
Two-Level 0-1 Programming Using Genetic
Algorithms and a Sharing Scheme Based on

Cluster Analysis

Keiichi Niwa ∗ Ichiro Nishizaki†, Masatoshi Sakawa‡

Abstract— This paper deals with the two level 0-1
programming problems in which there are two deci-
sion makers (DMs); the decision maker at the upper
level and the decision maker at the lower level. The
authors modify the problematic aspects of a computa-
tion method for the Stackelberg solution which they
previously presented, and thus propose an improved
computation method. Specifically, a genetic algo-
rithm (GA) is proposed with the objective of boost-
ing the accuracy of solutions while maintaining the
diversity of the population, which adopts a clustering
method instead of calculating distances during shar-
ing. Also, in order to eliminate unnecessary compu-
tation, an additional algorithm is included for avoid-
ing obtaining the rational reaction of the lower level
DM in response to upper level DM’s decisions when
necessary. In order to verify the effectiveness of the
proposed method, it is intended to make a compar-
ison with existing methods by performing numerical
experiments into both the accuracy of solutions and
the computation time.

Keywords: Two-level 0-1 programming problem, Stack-

elberg solution, Genetic algorithm, Clustering algo-

rithm

1 Introduction

Under actual decision making situations, there are mul-
tiple decision makers (DMs) in hierarchically structured
organizations, and decisions may be taken serially or si-
multaneously in order to optimize each of the objectives.
This kind of problem has been formulated as a two-level
programming problem [11]. In two-level programming
problems, upper level DMs take their decisions first, and
then, with a knowledge of the decisions of the upper level
DMs, the lower level DMs make their decisions in order
to optimize their own objective functions. This combi-

∗Faculty of Economics, Hiroshima University of Economics, 5-
37-1 Gion, Asaminami-ku, Hiroshima 731-0192, Japan Tel/Fax:
+81-82-871-1048/1005; Email: ki-niwa@hue.ac.jp

†Graduate School of Engineering, Hiroshima University 1-4-1,
Kagamiyama, Higashi-Hiroshima, 739-8527, Japan, Tel/Fax: +81-
82-424-7604/422-7195 Email: nisizaki@hiroshima-u.ac.jp

‡Graduate School of Engineering, Hiroshima University 1-4-1,
Kagamiyama, Higashi-Hiroshima, 739-8527, Japan, Tel/Fax: +81-
82-424-7694/422-7195 Email: sakawa@msl.sys.hiroshima-u.ac.jp

nation of decisions is known as a Stackelberg solution.
In this paper, both the upper level and the lower level
have one DM, and the problem is treated as a two-level
0-1 programming problem in which both DMs treat all of
their decision variables as 0-1 parameters.

As an overview of research dealing with two-level pro-
gramming problems that include discrete variables, Bard
et al. presented an algorithm based on the branch-and-
bound approach in order to derive the Stackelberg solu-
tion for two-level 0-1 programming problems [4] and two-
level mixed integer programming problems [3]. Wen et
al. [12] have presented a computation method for obtain-
ing the Stackelberg solution to two-level programming
problems which have 0-1 parameters for the decision vari-
ables in the upper level and continuous parameters for the
decision variables in the lower level.

Meanwhile, the adaptive process of systems in the natural
world has been explained, and genetic algorithms (GAs)
which imitate the evolution occurring in living organisms
have been receiving attention at international conferences
related to GAs, publications by Goldberg [6], as have
methodologies for optimization, adaptation and learning.
GAs have also been adopted for a variety of combinatorial
optimization problems, and their effectiveness has been
reported [10].

Regarding research utilizing GAs for two-level program-
ming problems, Anandalingam et al. [1] have proposed
a method for obtaining the Stackelberg solution for two-
level linear programming problems. We have previously
proposed a computation method for deriving the Stackel-
berg solution to 0-1 programming problems for two-level
decentralized systems [9], which adopts the double string
proposed by Sakawa et al. for individual representation.
We have also proposed a computation method using shar-
ing [5] in order to boost the computational precision of
the Stackelberg solution [8]. However, while it was pos-
sible to increase the precision of the derived Stackelberg
solution using this method, it prompted an increase in
computation time as a result.

