
Abstract 
In this paper, we study a single-machine deteriorating job 

scheduling problem with job release times where the 
objective is to minimize the makespan. The problem is 
known to be strongly NP-complete. Therefore, we first 
develop a branch-and-bound algorithm incorporating with 
several dominance properties and a lower bound to derive 
the optimal solution. Then, we propose two heuristic 
algorithms for the near-optimal solutions. Finally, we 
conduct some computational experiments to evaluate the 
performance of the proposed algorithms. 

Keywords: single machine; deteriorating jobs; makespan; 
release time 

 
1. Introduction 

For many years, job processing times are assumed to be 
known and fixed from the first job to be processed until the 
last job to be completed. However, there are many situations 
in which a job that is processed later consumes more time 
than the same job when processed earlier. Examples can be 
found in the fire fighting, emergency surgery, machine 
maintenance, and cleaning assignment where any delay in 
processing a job is penalized and often implies additional 
time for accomplishing the job. Scheduling in this setting is 
known as deteriorating job scheduling problems and has 
received increasing attention in recent years. 

Gupta and Gupta [1] and Browne and Yechiali [2] were 
the pioneers that introduced the deteriorating job scheduling 
problems. They constructed models where the processing 
time of a job is a function of its starting time. Since then, 
many researchers have devoted to this vivid area. For 
instance, Mosheiov [3] considered the simple linear 
deterioration model. He showed that the problems of   
minimizing the makespan, total flow time, sum of weighted  
completion times, total lateness, number of tardy jobs, 
maximum lateness, and maximum tardiness are 
polynomially solvable. Cheng and Ding [4] examined the 
single machine makespan scheduling problems involving 
starting time 
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dependent tasks with release times and linearly 
increasing/decreasing processing rates. They solved a series 
of models in the literature, and further gave a sharp 
boundary delineating the complexity of the problems. 
Bachman and Janiak [5] proved that the maximum lateness 
problem is NP-hard if the actual processing time is a linear 
function of its starting time. Under the same model, 
Bachman et al. [6] proved that minimizing the total 
weighted completion time is NP-hard. Under the decreasing 
linear deterioration model, Wang and Xia [7] provided 
optimal solutions for single-machine problems of 
minimizing the makespan, maximum lateness, maximum 
cost and number of tardy jobs. Wu et al. [8] studied the total 
weighted completion time problem on a single machine. In 
addition, Janiak and Kovalyov [9] studied an important 
problem of scheduling jobs executed by human resources in 
a contaminated area. The specificity of this problem is that 
the dynamics of the harmful factor should be taken into 
account as well as the norms of organism recovery in rest 
periods. They also constructed two polynomial time 
algorithms for the both cases-- with and without precedence 
constraints. Lee et al. [10] studied the two-machine 
makespan problem while Wu and Lee [11] considered the 
two-machine total completion time problem. 

On the other hand, there are some situations in which the 
job will require extra time for successful accomplishment if 
certain maintenance procedures fail to be completed prior to 
a pre-specified deadline. Kubiak and van de Velde [12] 
considered a single machine problem of scheduling 
independent jobs to minimize the makespan, and they 
showed the problem is NP-complete in the ordinary sense. 
Cheng and Ding [13] assumed that the actual processing 
time pi  is a step function of its starting time and showed the 
makespan problem is NP-complete in the ordinary sense, 
and the total completion time problem is NP-complete. They 
further identified a variety of solvable cases for some related 
problems. Researchers have formulated the deterioration 
phenomenon into different models and solved different 
problems for various criteria. Alidaee and Womer [14] 
surveyed the rapidly growing literature, while Cheng et al.  
[15] gave a detailed review of scheduling problems with 
deteriorating jobs.  

  
However, most of the works assume that the jobs are 

available at all times. To the best of our knowledge, Cheng 
and Ding [4] were the only authors that considered 
deteriorating job scheduling problems with release times. 
They considered a family of scheduling problems for a set of 
starting time dependent tasks with release times and linearly 
increasing or decreasing processing rates on a single 
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machine to minimize the makespan. In particular, they 
showed that the makespan problem with identical basic 
processing time, arbitrary release times and increasing 
processing rates is strongly NP-complete. However, no 
reports on developing the exact solution or providing the 
approximately solutions are found. In this paper, we will 
investigate the model where each job j has a common basic 
processing time a, a deterioration rate jb , and a release time 

jr . We will develop a branch-and-bound and two heuristic 

algorithms to obtain the optimal and near-optimal solutions, 
respectively. The remainder of this paper is organized as 
follows. The problem formulation is given in the next 
section. The elimination rules and  a lower bound for the 
problem are presented in Section 3. In Section 4 we develop 
two heuristic algorithms to solve the proposed problem. In 
Section 5, we provide the results of the computational 
experiment. The conclusion is given in the last section. 
 

