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Abstract— This paper focuses on multiobjective
linear programming problems involving fuzzy ran-
dom variable coefficients. A new decision making
model and Pareto optimal solution concept are pro-
posed using α-level cuts of membership function. It
is shown that the problem including both random-
ness and fuzziness is equivalently transformed into a
deterministic problem. An interactive algorithm is
proposed in order to obtain a satisficing solution for
a decision maker through interaction.
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1 Introduction

In the real world, there are a number of cases where
one should make a decision based on data with uncer-
tainty. Many researchers considered stochastic program-
ming and fuzzy programming to deal with such uncer-
tainty in decision-making. In stochastic programming,
Dantzig [3] considered two-stage problems, and Charnes
and Cooper [2] proposed chance constrained program-
ming and several decision making models based on vari-
ous optimization criteria. One of those models is a proba-
bility maximization model which is to maximize the prob-
ability that the objective function. On the other hand, in
fuzzy mathematical programming, Zimmerman [20] con-
sidered flexible programming, and Dubois and Prade [5]
developed possibilistic programming.

Most of studies on mathematical programming take ac-
count of either fuzziness or randomness. However, in
practice, decision makers are faced with decision making
systems where parameters include both fuzziness and ran-
domness. In such a case, the parameters are not always
estimated using a well-known concept such as a random
variable or a fuzzy set. For example, in a production plan-
ning problem, the demand of some commodity is often de-
pendent on weathers, i.e., fine, cloudy and rainy. If each
of weathers occurs randomly and an expert estimates the
demand for each of weathers as an ambiguous value such
as a fuzzy number, then the demand is represented with a
fuzzy random variable. As another example in real-world
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decision making, a profit per unit comes under the influ-
ence of the economic conditions which changes randomly
is expressed by a fuzzy random variable because a profit
per unit under each scenario of the economic conditions
is often estimated with a fuzzy set. A fuzzy random vari-
able was first defined by Kwakernaak [11]. The mathe-
matical basis of fuzzy random variables was developed by
Puri and Ralescu [15]. Some literatures considered linear
programming problems including fuzzy random variables
[7, 12, 13, 14, 17]. Recently, fuzzy random variables were
applied to various topics such as stopping games [19], in-
ventory problems [4], 0-1 programming [8] and spanning
tree problems [9].

In this article, for a multi-objective linear programming
problem including fuzzy random variable coefficients, we
shall define a new Pareto optimal solution concept which
is an extended version of Pareto optimal solutions in
fuzzy programming [16], and construct an interactive al-
gorithm based on the reference point method proposed
by Wierzbicki [18] to obtain a satisficing solution for a
decision maker through the interaction.

This paper is organized as follows: In the next section,
we formulate a multiobjective linear programming prob-
lem where the coefficients of each objective function are
fuzzy random variable. Section 3 transforms the original
problem including fuzzy random variable into a determin-
istic equivalent problem. In Section 4, we define a new
solution concept and provide an interactive algorithm to
find a satisficing solution for a decision maker. In Sec-
tion 5, we provide a numerical example to illustrate the
usefulness of the proposed model and algorithm. Finally,
in Section 6, we conclude this paper and discuss future
studies.

2 Problem formulation

In this paper, we consider the following multiobjective
linear programming problem:

min ˜̄Cix, i = 1, . . . , k
s. t. ˜̄Alx ≤ ˜̄Bl, l = 1, . . . ,m

x ≥ 0

 (1)

where x is an n-dimensional decision variable column
vector, and ˜̄Ci = ( ˜̄Ci1, . . . ,

˜̄Cin), i = 1, . . . , k, ˜̄Al =
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( ˜̄Al1, . . . ,
˜̄Aln), l = 1, . . . ,m.

Let us assume that each of ˜̄Cij is a fuzzy random variable
that takes a fuzzy number under the occurrence of an ele-
mentary event ω, which is characterized by the following
membership function:

µ ˜̄Cij(ω)
(τ) =


L

(
d̄c

ij(ω)− τ

βc
ij

)
(τ ≤ d̄c

ij(ω))

R

(
τ − d̄c

ij(ω)
δc
ij

)
(τ > d̄c

ij(ω))

(2)

where L and R are reference functions satisfying the fol-
lowing conditions:

1. L(t)
4
= max{0, l(t)} and R(t)

4
= max{0, r(t)}.

