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Abstract—There is currently no consensus on the 

effectiveness of preprocessing methods used in pooled DNA 

(Deoxyribonucleic Acid) microarray analysis of SNP (Single 

Nucleotide Polymorphism) data. We investigated two 

normalization methods, cyclic loess and quantile, before 

identifying susceptibility genes of type 2 diabetes mellitus 

(T2DM). The probe data set is filtered by discrimination score 

and range of estimate allele frequency to remove unreliable 

probe intensities. The results show that both normalizations can 

reduce variation; however, there is no significant difference in 

identifying significant SNPs. The probe data set that uses only 

perfect match intensity is preferred. The mismatch probe 

intensities are used to exclude unreliable SNPs in the step of 

filtering. 

 
Index Terms—Cyclic loess normalization, discrimination 

score, pooled DNA, quantile normalization, relative allele 

signal, SNP microarray, type 2 diabetes mellitus.  

 

I. INTRODUCTION 

Type 2 diabetes mellitus (T2DM) is a complex disease that 

represents a major public health concern around the world. 

Although we already know that alteration of the 

environmental and lifestyle risk factors can substantially 

reduce progression of this disease, the prevalence of diabetes 

is increasing every year. T2DM is frequently not diagnosed 

until complications appear because the effectiveness of early 

diagnosis through screening of asymptomatic individuals has 

not been established [1]. It is hoped that better understanding 

of the genetic and molecular etiology of the disease would 

help to improve treatment and prevention. 
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Genome-wide association study that used Single 

Nucleotide Polymorphisms (SNPs) has the potential to 

revolutionize the identification of genetic influences of 

complex traits and diseases. SNPs are popular for 

genome-wide association because they have high abundance 

in human genome, a low mutation rate and accessibility to 

high-throughput genotyping [2]. SNP microarray is a widely 

acceptable method for whole genome genotyping; however it 

requires a large number of samples to genotype. To address 

the cost, time and labor that are involved in large-scale 

genotyping, pooling techniques have been proposed. DNA 

pooling may be used to estimate the allele frequency of SNPs 

and map disease susceptibility genes. Researchers reported 

this technique as reliable and offers cost savings relative to 

individual genotyping studies [2, 3]. 

In this study, we used a pooling approach with Affymetrix 

SNP arrays in order to screen for susceptible genes of T2DM. 

Since environmental factors are likely to have a major impact 

and obesity frequently co-occurs with T2DM, type 2 diabetes 

pools were classified into two subpools, non-obese T2DM 

and obese T2DM, based on body mass index (BMI). 

Any human DNA sample generally has one of three 

genotypes at a SNP: AA, AB or BB, where A and B are the 

conventional names for the alleles at the SNP.  The 

Affymetrix SNP array is composed of allele-specific 

hybridization probes called perfect match of A allele (PA) 

and perfect match of B allele (PB). For each oligo-probe, 

these arrays also contain a negative control oligo called 

mismatch (MM). With this approach, probe redundancy 

accounts for discrimination between signal and noise. 

In order to identify SNPs associated with diabetes from 

array data, a suitable analysis method has to be investigated. 

Preprocessing is a necessary step to remove obscurities that 

affect accuracy and validity of downstream analysis. 

However, there is currently no consensus on which 

processing method is the most efficient or effective. 

Moreover, literature that has thoroughly examined the 

influence of each of these preprocessing stages on 

Affymetrix SNP array is rare. Therefore we investigated the 

suitable method for our data before identifying susceptible 

genes of type 2 diabetes mellitus.  

The main preprocessing steps are background correction, 

normalization, and summarization. This work focused on 

normalization method and probe set data used for analysis. 

Besides these, two criteria of filtering data, discrimination 

scores and range of relative allele signal, were also used.  
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II. MATERIALS AND METHODS 

 

The data set used in this study was obtained from the 

project "Study on the Genetic Susceptibility to Type 2 

Diabetes in Thais", Ramathibodi Hospital, Thailand. 

 

A. Pooled DNA Preparation 

Genomic DNA for each individual was extracted from 

white blood cells following in house DNA extraction method. 