2. Problem formulation 

The problem description is given as follows. Let 
N ={ n,...,1 } be the set of jobs to be scheduled. Each job j 

has a basic processing time a, a deterioration rate jb , and a 

release time jr . The actual processing time of jJ  is 

j jp a b t= + , where t is the starting time for jJ . Moreover, 

let ( )jC S  denote the completion time for jJ  under 

schedule S . The objective of this paper is to find an optimal 
schedule *S  such that  
max{C1( *S ), C2( *S ), …, Cn( *S )}≤  

max{C1(S), C2(S), …, Cn(S)} 
for any schedule S. 
 

3. Elimination rules and lower bound 
Cheng and Ding [4] showed that the problem under 

consideration is strongly NP-complete. Therefore, the 
branch-and-bound method is a good way to derive the 
optimal solution. To facilitate the search process, some 
elimination rules are needed. Suppose that S and S ′  are two 
job schedules where the difference between S and S ′  is a 
pairwise interchange of two adjacent jobs i and j. That is, 

( )S i jπ π ′=  and ( )S j iπ π′ ′= , where π  and π ′  
denote the partial sequences.  Furthermore, let A denote the 
completion time of the last job in π . To show that S 
dominates S ′ , it suffices to show that ( ) ( )j iC S C S ′≤ . 

Property 1. If ir A≤  and (1 )i jb A a r+ + ≤ , then S  

dominates S ′ . 
Proof: From iA r≥ , it implies that 

( ) (1 )i iC S b A a= + + . 
Since (1 )i jb A a r+ + ≤ , we have  

( ) (1 )j j jC S b r a= + + . 

From ir A≤  and (1 )i jb A a r+ + ≤ , it implies that i jr r≤  . 

Thus,  

( ) (1 )j j jC S b r a′ = + + , 

and 
( ) (1 )(1 ) (1 )jii j iC S b b r b a a′ = + + + + + . 

Since 0bi > , we have 

( ) ( )j iC S C S ′< . 

Therefore,  S  dominates S ′ . 
 

The proofs of Properties 2 to 6 are omitted since they are 
similar to that of Property 1. 
Property 2.  If  i jr A r≤ ≤ , (1 )i jb A a r+ + ≥ , and j ib b< , 

then S  dominates S ′ . 
Property 3. If max{ , }i jA r r≥  and i jb b> , then S  

dominates S ′ . 
Property 4. If j ir A r≤ ≤ , (1 )j ib A a r+ + ≥ , and 

( ) (1 )(1 )( )j i i j ia b b b b A r− < + + − , then S  dominates S ′ . 

Property 5. If i jA r r≤ ≤ , i jb b> , and (1 )i i jb r a r+ + > , 

then S  dominates S ′ . 
Property 6. If iA r≤  and (1 )i i jb r a r+ + ≤ , then S  

dominates S ′ . 
To further facilitate the searching process, a theorem is 

used in the branch-and-bound algorithm to determine the 
order of unscheduled jobs. Let ( , )cπ π  be a sequence of 
jobs where π  is the scheduled part consisted of k jobs and 

cπ  is the unscheduled part. In addition, let *( , )π π  be a 

sequence in which the unscheduled jobs in *π  are arranged 
in non-increasing order of deterioration rates ib . For 
simplicity, we use the symbol [ ] to signify the order of jobs 
in a sequence. 
Theorem 1. If [ ] max { }k j NC rj∈> , then sequence *( , )π π  

dominates sequences of any other types of ( , )cπ π . 
 