2. l(t) and r(t) are strictly decreasing continuous func-
tions on [0,∞).

3. l(0) = r(0) = 1.

We denote by ˜̄Cij = (d̄c
ij , βc

ij , δc
ij)LR the fuzzy ran-

dom variable characterized by (2). In a similar man-
ner, let us denote ˜̄Alj and ˜̄Bl by ˜̄Alj = (d̄a

lj , βa
lj , δa

lj)LR

and ˜̄Bl = (d̄b
l , βb

l , δb
l )LR, respectively. We assume

that d̄
c
i = (d̄c

i1, . . . , d̄
c
in) and d̄

a
l = (d̄a

l1, . . . , d̄
a
ln) are n-

dimensional normal random variables with mean vec-
tors mc

i = (mc
i1, . . . ,m

c
in), ma

l = (ma
l1, . . . ,m

a
ln) and

variance-covariance matrices V c
i , V a

l , respectively, and
that d̄b

l is a normal random variable with mb
l and variance

vb
l . Parameters βc

i = (βc
i1, . . . , β

c
in), δc

i = (δc
i1, . . . , δ

c
in),

βa
l = (βa

l , . . . , βa
l ) and δa

l = (δa
l1, . . . , δ

a
ln) are positive

constant vectors, and βb
l and δb

l are positive constants. In
this paper, we denote randomness and fuzziness included
in coefficients or goals by ” ”̄ and ”∼ ”, respectively.

Since all the coefficients of each objective function are
L-R type fuzzy random variables, we can apply the op-
eration on fuzzy numbers induced by Zadeh’s extension
principle. As a result, the objective functions become the
fuzzy random variables characterized by following mem-
bership functions:

µ ˜̄Ci(ω)x
(y) =


L

(
d̄

c
i (ω)x− y

βc
ix

)
(y ≤ d̄

c
i (ω)x)

R

(
y − d̄

c
i (ω)x

δc
ix

)
(y ≥ d̄

c
i (ω)x).

(3)

3 Level set optimization model for fuzzy
random programming problems

Since problem (1) is not a well-defined problem, there are
a lot of possible decision making approaches in terms of

various optimization criteria. In this paper, we consider a
case where the decision maker attaches importance to the
fact that all grades of membership functions are greater
than or equal to some satisficing level α, called ”admissi-
ble level.” In other words, we focus on ”α-level sets” of
coefficient vectors. Then, the problem to be considered
is formulated as

min c̄ix, i = 1, . . . , k
s. t. ālx ≤ b̄l, l = 1, . . . ,m, x ≥ 0

(āl, b̄l, c̄i) ∈ ( ˜̄Alα, ˜̄Blα, ˜̄Ciα),
l = 1, . . . ,m, i = 1, . . . , k.

 (4)

Considering the imprecise nature of the decision maker’s
judgment, it is natural to assume that the decision maker
may have fuzzy goals for each of the objective functions in
problem (4). In minimization problems, a goal stated by
the decision maker may be to achieve ”substantially less
than or equal to some value.” This type of statement is
represented with a fuzzy goal characterizing the following
linear membership function:

µi(y) =


0, y > g0

i

y − g0
i

g1
i − g0

i

, g1
i ≤ y ≤ g0

i

1, y < g1
i , i = 1, . . . , k

(5)

where g0
i and g1

i are positive constants. We apply Zim-
mermann’s method to determine the parameters g0

i and
g1

i . First, we solve the following individual minimization
problems under the given constraints:

min zi(x) = mc
ix

s. t. ma
l x ≤ mb

l , l = 1, . . . ,m
x ≥ 0.

 (6)

Let xio be an optimal solution to the ith minimization
problem and calculate the optimal values

zmin
i = zi(xio), i = 1, . . . , k. (7)

The next step to set up the parameters is to calculate

zm
i = max(zi(x1o), . . . , zi(xi−1,o), zi(xi+1,o), . . . , zi(xko))

(8)
and set g1

i = zmin
i and g0

i = zm
i . Then (4) is rewritten as

the following problem:

max µi(c̄ix), i = 1, . . . , k
s. t. ālx ≤ b̄l, l = 1, . . . ,m, x ≥ 0

(āl, b̄l, c̄i) ∈ ( ˜̄Alα, ˜̄Blα, ˜̄Ciα),
l = 1, . . . ,m, i = 1, . . . , k.