Each individual DNA sample was quantified using a 

spectrophotometer and fluorimeter, and diluted to a 

concentration of 10 ng/µL before pooling. T2DM pools were 

generated as two subpools classified by BMI. Diabetic 

patients that have BMI greater than 25 kg/m
2
 are classified 

into the obese T2DM pool group; otherwise they are in the 

non-obese T2DM pool group. Samples (DNA pools) were 

prepared for hybridization to standard GeneChip® 

microarrays using Affymetrix protocols and recommended 

reagents as documented in the GeneChip Mapping 10K 2.0 

Assay Manual. Each pool consisting of 50 individuals was 

assayed on a separate microarray. Each microarray was 

scanned using the GeneChip® scanner and GeneChip® 

Operating software (GCOS) v.1.4. Cell intensity (.cel) files 

were generated and exported as text files. There are five 

independent pooled data of control, four pools data of 

non-obese T2DM and three pooled data of obese T2DM. 

 

B. Generation of Estimated Allele Frequency 

The SNPs on Affymetrix SNP array have redundant probes 

to represent the SNP. Probe intensities have to be 

summarized to a single value for analysis. Based on the 

analysis method of pooling, the difference in the allele 

frequency of each pool was used for analysis instead of 

clustering into genotype as well as individual sample on SNP 

array. Allele frequency is the proportion of one allele relative 

to all alleles at the locus in the population. Usually, the 

measure of probe intensity of A allele to the probe intensity of 

A and B allele on SNP array is called relative allele signal, or 

RAS [2, 4, 5]. 

 

C. Filtering Data 

Before data transformation, the SNPs which have 

unreliable probe intensities were removed from this study by 

using a discrimination filter. The filter used is the 

discrimination score (DS) which is the ratio of the difference 

between perfect match and mismatch to the sum of perfect 

match and mismatch intensities. More details are provided in 

the Affymetrix manual [5]. Moreover, DS was used to assess 

the quality of the microarray. If the percent of the number of 

SNPs that passed the discrimination filter to total number of 

SNPs on an array was less than 90 percent, this array was 

discarded. In this study, we set DS threshold to 0.08, 

following the guideline of the Affymetrix manual. 

The probe intensities of SNPs that passed the 

discrimination filter were normalized and then transformed to 

RAS for further analysis.  

In the part of statistical analysis, the appropriate test to use 

in the determination of the difference in the estimated allele 

frequency of the two pools is studied. The results from the 

Pearson χ
2
 test is unrealistic for pooled DNA because the 

variance would be inflated by experimental error that is 

specific to DNA pooling studies [6]. Therefore, we used a 

two-sample t-test, a general statistic, in this study. The t-test 

has been successfully applied in pooled DNA SNP array data 

in other works [4, 7]. 

The RAS values can be used separately or as an average 

value. When we considered the number of group to give an 

accurate estimate of the true value of interest in the absence 

of a systemic bias, the RAS of sense and antisense were 

manipulated as replicated array i.e. two data set of one array. 

To avoid minor allele frequency that substantially reduced 

the power of statistical detection, the RAS values of interest 

were taken to be in the range of 0.05-0.95. 

 

D. Stage 1: Evaluation of Cyclic Loess & Quantile 

Normalizations 

The purpose of data normalization is to minimize the 

effects of experimental and technical variations so that 

meaningful biological comparisons can be made and true 

biological changes can be found among multiple experiments 

[7]. Due to technical biases, normalization of the intensity 

levels is a pre-requisite to performing further statistical 

analyses. Therefore, choosing a suitable approach for 

normalization is essential. In the study of Bolstad et al. [7], 

various normalization methods were compared. Quantile 

normalization was recommended and cyclic loess was 

comparable with quantile normalization in their study. 

Following their study, we evaluated cyclic loess and quantile 

normalizations using our data set. We used quantile to 

normalize the probe intensities across arrays within group 

(Control, Non-obese T2DM and Obese T2DM) while the 

cyclic loess was used to normalize whole array.  

The probe data sets of both PM and MM were used to 

calculate RAS following these steps: 

BA

A
RAS quarter


                 (1) 

]0,max[ avMPAA                (2) 

]0,max[ avMPBB                (3) 

 

2

][ MBMA
M av


                (4) 

where: 

MA = Mismatch A allele intensity value 

MB = Mismatch B allele intensity value 

 

The algorithm calculates the median of the RAS values for 

the sense direction probe quartets and uses this value as the 

Median RAS value for the sense direction (RAS1). Then, the 

algorithm calculates the median of the RAS values for the 

antisense direction probe quartets and uses this value as the 

RAS value for the antisense direction (RAS2). 