Having established such a background, in this paper we
focus on two-level 0-1 programming problems, and by

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008



reforming the problematic aspects of the computation
method for the Stackelberg solution we previously pre-
sented, propose an improved version of the computation
method. Specifically, we propose a GA which introduces
a clustering method to replace the computation of dis-
tances between individuals occurring during sharing, in
order to reduce computation time while maintaining the
accuracy of the approximate Stackelberg solution. Also,
for duplications within populations of the GA which han-
dles decision making in the upper level, the method does
not generate x and for each value iterates the computa-
tion of the rational reaction of the lower level DM, y(x),
using a GA. Rather, an algorithm is proposed which re-
duces the number of applications of the GA used to com-
pute the rational reaction of the lower level, by placing
the combinations of past decisions of the DM for the up-
per level, x, and their corresponding rational reactions
y(x) in constant memory, and extracting the stored y(x)
whenever a x which is identical to a value occurring in
a previous generation of the GA appears. In order to
verify the effectiveness of the proposed method, it is in-
tended to perform numerical experiments investigating
and comparing the method with existing methods from
the perspectives of both solution accuracy and computa-
tion time.

2 The two-level 0-1 programming prob-
lem

For the sake of brevity, we denote the upper and lower
level DMs by DM1 and DM2, respectively. The objec-
tive functions of DM1 and DM2 are written z1(x, y), and
z2(x, y). The vectors of decision variables for DM1 and
DM2 are x = (x1, . . . , xn1)

T , and y = (y1, . . . , yn2)
T .

The superscript T indicates transposition. The coefficient
vectors of the objective functions are denoted by c1 =
(c11, . . . , c1n1), d1 = (d11, . . . , d1n2), c2 = (c21, . . . , c2n1),
and d2 = (d21, . . . , d2n2). The coefficient matrices in
the constraint equation are the m × n1 matrix A, and
the m × n2 matrix B. The vector of constants on the
right hand side of the constraint equation is written as
b = (b1, . . . , bm)T . The two-level 0-1 programming prob-
lem may now be formulated in general with an equation
such as the following.

maximize
x

z1(x, y) = c1x + d1y

where y solves
maximize

y
z2(x, y) = c2x + d2y

subject to Ax + By 5 b
x ∈ {0, 1}n1 , y ∈ {0, 1}n2


(1)

For the sake of simplicity, in this paper, it is assumed
that each component of A, B, b, c1, c2, d1, and d2 is
positive.

It is possible to express the process for choosing the Stack-
elberg solution for a two-level 0-1 programming problem

in the following manner. Each decision maker completely
knows objective functions and constraints of the oppo-
nent and self, and DM1 first makes a decision and then
DM2 makes a decision so as to minimize the objective
function with full knowledge of the decision of DM1.
That is to say, when the decision by DM1 is denoted
x̂, DM2 solves the 0-1 programming problem (2) with
parameters x̂, choosing the optimal solution y(x̂) as the
rational reaction to x̂.

maximize
y

z2(x̂,y) = d2y + c2x̂

subject to By 5 b − Ax̂
y ∈ {0, 1}n2

 (2)

Under this premise, DM1 also determines x by choosing
the value which minimizes its own objective function. For
problems which adopt the Stackelberg solution to con-
ceptualize their solution, it is assumed that there is no
consensus among DMs that might mutually constrain de-
cisions. Putting it another way, their relationship may be
described as non-cooperative.

3 GA based computational method

In this section, we present the derivation of the Stackel-
berg solution to the two-level 0-1 programming problem.
A computation method based on a genetic algorithm is
explained.

3.1 Coding and decoding

When solving 0-1 programming problems using GAs, bi-
nary strings are usually adopted to express individu-
als [7, 6]. However, under this representation it is possi-
ble that infeasible solutions that do not satisfy the con-
straints may be generated, so there is a danger that the
performance of the GA may degrade. Thus, in this pa-
per, in order to derive only feasible solutions, a double
string [10] is used which is composed of the substring
corresponding to the decision of DM1, x, and the sub-
string corresponding to the decision of DM2, y, as shown
in Fig.1. The decisions of DM1 and DM2 are handled
by applying genetic operators on each sub-individual. In
this paper, the GA handling the decision of DM1 is called
the upper level GA, and the GA handling the decision of
DM2 is called the lower level GA.