 (9)

It should be emphasized here that the above problem is
regarded as a kind of stochastic programming problems
because c̄i and āl are random set vectors, and b̄l are a
random set. Especially, since these random set are de-
fined on one-dimensional space as shown in (2), all of
coefficients are so-called ”interval random variables.”
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There are several stochastic programming models such
as an expectation optimization model, a variance min-
imization model, a probability maximization model by
Charnes and Cooper [2] and a fractile criterion optimiza-
tion model by Kataoka [10] and Geoffrion [6]. In this
article, we consider the following problem based on the
fractile criterion optimization model:

max hi, i = 1, . . . , k
s. t. Pr[µi(c̄ix) ≥ hi] ≥ θi, i = 1, . . . , k

Pr[ālx ≤ b̄l] ≥ ηl, l = 1, . . . ,m, x ≥ 0
(āl, b̄l, c̄i) ∈ ( ˜̄Alα, ˜̄Blα, ˜̄Ciα),
l = 1, . . . ,m, i = 1, . . . , k


(10)

where θi and ηl are constants called ”confidence levels,”
and they are determined by a decision maker. We assume
that θi ≥ 1/2 and ηl ≥ 1/2.

In the case of multiobjective programming problems, a
complete optimal solution that simultaneously optimizes
all of the multiple objective functions does not always ex-
ist when the objective functions conflict with each other.
Thus, instead of a complete optimal solution, a Pareto
optimal solution is well known as one of the reasonable
solutions.

Since fuzzy random programming problems include not
only fuzziness but also randomness, it is reasonable to
define a new solution concept reflecting both fuzzy in-
formation and stochastic information. In multiobjective
fuzzy programming, Sakawa [16] defined M-α-Pareto op-
timal solutions by extending a classical Pareto optimal
solution. Since we have constructed our model using the
fractile optimization model, we call the new Pareto op-
timal solution ”FM-α-Pareto optimal solution” after the
Fractile optimization model and M-α-Pareto optimal so-
lution. The FM-α-Pareto optimal solution is defined as
follows:

Definition 1 (FM-α-Pareto optimal solution)
x∗ ∈ X(ā∗l , b̄

∗
l , c̄

∗
i ) is said to be an FM-α-Pareto op-

timal solution if and only if there does not exist an-
other x ∈ X(āl, b̄l, c̄i)C(āl, b̄l, c̄i) ∈ ( ˜̄Alα, ˜̄Blα, ˜̄Ciα)Ci =
1, . . . , k, l = 1, . . . ,m such that hi ≥ h∗i Ci = 1, . . . , k
with a strict inequality holding for at least one i for
x∗ ∈ X(ā∗l , b̄

∗
l , c̄

∗
i )

4
= {x∗ ∈ Rn | Pr[µi(c̄∗i x

∗) ≥ h∗i ] ≥
θi, Pr[ā∗l x

∗ ≤ b̄∗l ] ≥ ηl ; x∗ ≥ 0}C(ā∗l , b̄
∗
l , c̄

∗
i ) ∈

( ˜̄Alα, ˜̄Blα, ˜̄Ciα)Ci = 1, . . . , k, l = 1, . . . ,m, where
the corresponding values of parameters (ā∗l , b̄

∗
l , c̄

∗
i ) ∈

( ˜̄Alα, ˜̄Blα, ˜̄Ciα) are said to be α-optimal parameters.

Now we shall transform problem (10) into a deterministic
equivalent problem.

First of all, in order to find α-level sets of fuzzy random

variable coefficients, we have

α = L

(
d̄

c
i − c̄L

iα

βc
i

)
= R

(
c̄R

iα − d̄
c
i

δc
i

)
, i = 1, . . . , k

α = L

(
d̄

a
l − āL

lα

βa
l

)
= R

(
āR

lα − d̄
a
l

δa
l

)
, l = 1, . . . ,m

α = L

(
d̄b

l − b̄L
lα

βb
l

)
= R

(
b̄R
lα − d̄b

l

δb
l

)
, l = 1, . . . ,m.

