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Abstract—In this work, we study a class of polynomial 

order-even penalty functions for solving equality 
constrained optimization problem with the essential 
property that each member is convex polynomial order-
even when viewed as a function of the multiplier. Under 
certain assumption on the parameters of the penalty 
function, we give a rule for choosing the parameters of the 
penalty function. We also give an algorithm for solving this 
problem. 
  

Index Terms—constrained optimization, penalty method, 
polynomial order-even.  
 

I. INTRODUCTION 
 

The basic idea in penalty method is to eliminate some 
or all of the constraints and add to the objective function 
a penalty term which prescribes a high cost to infeasible 
points.  

Associated with this method is a parameter σ, which 
determines the severity of the penalty and as a 
consequence the extent to which the resulting 
unconstrained problem approximates the original 
constrained problem. In this paper, we restrict attention to 
the polynomial order-even penalty function. Other 
penalty functions will appear elsewhere.  
 

II. STATEMENT OF THE PROBLEM 
 

Throughout this paper we consider the problem 
               minimize    f(x) 

subject to )(xf i = 0, for I =1,…,m Xx ∈ ,    (1)                                                                                           
where f, f1,…,fm be real-valued function on a set 

nRX ⊂ . We assume that problem (1) has at least one 
feasible solution. 
 

III. POLYNOMIAL  ORDER-EVEN    PENALTY  
FUNCTION 

 
For any scalar σ > 0, let us define the polynomial 

order-even penalty function 
),( σxP : RRn →  

by 

),( σxP  = +)(xf  ∑
=

ρσ
m

i
i xf

1
))(( ,      (2)   

where ρ > 0 is even number. The positive even number ρ 
is chosen to ensure that the function (2) is convex. Hence, 

),( σxP  has a global minimum. We refer to σ as the 
penalty parameter. In fact, this is just the ordinary  
 

Lagrange function for the altered problem in which the 
constraints f1,…,fm  are replaced by f1

ρ,…,fm
ρ. 

The motivation behind the introduction of the 
polynomial order-term that they may lead to a 
representation of a local optimal solution in terms of a 
local unconstrained minimum.  

The polynomial order-even penalty method consists of 
solving a sequence of problems of the form 
                             minimize  ),( kxP σ  

           subject to Xx ∈ ,                           (3)                   
where { }kσ  is a penalty parameter sequence satisfying 

10 +σ<σ< kk   for all k,  ∞→σk . 
The method depends for its success on sequentially 

increasing the penalty parameter to infinity. In this paper, 
we concentrate on the effect of the penalty parameter. 
 The rationale for the penalty method is based on the fact 
that when ∞→σk , then the term  

∑
=

ρσ
m

i
i

k xf
1

))(( , 

which is added to the objective function, tends to infinity 
if 0≠)(xf i  and equals zero if 0=)(xf i . Thus, we 
define the function   

],(:ˆ ∞+−∞→nRf  
by 

                  

⎩
⎨
⎧

≠∞
=

=
,allfor)(if
,allfor)(if)(

)(ˆ
ixf
ixfxf

xf
i

i

0
0

 

the optimal value of the original problem can be written 
as 

f *  = )(inf
)(

xf
Xx
xfi

∈
=0

= )(ˆinf xf
Xx∈

 

= ),(liminf k

kXx
xP σ

∞→∈
.                         (4) 

 
 
On the other hand, the penalty method determines, via the 
sequence of minimizations (3), 
 

),(inflim k

Xxk
xPf σ=

∈∞→
.                         (5)                   

 
Thus, in order for the penalty method to be successful, the 
original problem should be such that the interchange of 
“lim” and “inf” in (4) and (5) is valid.
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The following theorem guarantees the validity of the 
interchange, under mild assumptions, and constitutes the 
basic convergence result for the penalty method. 
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First, we derive the convexity behavior of the 
polynomial penalty function defined by (2) is stated in the 
following stated theorem. 
 
Theorem 1 (Convexity)  

The polynomial penalty function ),( σxP  is convex in its 
domain for every σ > 0. 

Proof. 
It is straightforward to prove convexity of ),( σxP  using 

the convexity of xc T  and ρ))(( xfi . Then the theorem 
is proven.  

The local and global behavior of the polynomial 
penalty function defined by (3.1) is stated in next the 
theorem. It is a consequence of  Theorem 1. 

 

Theorem 2 (Local and global behavior)  

Consider the function ),( σxP  which is defined in (3.1). 
Then  

(a) ),( σxP  has a finite unconstrained minimizer in its 
domain for every σ > 0 and the set Mσ of 
unconstrained minimizers of ),( σxP  in its domain 
is convex and compact for every σ > 0. 

(b) Any unconstrained local minimizer of ),( σxP  in its 
domain is also a global unconstrained   minimizer of 

),( σxP . 
 

Proof. 

It follows from Theorem 1 that the smooth function 
),( σxP  achieves its minimum in its domain. We then 

conclude that ),( σxP  has at least one finite 
unconstrained minimizer.  

By Theorem 1 ),( σxP  is convex, so any local 
minimizer is also a global minimizer. Thus, the set Mσ of 
unconstrained minimizers of ),( σxP  is bounded and 
closed, because the minimum value of ),( σxP  is 
unique, and it follows that Mσ is compact. Clearly, the 
convexity of Mσ follows from the fact that the set of   

To do this, for any kσ  > 0 we denote kx  and 
),( kkxP σ  as a minimizer and minimum value of 

problem (2), respectively. 

 

 

Theorem 3 
Assume that f and fi are continuous functions and X a 
closed set. For k = 0, 1, …, let }{ kx  be a global 

minimum of the problem (3), where 10 +σ<σ< kk   

for all k,  ∞→σk . Then every limit point of the 
sequence )( kx  is a global minimum of the problem (1). 
 
