
An Improved Algorithm for Finding the

Anti-block Vital Edge of a Shortest Path

Zhe Nie Yueping Li, Member IAENG∗

Abstract—This paper presents an improved algo-

rithm to find the anti-block vital edge of a shortest

path. We release the constraint that there is only

one shortest path between two nodes introduced by

Su, Xu and Xiao. We use the technique developed

by Nardelli, Proietti and Widmayer and give a im-

provement in search strategy. Our algorithm runs in

O(m + n logn) time which is superior to the previous

one whose complexity is in O(mn), where n and m

denote the number of nodes and edges in the graph.

In addition, our algorithm can be further improved

to run in O(mα(m,n)) time, where α is the functional

inverse of the Ackermann function.

Keywords: graph algorithms, shortest path, detour,

critical edge

1 Introduction and Preliminary

The survivability of communication network is a critical
issue. It has been studied intensively. We focus on a par-
ticular type of it: How is a network affected by an edge
(link) failure? Our scenario assumes that we route along
a shortest path in the network from the source to the des-
tination. When an edge fails, we need to choose another
path, which probably is a shortest path does not contain
the failed edge. This problem is called path replacement

in literature [1]. From the management point of view, it
is valuable to evaluate the effect by the failure of a link.
The classical problem is to find a most vital edge (MVE):
the edge whose removal results in the largest increase of
the length with respect to a shortest path. Corley and
Sha [3] proposed an O(mn+ n2 log n) time algorithm to
solve this problem. And a more effective algorithm was
developed by Malik, Mittal and Gupta [5] which runs in
O(m+ n log n) time.

Most previous works paid attention to the length of the
replacement path minus the length of the shortest path.
For example, the shortest path from s to t is PG(s, t) =
s, d, b, g, t which is illustrated with wavy lines. We denote
the length of path P by |P |. So we have |PG(s, t)| = 8. It
is easy to verify that the edge (s, d) is the most vital edge.
We have PG−(s,d)(s, t) whose length is 16. Thus, the edge

∗Zhe Nie: Shenzhen Polytechnic, Xili, Shenzhen P.R. China
518055 Email:niezhe@oa.szpt.net; Yueping Li: Sun Yat-sen Uni-
versity, Department of Computer Science, Guangzhou P.R. China
510275, Email: leeyueping@gmail.com

(s, d) is critical. However, Su, Xu and Xiao [8] proposed a
different parameter for measuring the vitality of an edge
of a shortest path. They focused on an edge e = (u, v) in
PG(s, t) whose removal produces a replacement path at
vertex u such that |PG−e(u, t)|/|PG(u, t)| is maximum.
They defined such an edge as the anti-block vital edge
(AVE for abbreviation).

Figure 1. A shortest path.

Our scenario is that a traveller may reach a vertex u
but the edge (u, v) which is intended to pass fails sud-
denly. The traveller will route from u to t through a
shortest path PG−(u,v)(u, t). It is natural that the max-
imum ratio is one of the key parameters for measur-
ing a route strategy. For instance, if the edge (s, d) is
failure, |PG−(s,d)(s, t)|/|PG(s, t)| = 2. However, if the
edge (g, t) is not available, |PG−(g,t)(g, t)|/|PG(g, t)| = 9.
It implies that the edge (g, t) is more important than
the edge (s, d) from this measure of view. Note that
the increase length of |PG−(s,d)(s, t)| − |PG(s, t)| equals
|PG−(g,t)(g, t)| − |PG(g, t)| whose value is 8. Hence, the
edges (s, d) and (g, t) have no difference with respect to
the increase of the length of a shortest path.

This paper is organized as follows: In Section 2, we de-
fine the problem formally. In Section 3, our algorithm is
presented. In Section 4, an improvement is given. Ex-
perimental results and analysis are proposed in Section
5 and 6, respectively. Finally, the conclusions and future
works are given in Section 7.

2 Definition and Terminology

Let G = (V,E) be a simple graph with vertex-set V (G)
and edge-set E(G) where |V (G)| = n and |E(G)| = m.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

Let w(e) be a positive real length for each edge e ∈ E(G).
A graph H = (V (H), E(H)) is called a subgraph of G if
V (H) ⊆ V (G) and E(H) ⊆ E(G). And if V (H) = V (G),
H is said to be a spanning subgraph of G.