3.1 Lower bound 
In this subsection, we establish a lower bound to curtail 

the branching tree. Suppose that PS is a partial schedule in 
which the order of the first k jobs is determined and S is a 
complete schedule obtained from PS. By definition, the 
completion time for the (k+1)th job is 

[ 1] [ 1] [ ] [ 1](1 ) max{ , }k k k kC b C r a+ + += + +  

[ 1] [ ](1 )k kb C a+≥ + + . 

Similarly, the completion time for the (k+r)th position job is 
[ ] [ ] [ 1] [ ](1 ) max{ , }k r k r k r k rC b C r a+ + + − += + +  

1

[ ] [ ] [ ]
11 1

(1 ) (1 )
r rr

k i k k i
ji i r j

b C b a a
−

+ +
== = − +

≥ + + + +∑∏ ∏ ,             (1)      

where k r n+ = . In equation (1), the first term is constant, 
and the second term is an increasing function of j. Thus, it is 
minimized by arranging the deterioration rates in a 
non-increasing order for the unscheduled jobs. Therefore, 
the lower bound can be obtained as in the following way. 

1

[ ] [ ] ( )
11 1

(1 ) (1 )
jr r

k i k k i
ji i

LB b C b a a
−

+ +
== =

= + + + +∑∏ ∏ ,            (2) 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008



where ( 1) ( 2) ( )k k k rb b b+ + +≤ ≤ ≤K  denotes the deterioration 

rates in the unscheduled part. 
 

4. The heuristic algorithms 
An alternative approach to solve an NP-hard problem is to 

provide the heuristic algorithm. In this section, two heuristic 
algorithms are presented. The main idea of the first 
algorithm is to choose the job with the smallest release time. 
However, the schedule might be affected by the 
deterioration rates, which in turn yields a larger value of 
makespan. To overcome this problem, the second heuristic 
algorithm is proposed. Instead of only choosing the job with 
the smallest release time among all the unscheduled jobs, we 
choose the smallest value of release time and deterioration 
rates from the jobs already released. The steps of the 
proposed algorithms are described as follows. 

Heuristic Algorithm 1 ( 1HA ) 

Step 1: Let N={ n,...,1 } and k=1. 
Step 2: Choose job j with the smallest release time from N 

and place the job on the kth position. Compute the 
completion time for the kth job, say [ ]kC . Delete job j 

from N.  
Step 3: If [ ] max { }jj NkC r∈> , then go Step 5,   otherwise, 

go to Step 4. 
Step 4: Let k=k+1. If k n≤ , go to Step 2.  
Step 5: Arrange the unscheduled jobs in a non-increasing 

order of the deterioration rates and go to Step 6. 
Step 6: Output the final solution. 
 
Heuristic Algorithm 2 ( 2HA ) 

Step 1: Let N={ n,...,1 }, [0] 0C = , and k=1. 
Step 2: Choose job j which has the smallest value of 

[ 1](1 ) max{ , }jj kb C r a−+ +  in N and place it on the 

kth position. Compute the completion time for the kth 
job, say [ ]kC . Delete job j from N.  

Step 3: Let k=k+1. If k n≤ , then go to Step 2. Otherwise, go 
to Step 4. 

Step 4: Output the final solution. 
To further refine the quality of the proposed heuristics, 

some neighborhood search movements are necessary. In this 
paper, we use the pairwise interchange, extraction and 
backward-shifted, extraction and forward-shifted movement 
in our neighborhood search since they improve the quality of 
the solution significantly. 

 
5. Computational experiment 

A computational experiment is conducted to evaluate the 
performance of the branch-and-bound and the heuristic 
algorithms. The programs are coded in Fortran 90 and run 

on a Pentium 4 personal computer. The basic processing 
times take the values of 5 and 10, and the release times are 
generated from a uniform distribution between 0 to 50.5nλ , 
where n is the job number and λ  is a factor of the range of 
the release times.  