← Individual for x → ← Individual for y →
ix(1) · · · ix(n1) iy(1) · · · iy(n2)

Six(1) · · · Six(n1) Siy(1) · · · Siy(n2)

Figure 1: Double string

six(m) ∈ {0, 1}, ix(m) ∈ {1, . . . , n1}, and for m ̸= m
′

it is assumed that ix(m) ̸= ix(m
′
). Similarly, siy(m) ∈

{0, 1}, iy(m) ∈ {1, . . . , n2}, and for m ̸= m
′
it is assumed

that iy(m) ̸= iy(m
′
). Also, in the double string, ix(m),

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008



iy(m) and six(m), siy(m) express the indexes of the ele-
ments of each solution vector respectively, and their val-
ues.

In this paper a decoding algorithm proposed by the au-
thors [9] is also applied to the upper level and lower level
GAs, generating only feasible solutions.

3.2 Reproduction

We first describe the reproduction operator of the lower
level GA. In the lower level GA the value of y obtained by
decoding individuals in the lower level GA, and the given
values of the decision variables in the upper level GA,
x, are substituted into the objective function of DM2,
z2(x, y), and the value of the evaluation function for each
individual is thus obtained. Next, the fitness value for
each individual is derived using linear scaling, and the
individuals reproducing in the next generation are deter-
mined by applying elitist expected value selection.

We now describe the reproduction operator of the upper
level GA. In the upper level GA, the value of x obtained
by decoding individuals in the upper level GA and the
value of the rational reaction obtained by applying the
lower level GA, y(x), are substituted into the objective
function of DM1, z1(x, y(x)), and the value of the evalu-
ation function for each individual is thus obtained. Next,
the fitness value for each individual is calculated by ap-
plying linear scaling and adopting a clustering method
such as that described in the next section. The individu-
als reproducing in the next generation are determined by
applying elitist expected value selection based on these
fitness values.

3.3 Applying the cluster analysis method

In the existing computation method proposed by the au-
thors [8], sharing was introduced in order to calculate the
fitness value in accordance with the degree of convergence
among individuals within populations. However, because
introducing sharing made it necessary to compute the
distances between all the individuals within a population
for each generation, this encouraged an increase in com-
putation time.

On the other hand, when Yin et al. applied sharing to
multimodal function optimization problems, instead of
computing the distances between strings, a GA utilizing
a clustering method [2] was proposed. Numerical exper-
iments revealed that it was possible to reduce compu-
tation time while maintaining roughly the same search
performance with a GA using unmodified sharing. In
this paper we therefore incorporate the method of Yin
et al. into the reproduction operator for the upper level
GA, thus reducing the computation time of the proposed
method.

The method proposed by Yin et al. adopts the centroid

method known as the Adaptive MacQueen’s KMEAN Al-
gorithm for clustering. The procedure for the centroid
algorithm is stated below.

Procedure for the Centroid method

Step 1 Process of representation: Cluster Cc is given by
its centroid G(Cc).

G(Cc) = (x̄c1, x̄c2, . . . , x̄cj , . . . , x̄cp), c = 1, . . . , k

with x̄cj =
1
nc

nc∑
i=1

xij

p expresses the number of variables in the data units,
and k is the number of clusters. nc expresses the
number of data units in the cth cluster, and x̄cj is
the mean value of the jth variable in the cth cluster.
xij expresses the value of the jth variable in the ith

data unit, and xi is the vector of the ith data unit.

Step 2 Process of assignment: Each data unit is as-
signed to the cluster with the nearest centroid.

xi ∈ Cc, if d(xi, G(Cc)) = min
l=1,...,k

d(xi, G(Cl))

Under the centroid method, these two steps are repeated
until the data units converge on a stable state.

Next, the process for the Adaptive MacQueen’s KMEAN
Algorithm is described.

Procedure for the Adaptive MacQueen’s
KMEAN Algorithm

Step 1 The initial value of k is chosen, and the first k
data units are allocated as members of each of the k
initial clusters. The value of each data unit is taken
as the value for each centroid. Next, the distance be-
tween each of the k cluster’s centroids is calculated.
If this distance is less than dmin, then a new cluster
is generated by combining them. In such a case, the
new cluster’s centroid is computed, and the distance
between the new cluster and the remaining clusters
is recomputed. These operations are repeated un-
til the distance between the centroids of the nearest
clusters is at least as large as dmin.

