if Cir(D̂j) = ∅,
and then the fitness value of the individuals is the
sum of the BP obtained by the facilities satisfying
Cir(D̂j) ̸= ∅.

There are generally many such individuals in (10) and
their fitness values are low by using both methods. This
means that these methods make many individuals which
do not contribute the search of the optimal solutions of
(10). Then, we propose another method such that facility
j satisfying Cir(D̂j) = ∅ is located on a suitable point.

From the first phase of the two phase simplex method,
the objective function of (11) represents the degree of
violation for constraints. The optimal solution of (11)
minimizes the degree of violation for constraints. Then, if
facility j satisfying Cir(D̂j) = ∅ is located on the optimal
solution of (11), it is expected that the facility can obtain
BP from most DPs in D̂j . We thus represent the fitness
value of individual as the sum of BP obtained by the
new facilities whose locations are given by solving (11)
for D̂1, . . . , D̂m.

Moreover, for each new facility j ∈ F , the left-side coeffi-
cients of constraints of (11) are common to all individuals.
Then, we can use the sensitivity analysis [7] to solve (11)
efficiently.

5.4 Mutation

In addition to crossover, mutation and inversion in the
genetic algorithms with double strings [14], we propose a
new mutation utilizing characteristics of CFLPs.

Individual S is often different from the status of use for
xS due to the following two results:

• If D̂j ̸∈ IC for at least one new facility j ∈ F , then
status matrix S and the status of use if the location
of facility j is xS

j are not the same.

• Even if D̂j ∈ IC , DP i that sj
i = 1 may use another

new facility whose attractive power is more than that
of facility j.

In general genetic algorithms, descendant individuals in-
heriting characteristics of ancestor generations are gener-
ated by genetic operations, e.g. crossover and mutation.
However, the individuals mentioned above are far from
containing several characteristics, e.g. a status of use, a
location of facilities, etc. Then, general crossover, muta-
tion and inversion are often ineffective for such individu-
als. Accordingly, we propose a mutation that individuals
are changed so as to adjust their status matrices to the
statuses of use if the new facilities are located on the sites
found for the individuals. This mutation is represented
as follows:

Step 1. For individual S, find the location of new facil-
ities xS by solving (11) for D̂1, . . . , D̂m.
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Step 2. Replace S with the following status matrix:

S′ =

 φ1
1(x

S) . . . φm
1 (xS)

...
. . .

...
φ1

n(xS) . . . φm
n (xS)

 . (15)

Step 3. For individual S′, find the location of new fa-
cilities xS′

and its fitness value by solving (11) for
D̂1, . . . , D̂m.

6 Numerical experiments

In this section, we show the efficiency of the solution al-
gorithm in the previous sections by applying to several
examples of the CFLPs. In these examples, we give three
directions such that A = {0, π/4, π/2}. The sites of DPs
u1, . . . ,un are given in [0, 10]×[0, 10] randomly, and their
BP w1, . . . , wn are given in {1, . . . , 10} randomly. We give
three competitive facilities, that is k = 3, and for compet-
itive facility j ∈ FE , its site xj is given in [0, 10]× [0, 10]
randomly.

Next, we give parameters about our solving method; for
details of parameters of genetic algorithms, the reader can
read reference of Sakawa et al. [14]. We set generation gap
G = 0.9, population size NGA = 150, and terminal gener-
ation TGA = 2000. Probabilities of crossover, mutation,
and inversion are pC = 0.9, pM = 0.01, and pI = 0.03,
respectively. Probability of mutation proposed in Section
5.4 is pL = 0.03.

In order to compare the computational results of our solv-
ing method with other computational results, we use the
following two solving method to solve the examples of the
CFLPs. One is to solve (10) by using a branch and bound
method. Because the enumeration method needs much
computational time for finding a strict optimal solution
of (10) if m and n are large, we set 5000 seconds to the
upper bound of its computational time for each example.
The other is to solve (7) directly by using the genetic algo-
rithm for numerical optimization for constrained problem
(GENOCOP), proposed by Koziel and Michalewicz [8].
We set that its population size is 100 and its terminal
condition is satisfied if its computational time is more
than our solving method.

Now we apply the three solving methods to several ex-
amples of the CFLPs, where each of these algorithms is
implemented 20 times for each example by using DELL
Optiplex GX620 (CPU: Pentium(R) 4 2.33GHz, RAM:
512MB).

First, we apply the three solving methods for the CFLPs
that it is fixed that m = 1. The computational results
of our solving method, branch and bound method, and
GENOCOP are shown in Tables 1-3.