The computational experiment consists of two parts. In the 
first part, the branch-and-bound and the heuristic algorithms 
are conducted with three different job numbers (n= 20, 30 
and 40) associated with ten different ranges of λ  ( λ =0.2, 
0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 1.75, 2.0, and 3.0). The 
deterioration rates are generated from a uniform distribution 
between 0 and 0.25. These tests are designed to study the 
effects of the dominance rules and the lower bound, and the 
accuracy of the heuristic algorithms. The average and 
maximum number of nodes and the average and maximum 
execution time (in seconds) are reported for the 
branch-and-bound algorithms. For the heuristic algorithms, 
the average and maximum error percentages are recorded. 
The error percentage of the solution produced by the 
heuristic algorithm is calculated as 

( ) / 100%V V V∗ ∗− × , 
where V is the value of the makespan generated from the 
heuristic method and V ∗  is the optimal value of the 
makespan obtained from the branch-and-bound method. In 
addition, the performance of the heuristic 

1 2min{ , }BH HA HA=  is also reported. As a consequence, 
60 experimental conditions are examined, and 100 
replications are randomly generated for each condition. The 
results are summarized in Table 1. It is observed that the 
number of nodes and the execution time grow exponentially 
as the job size increases. The most time-consuming case 
takes about 20 minutes and the maximal number of nodes is 
over 61.3 10×  when n= 40. As λ  increases, the execution 
time and the number of nodes increase for a fixed number of 
jobs. In addition, the problems are easier to solve as the 
values of the basic processing times increase. This is due to 
the fact that it is easier to surpass the maximal release time, 
and Theorem 1 is more powerful in that case. Both heuristic 
algorithms perform well in terms of the average error 
percentages. Overall, the performance of 1HA  heuristic is 
better than that of 2HA , especially for small values of λ . 
Moreover, the average error percentages of both heuristics 
tend to decrease as λ  increases when the job number is 
fixed. In addition, the performance of BH heuristic is much 
superior to those of 1HA  and 2HA , which means there is no 
clear dominance relation between the performances of 1HA  
and 2HA . Thus, BH  is recommended for small job-sized 
problems.  
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Table 1. The Performance of Branch-and-Bound and Heuristic Algorithms for ~ (0,0.25)b U .  
       Error Percentage 
   Number of Nodes CPU Times HA1 HA2 BH 

n a λ  mean max mean max mean max mean max mean max 
20 5 0.20  134.8 4780 0.017 0.453 0.058 2.548 1.117 21.669 0.037 2.548 

  0.40  621.9 24982 0.055 2.125 0.010 0.930 0.607 23.052 0.009 0.930 
  0.60  332.3 7019 0.029 0.469 0.007 0.669 1.054 38.622 0.000 0.000 
  0.80  1728.5 108969 0.132 7.641 0.000 0.000 0.252 11.447 0.000 0.000 
  1.00  1972.1 104518 0.102 5.188 0.004 0.159 0.386 9.194 0.001 0.082 
  1.25  800.1 34002 0.038 0.906 0.001 0.126 0.233 9.663 0.000 0.000 
  1.50  1558.7 45693 0.089 2.094 0.002 0.190 0.079 4.325 0.000 0.000 
  1.75  911.8 33924 0.052 1.750 0.000 0.000 0.142 6.641 0.000 0.000 
  2.00  600.5 12346 0.040 0.766 0.001 0.033 0.030 1.455 0.000 0.016 
  3.00  6292.1 454641 0.226 12.516 0.000 0.004 0.068 6.591 0.000 0.000 
 10 0.20  37.1 1026 0.006 0.109 0.263 3.633 0.646 10.882 0.104 3.396 
  0.40  130.0 3010 0.014 0.266 0.089 3.055 1.179 29.493 0.024 0.826 
  0.60  293.1 8886 0.027 0.594 0.048 3.204 0.648 13.060 0.017 1.167 
  0.80  793.6 25975 0.068 2.109 0.014 0.884 0.606 16.839 0.000 0.000 
  1.00  2498.0 104878 0.182 7.906 0.007 0.350 0.708 24.051 0.004 0.256 
  1.25  527.8 11842 0.035 0.719 0.003 0.309 0.366 19.134 0.000 0.000 
  1.50  945.4 51929 0.053 2.359 0.002 0.118 0.426 14.160 0.000 0.000 
  1.75  457.9 17008 0.031 1.125 0.000 0.000 0.587 24.200 0.000 0.000 
  2.00  1366.0 101970 0.068 4.219 0.003 0.164 0.437 14.198 0.000 0.035 
  3.00  449.8 10169 0.028 0.344 0.000 0.000 0.151 6.979 0.000 0.000 