Proof.  
We have by definition of xk 

),( kkxP σ  ≤ ),( kxP σ  for all Xx ∈ .    (6)                   
 

Let f * denote the optimal value of the original problem. 
We have 

f * = )(inf
)(

xf
Xx
xfi

∈
=0

 = ),(inf
)(

k

Xx
xf

xP
i

σ
∈

=0
. 

Hence, by taking the infimum of the right-hand side of 
(6) over Xx ∈ , )(xf i = 0, for i =1,…,m, we obtain 

),( kkxP σ  = ∑
=

ρσ+
m

i

k
i

kk xfxf
1

))(()(  

                                ≤   f *. 
  

Let x  be a limit point of }{ kx . By taking the limit 
superior in the above relation and by using the continuity 
of f and if , we obtain 

∑
=

ρ

∞→
σ+

m

i

k
i

k

k
xfxf

1
))((suplim)( ≤ f*.     (7)                   

 

Since 

                  ( ) 0)(
1

≥∑
=

ρm

i

k
i xf , ∞→σk , 

optimal points ),( σxP  is convex. Theorem 2 has been 
verified.  
 
 

As a consequence of Theorem 2, we derive the 
monotonicity behaviors of the objective function problem 
)(P , the penalty terms in ),( σxP  and the minimum 

value of the primal polynomial penalty function 
),( σxP . 

 
 
 
 
 

it follows that we must have  

0
1

→∑
=

ρ
m

i

k
i xf ))((  

and 
0=)(xf i  for all i = 1,…,m,                  (8)                   

for otherwise the limit superior in the left-hand side of (7) 
will equal +∞. Since X is a closed set we also obtain that 

Xx ∈ . Hence, x  is feasible, and   
f * ≤ )(xf .                                (9)                  
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Using (7)-(9), we obtain 

f * + ∑
=

ρ

∞→
σ

m

i

k
i

k

k
xf

1
))((suplim  ≤ 

∑
=

ρ

∞→
σ+

m

i

k
i

k

k
xfxf

1
))((suplim)( ≤ f *. 

Hence, 

∑
=

ρ

∞→
σ

m

i

k
i

k

k
xf

1
))((suplim  = 0 

and 
)(xf  = f *, 

which proves that x  is a global minimum for problem 
(1).  

 
IV. ALGORITHM 

 
The implications of these theorems are remarkably 

strong. The polynomial penalty method has a finite 
unconstrained minimizer for every value of the penalty 
parameter, and every limit point of a minimizing 
sequence for the penalty function is a constrained 
minimizer of problem (1). Thus the algorithm of solving a 
sequence of minimization problems is suggested.  

 
1. Given kσ  to get kx  by minimizing 

problem (3). (Note: Some techniques are 
available to determine a minimum  kx  of  

),( kxP σ , such as calculus technique, 
Newton-Raphson numerical approach, and 
so on.). 

 
2. Then set 1+σk , where  

 1+σk  > kσ , and kσ ∞→  to get a 
sequence { }kx .  

3. According to Theorem 3 every limit point 
of the sequence is a global minimum of 
problem (1). 

 
Example 

Consider  the following problem 
                        minimize   x 
                        subject to x = 1. 
Note that the minimum value of the problem is 1 at the 
minimum point x* = 1. According to Eq. (2), we have a 
sequence of polynomial order-2 penalty function 
(hence, 2=ρ ) 

),( kxP σ  = ( )21−+ xx kσ , ,...2,1=k , 

and 1>σ . The derivative of ),( kxP σ  with respect to 
x is given by  

),(' kxP σ  = ( )kk x σσ 212 −+ . 

The minimum point of ),( kxP σ  is obtained by solving 

the equation ),(' kxP σ  = 0. Therefore, the minimum 

point of ),( kxP σ  is given by  

kk

k
kx

σσ
σ

2
11

2
12

−=
−

= , ,...2,1=k  . 

    If 2=σ , we have a sequence        

          { }
⎭
⎬
⎫

⎩
⎨
⎧ =−= + ,...3,2,1,

2
11 1 kx k

k , 

and the limit point of the sequence is x  = x* = 1 as 
∞→k . With the same way, if 5=σ , we have another 

sequence        

          { }
⎭
⎬
⎫

⎩
⎨
⎧

=−= ,...3,2,1,
)2(5

11 kx k
k , 

 and the limit point of the new sequence is also x  = x* = 
1 as ∞→k .    
 

However, Theorem 3 shown above has several 
weaknesses. First, it assumes that the problem (3) has a 
global minimum. This may not true, even if the original 
problem (1) has a global minimum. As an example, 
consider the scalar problem 

   minimize   6x−  
subject to x = 0. 

This problem has a unique global minimum at the point 
x* = 0. When we choose ρ = 2, we have 

),( kxP σ  = 6x− + 2xkσ . 

Clearly, ),(inf k

x
xP σ  = ∞− , and hence ),( kxP σ  

has no global minimum for every kσ . The same result is 
obtained when we choose ρ = 4. This example shows a 
weakness of the penalty method. However, ),( kxP σ  

has global minimum for every kσ  when we take ρ ≥ 6.  
Note that the closed assumption to the set X is 

important to ensure that  the limit point of the sequence 
}{ kx to be in X. 

We also note that if we add boundedness assumption to 
the closed set X  (hence, X is a compact set) in the 
theorem, then ),( kxP σ  will attain a global minimum 
over X. If it occurs, the problem (3) must has a global 
minimum. 

For the inequality-constrained problem 
             minimize    f(x) 
             subject to )(xf i ≤ 0, for i =1,…,m 

            Xx ∈ ,                                          (10)                   
it is not immediately apparent what form the penalty 
function should have. The study of this problem will 
appear elsewhere. 
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