A connected acyclic spanning subgraph of G is called a
spanning tree of G. A single-source shortest paths tree
(SPT) SG(r) is a spanning tree of G rooted at r and con-
sisting of the union of the shortest paths. It is straight-
forward that there is exactly one shortest path from r to
v for each v ∈ V (G \ r).

A graph G is connected if there exists a path from u to
v for any two vertices u, v ∈ V (G). We call a graph G
2-edge-connected if G − e is connected for any edge e ∈
E(G). We consider undirected 2-edge-connected graphs
in this paper.

Let PG−e(s, t) be a shortest path between s and t. As
mentioned above, we call PG−e(s, t) a replacement short-
est path for v. Denote its length by dG−e(s, t).

The anti-block coefficient of an edge e = (u, v) ∈ PG(s, t)
is the ratio cu,t of dG−e(u, t) to dG(u, t).

The anti-block vital edge (AVE) with respect to PG(s, t)
is the edge e′ = (u′, v′) ∈ PG(s, t) whose removal results
in cu′,t′ ≥ cu,t for any edge e = (u, v) of PG(s, t).

3 Description of the Algorithm

Su, Xu and Xiao [8] proposed an O(mn) time to find the
anti-block edge with respect to a shortest path. But they
assumed that there is only one shortest path between the
source s and the destination t, which has limited appli-
cation. We eliminate this constraint and develop a more
effective algorithm.

Figure 2. SG(t).

At first, we compute the shortest path tree SG(t) rooted
at t. It is natural to develop an algorithm by building
SG−e(t) for each e ∈ PG(s, t) which runs in O(mn) time.
The reader can refer to Su, Xu and Xiao [8]. However, it is
too expensive. In the light of [7], we adopt the Fibonacci
heaps [4] in order to improve the algorithm to run in
O(m+ n log n) time.

Let e = (u, v) be an edge of PG(s, t) where the vertex u
is closer to s than v. Let Mt(u) denote the set of vertices
reachable in SG(t) from t avoiding passing the edge (u, v).
Let Nt(u) = V (G) −Mt(u). An example of Mt(u) and
Nt(u) is illustrated in Fig. 2. It is straightforward that
for any vertex x in Mt(u), we have dG−e(x, t) = dG(x, t).

We define the edges between the partition Nt(u) and
Mt(u) as follows:
Et(u) = {(x, y) ∈ E(G)− (u, v)|x ∈ Nt(u) and
y ∈Mt(u)}.

Suppose the traveller has arrived at the vertex u, but
the edge e = (u, v) fails at that time. Then the traveller
has to route avoiding the edge e. That is, the detour
PG−e(u, t) must contain an edge in Et(u) of which an
example is shown in Fig. 3. It implies that the length of
detour satisfies the following formula:

dG−e(u, t) = min
(x,y)∈Et(u)

{dG−e(u, y)+w(x, y)+dG−e(x, t)}

(1)
.

Figure 3. A detour PG−(u,v)(u, t).

From the structure of SG(t), it implies that dG−e(u, y) =
dG(y, t)−dG(u, t). Note that dG−e(x, t) = dG(x, t). Thus,
Formula (1) can be computed in O(1) time. Since we can
check each edge in Et(u) in O(m) time, it is straight-
forward that our problem can be solved in O(mn) time
as mentioned above. We now propose a refined algorithm
by means of the technique developed by Nardelli, Proietti

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

and Widmayer [7]. Suppose the path PG(s, t) is s0(= s),
s1, . . ., sr−1, sr(= t) and ei = (si, si+1).

For each ei, we adopt a Fibonacci heap to build a
priority queue whose element stores the shortest path
PG−ei

(si, t). In the light of Formula (1), we use Qi(y)
to record the shortest path passing through the vertex y
and avoiding the edge ei. We define

Qi(y) = min
(x,y)∈Et(si)

{dG(t, x) + w(x, y) + dG(y, si)} (2)

It is clear that we need to maintain the queue Qi for
the vertices of Nt(si) only. Note that Nt(si) ⊂ Nt(si+1).
Hence, we set i = r and calculate Qr(y) at the first step.
Since i = r, the edge ei is empty. Thus, Qr(y) just records
the value of dG(y, t). Once the queue Qi(y) is calculated
out, we continue to compute Qi−1(y) where i > 0.