30 5 0.20  178.7 3092 0.049 0.688 0.155 3.468 2.590 45.559 0.074 3.428 
  0.40  495.1 9503 0.116 1.766 0.054 1.462 1.655 30.962 0.040 1.462 
  0.60  637.4 9728 0.152 2.109 0.005 0.288 0.798 13.685 0.005 0.288 
  0.80  891.0 37351 0.237 9.609 0.003 0.154 0.721 27.342 0.001 0.080 
  1.00  6747.1 305936 1.629 71.391 0.001 0.087 0.188 7.574 0.001 0.087 
  1.25  1398.2 84733 0.482 25.094 0.000 0.013 0.430 12.694 0.000 0.013 
  1.50  3038.3 142875 1.105 46.484 0.001 0.076 0.403 16.337 0.000 0.034 
  1.75  2079.6 122634 0.599 26.281 0.002 0.125 0.566 42.661 0.001 0.125 
  2.00  342819.8 30272444 103.294 9420.109 0.000 0.000 0.021 0.656 0.000 0.000 
  3.00  2646.1 160279 0.856 43.719 0.001 0.102 0.096 6.214 0.001 0.102 
 10 0.20  50.8 649 0.023 0.312 0.349 5.967 1.534 17.016 0.223 5.967 
  0.40  160.5 1486 0.048 0.453 0.116 3.968 1.967 18.838 0.065 3.968 
  0.60  843.3 66905 0.197 14.578 0.104 2.817 1.849 22.836 0.054 2.817 
  0.80  681.9 20254 0.174 4.234 0.034 2.013 1.122 21.661 0.022 2.013 
  1.00  573.1 14095 0.184 4.219 0.027 1.851 0.591 9.925 0.022 1.851 
  1.25  629.6 9322 0.196 3.219 0.012 0.680 1.645 21.999 0.007 0.680 
  1.50  547.1 16616 0.177 4.109 0.004 0.345 0.886 26.625 0.000 0.041 
  1.75  769.1 27646 0.271 9.016 0.002 0.172 0.526 12.836 0.000 0.034 
  2.00  704.2 21981 0.251 6.281 0.000 0.019 0.406 17.684 0.000 0.019 
  3.00  589.4 15683 0.219 6.438 0.006 0.344 0.154 6.729 0.000 0.000 

40 5 0.20  316.3 12089 0.214 7.328 0.100 2.033 1.776 57.402 0.061 2.003 
  0.40  739.8 16622 0.445 8.359 0.022 0.937 1.969 54.610 0.018 0.937 
  0.60  3798.3 255461 2.350 154.141 0.021 0.613 1.162 29.136 0.011 0.613 
  0.80  731.9 26998 0.761 26.422 0.006 0.366 1.162 21.457 0.004 0.366 
  1.00  1326.0 57543 1.238 46.062 0.005 0.381 0.234 7.515 0.001 0.093 
  1.25  2777.3 77313 3.049 89.469 0.003 0.185 0.206 12.445 0.001 0.107 
  1.50  15111.1 1314899 14.390 1239.703 0.002 0.137 0.788 35.551 0.001 0.090 
  1.75  15719.2 892501 14.845 825.766 0.002 0.197 0.089 4.638 0.000 0.034 
  2.00  11684.7 972043 10.434 844.422 0.003 0.190 0.142 6.327 0.002 0.190 
  3.00  4098.8 240433 3.475 186.281 0.001 0.099 0.449 29.110 0.000 0.019 
 10 0.20  67.9 909 0.061 0.891 0.315 4.886 1.922 34.178 0.191 4.886 
  0.40  220.7 3179 0.155 2.312 0.152 2.692 2.193 25.540 0.088 2.669 
  0.60  586.6 31335 0.428 21.484 0.079 1.910 2.171 28.679 0.056 1.910 
  0.80  1547.1 85794 1.601 85.906 0.006 0.526 1.486 19.860 0.006 0.526 
  1.00  1111.4 51365 1.159 46.281 0.019 0.556 1.569 42.724 0.016 0.556 
  1.25  597.0 19990 0.726 24.094 0.027 1.323 1.417 32.551 0.014 0.958 
  1.50  469.4 10843 0.547 10.203 0.004 0.147 1.020 26.874 0.001 0.146 
  1.75  2635.6 179920 2.742 179.625 0.004 0.371 1.057 34.116 0.004 0.371 
  2.00  1635.6 43663 1.704 35.953 0.006 0.311 1.542 33.460 0.003 0.311 
  3.00  1077.1 23355 1.162 22.641 0.002 0.148 0.871 63.449 0.000 0.000 
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Table 2. The Performance of Branch-and-Bound and Heuristic Algorithms for ~ (0,0.50)b U  
       Error Percentage 
   Number of Nodes CPU Times HA1  HA2 BH 

n a λ  mean max mean max mean max mean max mean max 
60 5 0.20  35.5 761 0.100 1.984 0.124 3.949 1.050 22.796 0.042 2.002 