Consequently, we obtain

c̄L
iα = (d̄c

i − L∗(α)βc
i ), i = 1, . . . , k

c̄R
iα = (d̄c

i + R∗(α)δc
i ), i = 1, . . . , k

āL
lα = (d̄a

l − L∗(α)βa
l ), l = 1, . . . ,m

āR
lα = (d̄a

l + R∗(α)δa
l ), l = 1, . . . ,m

b̄L
lα = (d̄b

l − L∗(α)βb
l ), l = 1, . . . ,m

b̄R
lα = (d̄b

l + R∗(α)δb
l ), l = 1, . . . ,m


(11)

where L∗(·) and R∗(·) are pseudo inverse functions of
L(·) and R(·), respectively. This means that ˜̄Ciα(ω),
˜̄Alα(ω) and ˜̄Blα(ω) are denoted by [c̄L

iα(ω), c̄R
iα(ω)],

[āL
lα(ω), āR

lα(ω)] and [b̄L
lα(ω), b̄R

lα(ω)], respectively. There-
fore, we obtain the following problem which is equivalent
to problem (10):

max hi, i = 1, . . . , k
s. t. Pr[c̄L

iαx ≤ µ∗i (hi)] ≥ θi, i = 1, . . . , k
Pr[āL

lαx ≤ b̄R
lα] ≥ ηl, l = 1, . . . ,m

x ≥ 0

 (12)

where µ∗i (·) denote a pseudo-inverse function of µi(·).

From the result of (11), problem (12) is equivalently
transformed into the following problem:

max hi, i = 1, . . . , k

s. t. Pr

[
d̄

c
ix−mc

ix√
xT V c

i x
≤ µ∗i (hi)− {mc

i − L∗(α)βc
i}x√

xT V c
i x

]
≥ θi, i = 1, . . . , k

Pr

 (d̄a
l x− d̄b

l )− (ma
l x−mb

l )√
xT V a

l x + vb
l

≤

−({ma
l − L∗(α)βa

l }x−mb
l −R∗(α)δb

l )√
xT V a

l x + vb
l

 ≥ ηl,

l = 1, . . . ,m
x ≥ 0.


(13)

Let Φ(·) denote a distribution function of the normal ran-
dom variable. Then problem (13) is transformed into the
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following deterministic equivalent problem:

max hi, i = 1, . . . , k

s. t. Φ

(
µ∗i (hi)− {mc

i − L∗(α)βc
i}x√

xT V c
i x

)
≥ θi,

i = 1, . . . , k

Φ

−({ma
l − L∗(α)βa

l }x−mb
l −R∗(α)δb

l )√
xT V a

l x + vb
l


≥ ηl, l = 1, . . . ,m
x ≥ 0.


(14)

Since Φ(·) is a increasing continuous function, we trans-
form problem (13) equivalently into the following deter-
ministic problem:

max hi, i = 1, . . . , k
s. t. hi ≤ µi (zc

i (x)) , i = 1, . . . , k
{ma

l − L∗(α)βa
l }x− (mb

l + R∗(α)δb
l )

+Φ−1(ηl)
√

xT V a
l x + vb

l ≤ 0, l = 1, . . . ,m
x ≥ 0


(15)

where

zc
i (x) = {mc

i − L∗(α)βc
i}x + Φ−1(θi)

√
xT V c

i x

and Φ−1(·) is an inverse function of Φ(·).
Since the maximum value of hi is equal to
µi

(
{mc

i − L∗(α)βc
i}x + Φ−1(θi)

√
xT V c

i x
)
, i =

1, . . . , k, we can transform problem (15) into the
following simpler problem:

max µi (zc
i (x)) , i = 1, . . . , k

s. t. {ma
l − L∗(α)βa

l }x− (mb
l + R∗(α)δb

l )

+Φ−1(ηl)
√

xT V a
l x + vb

l ≤ 0, l = 1, . . . ,m
x ≥ 0.


(16)

It should be noted here that problem (16) is a deter-
ministic multiobjective nonlinear programming problem,
which is equivalent to problem (10).