Figure 4. Si and Si+1.

Nardelli et al. [7] pointed out if we use Formula (2) as
a key of the priority queue, the cost will be expensive,
since when the next edge ei−1 is considered, we have to
decrease the value by w(ei−1) for all the elements in the
queue. Thus, they gave the appropriate key as follows:

Ki(y) = min
(x,y)∈Et(si)

{dG(t, x) + w(x, y) + dG(y, s)} (3)

It is clear that if the vertex y remains in Nt(si−1), the
value Ki(y)−dG(t, si−1) still records the length of a can-
didate path. We now give the procedure of the algorithm
introduced by Nardelli et al. [7].

Nardelli’s Algorithm

Input: A graph G with a shortest path PG(s, t)
Output: dG−e for any e ∈ E(PG(s, t))

(1) Build a shortest path tree rooted at t,
denoted by SG(t)
(2) Let K(y) = dG(s, t) for all y ∈ V (G)
and build a Fibonacci heap using K(y) as key
(3) Suppose PG(s, t) = s0(= s), s1, . . ., sr−1, sr(= t)
(4) Let i = r and ei = (si, si+1)
(5) while i > 0 do
(6) Begin
(7) Let S be the set of Nt(si)−Nt(si−1)
(8) Remove the key K(x) from the heap if x ∈ S
(9) For each x ∈ S, search its neighbors:
If there is an edge (x, y) where x ∈ Nt(si−1),
we compute dG(t, y) + w(y, x) + dG(x, t);
If the value is less than K(y), we assign it to K(y)
(10) Let c be the minimum key of the heap
(11) Let dG(si−1, t) = c− dG(t, si−1)
(12) Decrease i by 1
(13) End(while)

Since the values of dG−e for any e ∈ E(PG(s, t)) have
been obtained, it is easy to calculate the maximum anti-
block coefficient along the edges of PG(s, t). That is, we
can determine the anti-block edge in this way.

4 Improvement

In this section, we propose an improvement of the search
strategy and discuss the time-space trade-off. The fastest
algorithm to perform Step (1) introduced by Fredman
and Tarjan [4] adopts the adjacent list to store the graph.
It runs in O(m+ n log n) time.

It is well known that the adjacent list can be implemented
by means of link list. Furthermore, we add two links
between the two instances which stand for the same edge
in graph which is shown in Fig. 5. Furthermore, we
maintain the array which stores the tails of the link list
of certain vertices.

Figure 5. The structure of adjacent list.

We change Step (9) as follows:
(9) For each x ∈ S, search its edge link list from the
header:

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

(9.1) Let e be the first edge in the list.
(9.2) while e <> Null do
(9.3) Begin if e is marked, then break;
(9.4) Suppose e = (x, y);
(9.5) If x ∈ Nt(si−1), we compute dG(t, y) + w(y, x) +
dG(x, t);
(9.6) If the value is less than K(y), we assign it to K(y);
(9.7) Mark the edge e;
(9.8) Move e to the tail of the link list of the vertex y;

We use more n units of space to store the tail of the link
list of each vertex. But we avoid to search one edge twice.
Thus, the improved algorithm diminishes the complexity
by m units of time. Since m is in O(n2) usually, our
improvement makes sense.

Our improvement above focuses on the time-space trade-
off. We now propose a method to perform Step (8) effec-
tively and then present an alternative method which uses
less space but takes more time. As known, it is expensive
to locate the node which is associated with the vertex y
in Fibonacci heap since the key is K(y) not y. Hence, we
also use an array to record the node in the heap for each
vertex in the graph. But if we prefer space to time, we
does not record the position of the corresponding node
for each vertex. We eliminate Step (8) and change Step
(10) as follows:
(10.1) Let c be the minimum key of the heap;
(10.2) If c is the value of K(y) and the vertex y is not in
Nt(si−1), then delete the key c and Goto Step (10.1);

It implies the alternative algorithm spares n units of space
but takes more time for the operations of the Fibonacci
heap. However, the time complexity remains in O(m +
n log n).

5 Experimental Results

Figure 6. The shortest path tree.