  0.40  42.8 240 0.122 0.672 0.060 2.647 1.508 53.171 0.038 2.647 
  0.60  60.3 889 0.187 2.562 0.008 0.370 0.714 33.753 0.003 0.183 
  0.80  42.3 1250 0.169 4.297 0.004 0.235 0.133 5.977 0.000 0.000 
  1.00  33.4 241 0.199 1.453 0.003 0.225 1.107 51.215 0.000 0.000 
  1.25  59.1 2086 0.373 11.625 0.007 0.455 0.021 0.689 0.003 0.141 
  1.50  43.9 664 0.255 3.047 0.000 0.000 0.200 18.566 0.000 0.000 
  1.75  49.7 1272 0.253 5.859 0.000 0.011 0.030 1.616 0.000 0.000 
  2.00  89.2 2665 0.472 12.453 0.003 0.301 0.367 16.352 0.000 0.000 
  3.00  32.8 204 0.193 1.062 0.000 0.000 0.046 2.337 0.000 0.000 
 10 0.20  30.2 308 0.074 1.094 0.488 7.726 1.396 24.497 0.151 3.667 
  0.40  34.1 412 0.093 1.109 0.105 2.828 1.293 18.474 0.084 2.828 
  0.60  34.9 325 0.098 0.875 0.063 2.703 0.969 31.068 0.029 2.703 
  0.80  34.1 283 0.099 0.828 0.069 1.969 0.958 26.599 0.002 0.143 
  1.00  45.2 1308 0.153 4.094 0.005 0.439 1.039 46.719 0.005 0.439 
  1.25  41.5 549 0.148 1.953 0.020 0.727 0.454 19.942 0.009 0.654 
  1.50  35.7 396 0.139 1.453 0.010 0.419 0.130 5.778 0.000 0.000 
  1.75  39.0 629 0.155 2.266 0.020 0.970 0.837 33.597 0.000 0.000 
  2.00  36.3 177 0.150 0.625 0.033 2.251 0.883 40.291 0.004 0.225 
  3.00  44.6 538 0.197 2.250 0.004 0.367 0.018 0.479 0.000 0.036 

80 5 0.20  36.8 248 0.369 2.938 0.236 5.417 1.964 37.576 0.030 1.004 
  0.40  44.8 459 0.520 4.969 0.028 1.023 0.857 26.262 0.009 0.702 
  0.60  30.4 230 0.389 2.703 0.001 0.133 0.532 18.300 0.001 0.133 
  0.80  49.9 424 0.607 4.562 0.006 0.400 1.321 61.562 0.002 0.239 
  1.00  40.8 417 0.515 5.016 0.006 0.436 0.084 4.829 0.000 0.000 
  1.25  53.5 659 0.650 7.375 0.006 0.378 0.154 5.800 0.006 0.378 
  1.50  41.3 647 0.533 7.969 0.001 0.097 0.098 3.535 0.001 0.097 
  1.75  39.3 328 0.492 4.000 0.002 0.084 0.032 0.604 0.001 0.076 
  2.00  47.3 419 0.598 5.203 0.000 0.000 0.536 50.976 0.000 0.000 
  3.00  64.4 1275 0.790 14.188 0.000 0.000 0.080 6.503 0.000 0.000 
 10 0.20  27.9 182 0.178 0.766 0.276 4.381 1.308 19.308 0.106 4.089 
  0.40  37.8 204 0.282 1.828 0.173 3.511 1.718 37.617 0.099 3.511 
  0.60  32.5 189 0.316 1.875 0.024 0.692 1.916 30.255 0.016 0.625 
  0.80  51.1 831 0.525 8.453 0.056 2.535 1.170 22.897 0.022 1.540 
  1.00  54.2 1500 0.628 17.016 0.014 0.746 0.486 13.200 0.001 0.052 
  1.25  59.0 1395 0.733 16.781 0.000 0.000 0.252 8.039 0.000 0.000 
  1.50  38.8 456 0.486 5.469 0.006 0.340 0.284 20.115 0.003 0.286 
  1.75  43.2 293 0.565 3.594 0.001 0.030 0.226 8.047 0.000 0.024 
  2.00  45.1 627 0.581 7.656 0.001 0.116 0.072 1.699 0.001 0.116 
  3.00  42.1 507 0.546 6.047 0.001 0.097 0.537 24.088 0.000 0.000 