4 Interactive algorithm

If we introduce a general aggregation function µD(x) =
G(µ1(zc

1(x)), . . . , µk(zc
k(x))) using some nonlinear func-

tion G, problem (16) is rewritten as the following prob-
lem:

max µD(x)
s. t. {ma

l − L∗(α)βa
l }x− (mb

l + R∗(α)δb
l )

+Φ−1(ηl)
√

xT V a
l x + vb

l ≤ 0, l = 1, . . . ,m
x ≥ 0.


(17)

Such an aggregation function µD(x) represents a degree
of satisfaction or preference of decision makers for k ob-
jective functions. A minimum operator and a product

operator are major examples, but they are special cases
of aggregation functions. Since it is difficult to identify
an aggregation function explicitly such that the function
reflects the precise preference of decision maker, we need
to use an interactive algorithm which derives a satisficing
solution for a decision maker through interaction.

To generate a candidate for the satisficing solution which
is an FM-α-Pareto optimal solution, the decision maker
is asked to specify reference levels of achievement of the
objective functions, called reference membership levels.
The idea of the reference point first was introduced by
Wierzbicki [18]. To be more explicit, the corresponding
Pareto optimal solution for a given reference membership
levels is obtained by solving the following minimax prob-
lem:

min max
i=1,...,k

{
µ̄i − µi (zc

i (x))
}

s. t. {ma
l − L∗(α)βa

l }x− (mb
l + R∗(α)δb

l )

+Φ−1(ηl)
√

xT V a
l x + vb

l ≤ 0, l = 1, . . . ,m
x ≥ 0


(18)

or equivalently,

min v
s. t. µ̄i − µi (zc

i (x)) ≤ v, i = 1, . . . , k
{ma

l − L∗(α)βa
l }x− (mb

l + R∗(α)δb
l )

+Φ−1(ηl)
√

xT V a
l x + vb

l ≤ 0, l = 1, . . . ,m
x ≥ 0.


(19)

Consequently, problem (19) is transformed into the fol-
lowing problem:

min v

s. t. {mc
i − L∗(α)βc

i}x + Φ−1(θi)
√

xT V c
i x

≤ µ∗i (µ̄i − v), i = 1, . . . , k

{ma
l − L∗(α)βa

l }x + Φ−1(ηl)
√

xT V a
l x + vb

l

≤ (mb
l + R∗(α)δb

l ), l = 1, . . . ,m
x ≥ 0.


(20)

Since the constraints are nonlinear in (20), it is appar-
ent that the problem is not a usual convex programming
problem. It is important to note here that when the value
of v is fixed, all of the constraints are convex. Obtaining
the optimal solution v∗ to the above problem is equiva-
lent to determining the minimum value of v so that there
exists an admissible set satisfying the constraints of the
above problem. The problem of finding a point in the in-
tersection of a finite family of closed convex sets is called
a ”convex feasible problem.” The minimum value of v is
searched by combined use of the bisection method and
an algorithm for solving convex feasibility problems [1].
Now we are ready to construct the interactive algorithm
in order to derive the satisficing solution for the decision
maker from the Pareto solution set.
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[Interactive algorithm for multiobjective fuzzy
random programming]

Step 1: Calculate the individual maximum zi,min, i =
1, . . . , k under the given constraints. Based on the
obtained individual minimum value, elicit the mem-
bership functions µi, i = 1, . . . , k of fuzzy goals from
the decision maker.

Step 2: Set the confidence levels θi(≥ 1/2) and ηl(≥
1/2). Set an initial admissible level α and initial
reference membership levels µ̄i, i = 1, . . . , k.

Step 3: Solve problem (20) to obtain an FM-α-Pareto
optimal solution which is a candidate of satisficing
solution for a decision maker.

Step 4: If the decision maker is satisfied with the cur-
rent solution, terminate the algorithm. Then the
current FM-α-Pareto optimal solution is a satisfic-
ing solution of the decision maker. Otherwise, ask
the decision maker to update the current reference
membership levels µ̄i and/or the current admissible
level α by considering the current objective function
values, and return to step 3.