Step 2 Each of the remaining N − k data units is al-
located to the cluster with the nearest centroid. In
each case, after allocating the data unit, the cen-
troid of the cluster to which the data unit was added
is revised, and the distance to the other clusters is
recomputed. If the distance between two clusters’
centroids falls below dmin, the two clusters are com-
bined, generating a new cluster. In such a case, the
new cluster’s centroid is calculated, and the distance
between the new cluster and each of the remaining

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008



clusters is recomputed. These operations are re-
peated until the distance between the centroids of
the nearest clusters is at least as large as dmin. If
the distance to the cluster with the nearest centroid
is larger than dmax, then a new cluster is generated
with the data unit as a member.

Step 3 After allocating data units k + 1 to N , the cen-
troid of each of the existing clusters is taken as a
fixed seed point, and each data unit is reallocated to
the nearest seed point.

dmin and dmax are complementary parameters express-
ing the minimum and maximum distances used when the
Adaptive MacQueen’s KMEAN Algorithm is applied.

This paper adopts the method proposed by Yin et al.
for distributing k data units among the initial clusters.
Specifically, when selecting the k data units, they are
chosen in order of decreasing fitness value.

By using such a cluster analysis method, each individ-
ual’s degree of convergence is measured. The following
calculation is subsequently performed in order to update
the fitness values. Here, the fitness value of individual i
is written fi, and the updated fitness value is written f ′

i .
The population size is N . Also, α is a constant, and dik

is the distance between individual i and the centroid of
the cluster within which it is contained, G(Cc).

f ′
i :=

fi

mi
, i = 1, . . . , N

with mi = nc − nc ∗
(

dic

2dmax

)α

,xi ∈ Cc

3.4 Crossover and mutation

For double strings, if standard one-point or multi-point
crossovers are performed then there is a possibility that
infeasible solutions may be generated because the indexes
occurring in the offspring, ix(m), ix(m

′
), m ̸= m

′
or

iy(m), iy(m
′
), m ̸= m

′
, may have the same number. This

kind of difficulty has been identified as occurring when ge-
netic algorithms are applied to problems such as that of
the traveling salesman, or the scheduling problem. Par-
tially matched crossovers (PMX) have been devised to
overcome this difficulty. In this paper, a modified ver-
sion of PMX is used in order to handle the double strings
proposed by Sakawa et al.[10]. Also, when determining
whether or not to apply the cross over operator, a prob-
ability pc is used. Its value is set in advance.

The PMX procedure

Step 1 For two individuals expressed using double
strings, s1 and s2, two crossover points are set at
random.

Step 2 According to PMX, the upper strings of s1 and
s2, along with the corresponding lower strings are
reordered, generating s

′

1 and s
′

2.

Step 3 For double strings, the offsprings, s
′′

1 and s
′′

2 , re-
sulting from the application of the revised PMX are
obtained by exchanging the lower strings between
the two crossover points s

′

1 and s
′

2.

The mutation operator is thought to fulfill the role of
a local random search in genetic algorithms. For dou-
ble strings, the index string expresses the priority of the
parameters. For 0-1 strings, since the value of the 0-1 pa-
rameters themselves are expressed, strings with differing
properties coexist in a single string, and it is necessary
to apply mutations to each string. In this paper, the mu-
tation operator is applied to each string, and inversion
is used for index strings. For 0-1 strings, bit-reverse is
introduced. When applying the mutation operator to in-
dividuals, it is first determined whether or not mutation
will be applied to an individual according to the mutation
probability pm. In the case that mutation is applied, it is
then determined whether to apply inversion or bit-reverse
according to the mutation selection constant MPum.

Mutation procedure

Step 1 For an individual s, expressed using a double
string, a random number rm is generated. If rm 5
MPum, a point on the 0-1 string is chosen at random
and bit-reverse is performed, yielding s

′

1. Otherwise,
step 2 is adopted.

Step 2 Two points on the index string are chosen at
random, and inversion is applied to the substring
between the two points, yielding s

′

2.

3.5 Procedure for avoiding the lower level
GA

It is possible to derive a good approximate Stackelberg
solution in a comparatively short time using the compu-
tation method we have presented. However, there is a
problem with the algorithm of the existing method, and
by solving it, the accuracy of the approximate Stackel-
berg solution is improved, and unnecessary calculations
may be eliminated.