The shortest path tree of the graph in Fig. 1 is shown in
Fig. 6. The optimal detours are shown in Fig. 7 for each
vertex when the edge from the vertex to its parent fails.
The first edges of the detours are marked with dotted
lines.

Figure 7. The optimal detours.

And the following table presents the lengths of the opti-
mal detours.

Table 1: PG(x, t), dG−(x,y)(x, t) and cx,t

Edge(x, y) PG(x, t) dG−(x,y)(x, t) cx,t

(s, d) 8 16 2
(d, b) 7 8 8/7
(b, g) 5 5 1
(g, t) 1 9 9
(i, g) 4 7 7/4
(a, f) 7 9 9/7
(h, f) 8 9 9/8
(f, c) 5 7 7/5
(c, t) 4 6 3/2
(j, t) 5 6 6/5
(b, c) 5 5 1
(c, t) 4 6 3/2

Figure 8. An alternative shortest path from s to t.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

As mentioned in Section 1, though dG−(g,t) = dG−(s,d),
the anti-block coefficient of the edge (g, t) is much larger
than the one of (s, d). So the edge (g, t) is critical in the
path. From this point of view, we had better choose the
shortest path to be P = s, d, b, c, t. The maximum anti-
block coefficient of P is 2 since the cb,t = 1 and cc,t = 3/2
with respect to the edges (b, c) and (c, t), respectively.
Thus, the route of P is better than the route s, d, b, g, t
which is shown in Fig. 1.

6 Analysis of the Algorithm

According to Nardelli’s algorithm, it can be concluded
that it has no limitation on the number of the short-
est path from the source to the destination. Thus, so
does our algorithm. It is clear that our algorithm runs in
O(m+ n log n) time and O(m) space.

The two alternative improved algorithms make exchange
between time and space. And they both do not change
the time and space complexity of the original algorithm.

7 Conclusions and Future Works

We propose an improved algorithm to find the anti-block
vital edge of a shortest path. And the constraint in the
previous algorithm [8] is eliminated. Our algorithm runs
in O(m+n log n) time which is faster than the one in [8]
whose complexity is O(mn).

In addition, Nardelli, Proietti and Widmayer [6] im-
proved their algorithm using a linear time algorithm for
the shortest path tree by means of a transmuter [9]. They
gave an O(mα(m,n)) time algorithm. Thus, Our algo-
rithm can also be implemented in this way.

Bhosle and Gonzalez [2] found the replacement paths for
all tree edges of a shortest path tree in O(m + n log n)
time. Thus, our algorithm can be extended based on
their technique.

References

[1] Bhosle, A.M., “Improved algorithms for replacement
paths,” Operatjions Research Letters, V33, pp. 459-
466, 2005

[2] Bhosle, A.M., Gonzalez, T.F., “Algorithms for sim-
ple link failure recovery and related problems,” Jour-

nal of Graph Algorithms and Applications, V8, N3,
pp. 275-294, 2004

[3] Corley, H.W., Sha, D.Y., “Most vital links and nodes
in weighted networks,” Operation Research Letters,
V1, pp. 157-161, 1982

[4] Fredman, M.L., Tarjan, R.E., “Fibonacci heaps and
their uses in improved network optimization algo-

rithms,” Journal of the ACM, V34, N3, pp. 596-615,
1987

[5] Malik, K., Mittal, A.K., Gupta, S.K., “The k most
vital arcs in the shortest path problem,” Operation

Research Letters V8, pp. 223-227, 1989

[6] Nardelli, E., Proietti, G., Widmayer, P., “A faster
computation of the most vital edge of a shortest path
between two nodes,” Information Processing Letters,
V79, N2, pp. 81-85, 2001

[7] Nardelli, E., Proietti, G., Widmayer, P., “Finding
the detour critical edge of a shortest path between
two nodes,” Information Processing Letters, V67,
N1, pp. 51-54, 1998

[8] Su, B., Xu, Q., Xiao, P., “Finding the anti-block vi-
tal edge of a shortest path between two nodes,” In
Proceeding of COCOA 2007, Lecture Notes in Com-

puter Science, V4616, pp. 11-19, 2007

[9] Tarjan, R.E., “Applications of path compression on
balanced tree,” Journal of the ACM, V26, pp. 690-
715, 1979

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