100 5 0.20  36.6 259 0.456 3.594 0.069 1.920 1.316 28.413 0.039 1.568 
  0.40  73.6 3076 0.937 39.016 0.034 1.370 1.122 24.346 0.017 1.370 
  0.60  41.6 496 0.736 9.484 0.015 1.118 1.369 42.292 0.011 1.118 
  0.80  53.8 537 1.243 11.766 0.009 0.597 0.476 32.700 0.009 0.597 
  1.00  63.8 1168 1.627 28.109 0.002 0.177 1.357 38.680 0.000 0.000 
  1.25  76.1 2170 1.913 53.578 0.001 0.097 0.095 3.275 0.000 0.025 
  1.50  642.9 58559 15.408 1396.719 0.008 0.530 0.499 43.582 0.005 0.530 
  1.75  49.1 602 1.275 15.688 0.003 0.205 0.473 24.259 0.001 0.093 
  2.00  70.1 865 1.765 20.219 0.001 0.067 0.041 0.705 0.001 0.067 
  3.00  34.2 241 0.950 6.484 0.000 0.000 0.091 3.800 0.000 0.000 
 10 0.20  66.3 2943 0.702 39.625 0.563 15.577 2.619 31.125 0.298 5.467 
  0.40  43.4 223 0.446 3.094 0.310 6.996 1.534 34.170 0.109 3.585 
  0.60  43.0 386 0.546 5.422 0.079 3.911 2.556 75.087 0.051 3.911 
  0.80  44.3 288 0.761 4.172 0.027 0.888 1.267 56.015 0.019 0.888 
  1.00  146.8 11348 3.159 253.219 0.086 3.860 1.052 43.904 0.040 1.392 
  1.25  57.4 877 1.467 23.219 0.012 0.567 1.263 53.018 0.004 0.220 
  1.50  37.5 324 0.991 8.750 0.005 0.275 0.522 30.403 0.003 0.275 
  1.75  49.3 495 1.180 12.375 0.020 0.788 1.008 32.713 0.017 0.788 
  2.00  40.8 203 1.064 5.141 0.012 1.226 1.335 87.073 0.012 1.226 
  3.00  68.1 1928 1.726 46.797 0.001 0.110 0.359 31.012 0.000 0.017 
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In order to study the performance of 1HA  and 2HA  
algorithms for large job-sized problems, three different job 
numbers (n＝ 60, 80, and 100) combined with ten different 
values of λ  are tested in the second part of the experiment.              
The deterioration rates are generated from a uniform 
distribution between 0 and 0.5. As a consequence, 60 
experimental conditions are examined, and 100 replications 
are randomly generated for each condition. The results are 
summarized in Table 2. The same phenomenon is also 
observed from Table 2. Both heuristic algorithms perform 
well in terms of the average error percentages. Overall, the 
performance of 1HA  heuristic is better than that of 2HA , 
especially for small values of λ . Moreover, the average 
error percentages of both heuristics tend to decrease as λ  
increases when the job number is fixed. 
 

6. Conclusions 
This paper considers a single-machine makespan problem 

where each job has a basic processing time, a deterioration 
rate, and a release time. This problem is known to be 
NP-complete. Thus, a branch-and-bound algorithm with 
several dominance properties and a lower bound is proposed 
to derive the optimal solution. In addition, two effective 
heuristic algorithms are also provided. 

The computational results show that the 
branch-and-bound algorithm performs well in terms of the 
number of nodes and the execution time. Moreover, the 
computational experiments also show the proposed heuristic 
algorithms perform well. The extension of arbitrary basic 
processing times might be an interesting issue for future 
research. 
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