Regarding the problem, it occurs when an individual x,
handled by the upper level GA, exists multiply in the
population of a single generation, or when the same indi-
vidual reappears in the population of another generation,
and results in the same problem (2) being solved using
the lower level GA, yielding the same rational reaction,
y(x).

In order to avoid this problem, thinking naively, for ev-
ery x obtained by operating the upper level GA the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008



rational reaction of the lower level GA, y(x), may be
placed in memory, and then whenever a past individual
x reappears, the application of the lower level GA may
be avoided by extracting the recorded rational reaction.
However, when the scale of the problem is increased, stor-
ing the rational reaction data for every x becomes prob-
lematic due to limitations on memory space and the time
needed to search for x.

A storage region with a data structure of the form shown
in Fig.2 is therefore established, and a proportion of the
individual and corresponding rational reaction data, x
and y(x), is stored.

Figure 2: Storage region for x and y(x)

xi, i = 1, . . . , x max express the values of x already
handled as individuals by the upper level GA. yi

j , i =
1, . . . , x max, j = 1, . . . , y max express the rational reac-
tion values obtained from the lower level GA for each xi.
x max is the number of stored decisions x. y max is the
number of stored rational reactions y(x). z1(xi, yi

j(x
i))

and z2(xi,yi
j(x

i)) are the values of the DM1 and DM2
objective functions for xi and yi

j(x
i). yi

best(x
i) is the

yi
j(x

i) which yields the largest value of z1(xi,yi
j(x

i)).

Using an algorithm such as the following reduces the
number of times the lower GA is applied, and eliminates
unnecessary computation.

Procedure for storing the rational reaction y(x)
and avoiding the lower level GA

Step 1 If an individual x̄ of the upper level GA exists
in a stored xi, then step 2 is adopted. If such an
individual does not exist, it is checked whether the
number of individuals xi has reached x max. If it
has, then step 3 is adopted, if not, then step 4 is
adopted.

Step 2 If yi
j has reached y max, then the saved yi

best(x
i)

is returned to the upper level GA as the rational
reaction and the algorithm terminates. If y max has
not been reached then step 4 is adopted.

Step 3 The element among the stored xi for which the
value of z1(xi, yi

best(x
i)) is smallest is selected, and

that value, x, is denoted xk. After obtaining the
rational reaction y(x̄) for x̄ by applying the lower
level GA, the values are saved in the storage area of
xk, and the algorithm terminates.

Step 4 After obtaining the rational reaction y(x̄) for x̄
by applying the lower level GA, the values are saved
and the algorithm terminates.

The algorithm of the previous method is thus refined by
adopting the above methods.

3.6 Algorithm of the refined computation
method

The algorithm of the refined computation method is sum-
marized and presented below.

Step 1 The generation number of the upper level algo-
rithm is set to t := 0, and Nu initial individuals are
generated randomly.

Step 2 For each individual x in the upper level GA, it
is judged whether or not to effect the procedure for
avoiding the lower level GA. If it is effected, then a
stored y(x) of the lower level is taken as the rational
response, and step 3 is adopted. If it is not effected,
the operations of the lower level GA from step 2-1
to step 2-3 are applied, and the rational response of
the lower level, y(x), is obtained.

Step 2-1 Nl lower level GA individuals are ran-
domly generated, and taken as the initial pop-
ulation of the lower level GA.

Step 2-2 Using a x given as an individual of the
upper level GA, and a y generated by the lower
level GA, the value of the objective function for
DM2 is calculated, and an individual is repro-
duced using this value.

Step 2-3 If the current number of iterations exceeds
a maximum number of generations set in ad-
vance, Ml, then step 3 is adopted. Otherwise,
crossover operator and mutation operator are
applied to each individual of the lower level GA
and step 2-2 is repeated.

Step 3 The information related to the combination of
the rational reaction y(x) obtained by operating the
lower level GA and a given individual of the upper
level GA, x, is stored, and these values are used to
calculate the value of the objective function for DM1.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008



Next, the convergence of the individual is measured
using the clustering method, and the resulting degree
is used as a basis for obtaining the fitness of each
individual.

Step 4 If the current number of iterations in the up-
per level GA exceeds a maximum number of genera-
tions set in advance, Mu, then the algorithm is ter-
minated. In such a case, the individual (x, y) with
the largest fitness value among all those obtained un-
til that point is regarded as the optimal individual.
Otherwise, step 5 is adopted.