From Tables 1-3, our solving method can find the same
good solutions as the solutions of branch and bound

Table 1: Computational results by genetic algorithm
(m = 1)

n 20 40 60 80 100
Best 50 91 138 175 214
Mean 50.0 91.0 137.1 175.0 214.0
Worst 50 91 136 175 214

CPU times 7.131 14.27 19.57 28.35 35.26

Table 2: Computational results by branch and bound
method (m = 1)

n 20 40 60 80 100
Optimal 50 91 138 175 202

CPU times 0.121 1.839 123.5 1529 5000

Table 3: Computational results by GENOCOP (m = 1)
n 20 40 60 80 100

Best 50 91 138 175 214
Mean 50.0 90.9 136.4 173.2 210.0
Worst 50 88 136 171 207

CPU times 10.0 20.0 30.0 40.0 50.0

method at the CFLPs with n = 20, 40, 60, 80 and better
solutions than branch and bound method at the CFLPs
with n = 100 with a shorter computational time, and ours
solving method can find better solutions than GENO-
COP at the all CFLPs with a shorter computational time.
Since the computational time of our solving method is not
suddenly increased for the increase of n, it is shown that
our solving method is also efficient for large scale CFLPs.

Next, we apply the three solving methods for the CFLPs
that it is fixed that n = 50. The computational results
of our solving method, branch and bound method, and
GENOCOP are shown in Tables 4-6.

Table 4: Computational results by genetic algorithm
(n = 50)

m 1 2 3 4 5
Best 124 172 218 229 243
Mean 124.0 171.5 214.1 225.0 241.4
Worst 124 164 205 213 232

CPU times 21.13 39.16 66.12 103.3 155.8

Table 5: Computational results by branch and bound
method (n = 50)

m 1 2 3 4 5
Optimal 124 172 218 221 228

CPU times 15.07 229.2 3467 5000 5000

Table 6: Computational results by GENOCOP (n = 50)
m 1 2 3 4 5

Best 124 164 214 214 228
Mean 123.6 164.0 201.2 207.5 218.9
Worst 120 164 196 196 214

CPU times 30.0 50.0 70.0 110.0 160.0
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From the discussion of computational time of (10) in Sec-
tion 4, the computational time for finding a strict optimal
solution of (10) is exponentially increased for m. From
Table 5, the branch and bound method cannot find strict
optimal solutions of the CFLPs with m = 4, 5 within
5000 seconds. On the other hand, our solving method
can find better solutions of these CFLPs than the branch
and bound method and GENOCOP with a shorter com-
putational time.

7 Conclusions and future researches

In this paper, we have proposed a new CFLP on the
plane by introducing the A-distance. Because the formu-
lated CFLP is difficult to find a strict optimal solution of
the problem directly, we have shown that the CFLP can
be reformulated as a combinatorial optimization prob-
lem. Since the combinatorial optimization problem is
NP-hard, we have proposed an efficient solving method
based upon genetic algorithms by utilizing characteristics
of the CFLPs. We have applied the solving method to
several examples of the CFLPs in order to show its effi-
ciency. Although it is known that the CFLPs with the
Euclid distance needs much computational time to find
their optimal solutions, the CFLPs with the A-distance
can be found their optimal solutions with shorter compu-
tational time. This means that CFLPs can be solved ef-
ficiently by giving proper directions customers can move.
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[11] Moreno Pérez, J.A., Marcos Moreno Vega, L., Verde-
gay, J.L., “Fuzzy location problems on networks,”
Fuzzy Sets and Systems, V142, N3, pp. 393-405,
3/04.

[12] Okabe, A., Suzuki, A., “Stability of competition
for a large number of firms on a bounded two-
dimensional space,” Environment and Planning A,
V19, N8, pp. 1067-1082, 1/87.

[13] Plastria, F., Vanhaverbeke, L., “Discrete models for
competitive location with foresight,” Computers &
Operations Research, V35, N3, pp. 683-700, 2/08.

[14] Sakawa, M., Kato, K., Ushiro, S., “An interactive
fuzzy satisficing method for multiobjective 0-1 pro-
gramming problems involving positive and negative
coefficients through genetic algorithms with double
strings,” Proceedings of the 8th International Fuzzy
Systems Association World Congress, V1, pp. 430-
434, 8/99.

[15] Uno, T., Ishii, H., Saito, S., Osumi, S., “Competi-
tive facility location problem. An algorithm for the
problem concerning the existence of multi-type cus-
tomers,” Central European Journal of Operations
Research, V12, N1, pp. 79-85, 12/04.

[16] Uno, T., Katagiri, H., Kato, K., A Fuzzy Model
for the Multiobjective Emergency Facility Location
Problem with A-Distance The Open Cybernetics &
Systemics Journal, V1, pp. 21-27, 11/07.

[17] Wendell, R.E., McKelvey, R.D. “New perspective in
competitive location theory,” European Journal of
Operational Research, V6, pp. 174-182, 02/81.

[18] Wesolowsky, G.O., “Rectangular distance loca-
tion under the minimax optimality criterion,”
TRANS.SCI., V6, pp. 103-113, 2/72.

[19] Widmayer, P., Wu, Y.F., Wong, C.K., “On some
distance problems in fixed orientations,” SIAM
J.COMPUT., V16, pp. 728-746, 8/87.

[20] Zhang, L., Rushton, G., “Optimizing the size and
locations of facilities in competitive multi-site service
systems,” Computers & Operations Research, V35,
N2, pp. 327-338, 2/08.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008