 

E. Stage 2: Evaluation of Probe Data Set 

The rationale for including MM probe is to remove 

unspecific binding contribution of the signal, whereas MM 

probes are ignored due to the fact that mathematical 

subtraction does not translate to biological subtraction [10]. 
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Therefore we investigated three different methods of probe 

data set treatment. First, according to stage 1, the probe 

intensities of both PM and MM were normalized before RAS 

computation. This probe data set is denoted PM&MM. 

Second, the probe intensities of PM in each quartet were 

subtracted by MM following (2), (3) and (4), then 

normalization before calculating RAS following (1). This 

probe data set is denoted PMsub. Third, only PM probe 

intensities were normalized and the calculation of RAS was 

done using the following equation 

PBPA

PA
RAS quarter


                                (5) 

where:  

PA = normalized perfect match A allele intensity value 

PB = normalized perfect match B allele intensity value 

The last probe data set is denoted PM. 

 

III. RESULTS AND DISCUSSION 

A. Evaluation of Cyclic Loess & Quantile Normalizations 

The plot between standard deviation (SD) and mean 

intensities (Fig. 1) allows us to discern deviation-mean 

dependence. The pointed clouds of data, which are enlarged 

on the right side of the figure, become approximately 

horizontal after loess or quantile normalization. This shows 

that the normalized data is less deviation-mean dependent 

than non-normalized data. However, there is no difference 

between cyclic loess and quantile normalizations, as can be 

seen in the distribution of RAS values for each normalization 

method (Fig. 2). 

 

  
Fig. 1. Scatter plot of standard deviation (SD) versus mean  

intensities for all arrays in the control group. 

 
Fig. 2. Box plots of RAS of sense and antisense strands across 

array in each normalization method. 

 

 
Fig. 3. Venn-Euler diagram representation of the number of 

significant candidate SNPs at p-value of 0.003.  A) Significant 

SNPs of non-obese T2DM group.  B) Significant SNPs of obese 

T2DM group. 

 

The number of overlapping SNPs was used as a measure of 

similarity between methods. This number would be small if 

the methods are highly dissimilar. We can notice that the 

number of common SNPs between non-normalization and 

normalization is not highly different, as shown in Fig. 3. This 
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implies that normalization methods have no significant 

impact on identifying significant SNPs. Our result also agrees 

with the study of Barbacioru et al. [11] which used Applied 

Biosystems expression arrays.  Nevertheless, normalization 

is preferable in preprocessing data because the variation of 

normalized data is lower than that of non-normalized one. 

Given that the two normalization methods produced similar 

results, quantile normalization is preferred in this work due to 

its simplicity and faster processing time.  

 

B. Evaluation of Probe Data Set 

Fig. 4 presents the number of overlapping significant SNPs 

at p-value of less than 0.003 and the number of unique SNPs 

identified by each method. No SNPs from PM method were 

excluded from the criterion of RAS range. The Spearman's 

rank correlation of RAS values across array in each pooled 

group is significant in all methods (data not shown). 

However, the data that used only PM show good distribution 

and rank correlation between RAS of sense and antisense 

strands within the pooled groups, as shown in Fig. 5. That is, 

there is less scattering in the upper parts of the diagonal line, 

which represent the distribution of RAS values from PM 

method in each pooled group, compared with subtracted MM 

method in the lower parts. We conclude that using only PM 

probe intensities for further analysis is preferable and MM 

values may be ignored. It is suitable to use MM only to 

remove unreliable hybridization in the step of discrimination 

filter. 

 

 

 

 
Fig. 4. Venn-Euler diagram representation of the number of 

significant candidate SNPs from different probe data sets 

studied at p-value of 0.003. A) Significant SNPs of non-obese 

T2DM group.  B) Significant SNPs of obese T2DM group. 

 

In this study, we suggest a suitable analysis method for 

pooled DNA on Affymetrix SNP array as follows. The probe 

intensities of both perfect match and mismatch should pass 

discrimination filter to block unreliable intensities. The 

increasing of threshold will give more reliable hybridization, 

however we will lose possible candidate SNPs. Next, only 

perfect match probe intensities were used to normalize across 

arrays within group by the quantile method. Then, probe 

intensity values of individual SNP in each chip were 

transformed to relative allele signal by ignoring MM. The 

RAS values of sense and anti-sense should be used separately 

to increase power of detection, if t-test was performed.  

 

 

 
Fig. 5. Scatter plots of RAS values (sense and anti-sense strands) 

across arrays in each pooled group A) Control group B) 

Non-obese T2DM group and C) Obese T2DM group. The upper 

part of diagonal line or in triangle is scatter plot of RAS values 

from PM method and lower part from subtracting MM method. 