Step 5 Reproduction is performed using the fitness
value of each individual in the upper level GA ob-
tained using step 3, and crossover operator and mu-
tation operator are applied. Next step 2 is repeated
with t := t + 1.

4 Conclusion

In this paper, we considered the two level 0-1 program-
ming problems in which there are two decision makers;
the decision maker at the upper level and the decision
maker at the lower level. By reforming a problem with
the computation method for the Stackelberg solution pre-
viously presented by the authors, an improved computa-
tion method was presented. Specifically, the diversity
of the population is maintained, and instead of comput-
ing the distances among all the individuals which occur
during sharing, a GA adopting a clustering method is
introduced in order to increase the precision of the de-
rived solution. Also, for each decision x, prompted by a
duplicate among the population of the upper level GA,
the rational response y(x) is not obtained by repeatedly
applying the lower level GA. Instead, a proportion of x
values already handled by the upper level GA and their
rational responses y(x) are stored in memory, and when
an identical x appears in a subsequent generation, the
information regarding the stored y(x) is retrieved. An
algorithm which reduces the number of times the lower
level GA is applied was thus presented. In order to verify
the effectiveness of the proposed method, it is intended
to conduct numerical experiments into both the solution
precision and computation time, and thus compare the
method with previous methods.

References

[1] G. Anandalingam, R. Mathieu, C.L. Pittard, and
N. Sinha: “Artificial intelligence based approaches
for solving hierarchical optimization problems,” in:
Sharda, Golden, Wasil, Balci and Stewart (eds.), Im-
pacts of Recent Computer Advances on Operations
Research, North-Holland, pp. 289–301 (1989).

[2] M.R. Anderberg: Cluster Analysis for Applications,
Academic press, (1975).

[3] J. Bard and J.Moore: “The mixed integer lin-
ear bilevel programming problem,” Operations Re-
search, Vol.38, pp.911-921 (1990).

[4] J. Bard and J.Moore: “An algorithm for the discrete
bilevel programming problem,” Naval Research Lo-
gistics, Vol.39, pp.419-435 (1992).

[5] D.E. Goldberg and J. Richardson: “Genetic algo-
rithms with sharing for multimodal function opti-
mization,” Proceedings of the Second International
Conference on Genetic Algorithms, Lawrence Erl-
baum Associates, Hilsdale, New Jersey, pp. 41-49
(1987).

[6] D.E. Goldberg: Genetic Algorithms in Search, Op-
timization, and Machine Learning, Addison Wesley,
Massachusetts (1989).

[7] D.E. Goldberg and R. Lingle: “Alleles, loci, and
the traveling salesman problem,” Proceedings of the
First International Conference on Genetic Algo-
rithms and Their Applications, Lawrence Erlbaum
Associates, Hillsdale, NJ, pp. 154–159 (1985).

[8] K. Niwa: “Revised computational methods for us-
ing genetic algorithms for obtaining Stackelberg so-
lutions to two-level 0-1 programming problems,” Es-
says and Studies in Commemoration of the 40th An-
niversary of the Founding of Hiroshima University
of Economics, Hiroshima University Economics, pp.
771–794, in Japanese (2007)

[9] K. Niwa, I. Nishizaki and M. Sakawa: “Decentral-
ized two-level 0-1 programming through genetic al-
gorithms with double strings,” Proceedings of Sec-
ond International Conference on Knowledge-Based
Intelligent Electronic Systems, Vol. 2, pp. 278–284
(1998).

[10] M. Sakawa, M. Tanaka: Genetic Algorithms,
Asakura Publishing, in Japanese (1995).

[11] K. Shimizu, Y. Ishizuka and J.F. Bard: Nondif-
ferentiable and two-level mathematical programming,
Kluwer Academic Publishers (1997).

[12] W.P. Wen, and Y.H. Yang: “Algorithms for solv-
ing the mixed integer two-level linear programming
problem,” Computers and Operations Research, Vol.
17, pp. 133–142 (1990).

[13] X. Yin and N. Germay: “A fast genetic algorithm
with sharing scheme using cluster analysis meth-
ods in multimodal function optimization,” Proceed-
ings of the International Conference in Innsbruck,
Austria, 1993, Springer-Verlag, Wien, pp. 450–457
(1993).

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008