 

 

An aim of this work is to screen for the susceptibility genes 

of type 2 diabetes in order to nominate SNPs for individual 

genotyping, which is necessary for validation of results. 

Based on the procedure from this study, the number of 

candidate SNPs of non-obese T2DM and obese T2DM are 92 

and 177 SNPs, respectively, at a cutoff p-value of 0.003.  

Although screening can reduce the number of SNPs to be 

validated, genotyping all screened candidate SNPs would 

still require a high cost. Therefore, we decided to select a 

smaller number of candidates for validation. In order to 

narrow down the number of candidate SNPs, we first focused 

on nonsynonymous SNPs (nsSNPs), which presume that a 

change in amino acid will lead to change in protein function. 

However we found only 15 nsSNPs in our Affymetrix 10k 

array that matched in the LS-SNP database, an annotated 

database of SNPs (http://alto.compbio.ucsf.edu/LS-SNP/). 

Also, nsSNPs do not account for all SNP that can cause 

disease or susceptibility to disease. SNPs located in the 

promoters region, introns, splice site, and intragenic region, 

or even synonymous SNPs, may have functional 

consequences via unknown mechanisms. For these reasons, 

we assume that all candidate SNPs are capable to affect 

T2DM. 

Table I shows the list of candidate SNPs of non-obese 

T2DM and obese T2DM that we nominated for validation 

based on biological function support and the fact that they 

overlapped all three methods at p-value of 0.003. Some of 

these genes, where the candidate SNPs are located, have been 

proposed to be associated with T2DM, but the subgroups of 

genes are different.  

Finally, the k-correction factor is one of the methods to 

correct estimate allele frequency of pooled DNA microarray 

data. Typically, when estimates of allele frequency 

differences between two pools are compared with those 

obtained by individual genotyping, the mean error rate of 

pooled analysis is in the region of 1–2%. However in the 

study of Meaburn et al. [7], k-correction resulted in no 

significant difference in terms of reliability when performing 

relative comparisons between allele frequency estimates for 

different groups. The coefficient k was obtained from 

Caucasian genotyping, whereas a different ethnicity will 

have different preference hybridization. Consequently, the 

estimate allele frequency of this study was not corrected by 

the k-correction factor. 
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Table I. List of susceptibility genes that varied significantly in 

type 2 diabetes mellitus patients. 

dbSNP RS 

ID Gene p-value 

Non-obese T2DM 

rs768403 ASB10 2.63E-05 

rs496916 COL4A1 1.39E-03 

rs2324240 

 

DHX15 /// 

PPARGC1A 

1.82E-03 

 

rs1079596 DRD2 4.51E-04 

rs872387 FAM20A /// ABCA8 1.33E-04 

rs1977389 FAS 1.19E-04 

rs958829 

HSD17B3 /// 

SLC35D2 1.85E-03 

rs329124 PHF15 ///  ///  1.43E-03 

rs1343943 PLA2G4A 3.20E-05 

rs1343942 PLA2G4A 9.49E-04 

rs283258 RTTN /// SOCS6 5.58E-04 

rs1913759 SH2D4B 1.50E-03 

rs1913760 SH2D4B 2.02E-03 

rs1414416 VCAM1 /// GPR88 9.39E-04 

Obese T2DM 

rs1537782 

 

ASB17 /// 

ST6GALNAC3 

1.23E-04 

 

rs1370686 CPE  3.17E-04 

rs895455 FAH /// ARNT2 4.99E-05 

rs910652 HSPA12B  1.03-E03 

rs1513681 PIK3C3 8.38E-06 

rs1355828 PIK3C3 1.64E-03 

rs628005 PIK3C3 1.82E-03 

rs2361491 PRKCA 2.66E-03 

rs950964 RYR2  1.25-E03 

rs3847621 SLC1A2 1.16E-03 
 

IV. CONCLUSION 

Previous works on the analysis of preprocessing were 

performed on well-controlled data sets such as the dilution or 

spike-in data in expression array. Whereas in this study, 

real-life data sets were used. As there are no standard 

evaluation methods of preprocessing and the different 

methods can provide conflicting results, therefore, the 

candidate SNPs obtained from this study have to be validated 

to confirm the suitability of this method. Currently, one 

candidate SNP (rs329124) has been confirmed to be 

associated with type 2 diabetes. 
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