5 Numerical example

To demonstrate the effectiveness of the proposed model
and algorithm, we provide a numerical example of agri-
culture production planning problems. There are three
kinds of crops to be planted, Crops 1, 2 and 3. We as-
sume that Crop 2 will be planted with less working time
than Crop 1 and Crop 3 although Crop 2 will earn less
profit than others, and that Crop 3 will earns the most
profit although it will need the most working time for
planting. Working time and profit are represented with
fuzzy random variables. The decision variables x1, x2, x3

represents cropping acreages of Crops 1, 2 and 3, respec-
tively. The objectives are to maximize total profit and
to minimize total working time. Then, the problem is
formulated as

min ˜̄C11x1 + ˜̄C12x2 + ˜̄C13x1

min ˜̄C21x1 + ˜̄C22x2 + ˜̄C23x1

s. t. ˜̄A11x1 + ˜̄A12x2 + ˜̄A13x3 ≤ ˜̄B1

˜̄A21x1 + ˜̄A22x2 + ˜̄A23x3 ≤ ˜̄B2

7x1 + 6x2 + 4x3 ≤ 100
xj ≥ 0, j = 1, . . . , 3


(21)

where

α = 0.7, (mc
ij) =

(
−5.0 −3.0 −6.0
4.0 2.0 7.0

)
,

V c
1 =

 1.4 0.2 0.9
0.2 1.3 0.4
0.9 0.4 1.6

 , V c
2 =

 1.4 0.2 0.9
0.2 1.7 0.4
0.9 0.4 1.6

 ,

(βc
ij) =

(
1.0 1.5 1.0
1.5 1.0 1.5

)
, (δc

ij) =
(

1.0 1.5 1.0
1.5 1.0 1.5

)
,

(ma
lj) =

(
4.0 6.0 3.0
5.0 3.0 2.0

)
,

V a
1 =

 1.4 0.2 −0.9
0.2 1.5 −0.4
−0.9 −0.4 1.3

 ,

V a
2 =

 1.5 0.3 −0.7
0.3 1.3 0.4
−0.7 0.4 1.2

 ,

(βa
lj) =

(
1.5 1.0 1.5
1.0 1.5 1.0

)
, (δa

lj) =
(

1.5 1.0 1.5
1.0 1.5 1.0

)
,

(mb
l ) =

(
140
135

)
, (vb

l ) =
(

8
10

)
, (βb

l ) =
(

12
15

)
,

(δb
l ) =

(
12
15

)
, L(t) = R(t) = 1− t.

First, we calculate the individual minimums zi,min of each
objective functions c̄ix and obtain z1,min = −150 and
z2,min = 0. Secondly, considering these obtained values,
the decision maker determines the parameters of linear
membership functions as g0

1 = 0, g1
1 = −150, g0

2 = 175
and g1

2 = 0.

Suppose that a decision maker gives the confidence lev-
els, admissible level and the reference membership levels
as θ1 = θ2 = η1 = η2 = 0.7, α = 0.7 and (µ̄1, µ̄2) =
(1.0, 1.0), respectively. Then, solving the minimax prob-
lem yields the Pareto optimal solutions and the objective
function values, as shown in the second column of Table
1.

On the basis of such information, the decision maker up-
dates the reference confidence levels in order to improve
the membership function value µ1(x) of the first objective
function at the expense of µ2(x) of the second objective
function value, as shown in the third column of the table.
In this stage, the decision maker considers that the sat-
isfaction level µ2(x) is a little too small and that he/she
prefers to make the value µ2(x) a little larger at the ex-
pense of µ1(x). Therefore, the decision maker updates
the reference membership levels and obtain the satisfac-
tion levels as shown in the forth column of the table.

Since the decision maker is not still satisfied with the
obtained solution, he/she turns to lower the admissible
level α as shown in the fifth column of the table. Finally,
since the decision maker is satisfied with the obtained
solution, the interactive process is terminated.
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Table 1: Interactive process

First Second Third Forth
µ̄1 1.00 1.00 0.90 0.90
µ̄2 1.00 0.80 0.80 0.80
α 0.700 0.70 0.70 0.60

µ1(x) 0.544 0.628 0.586 0.600
µ2(x) 0.544 0.428 0.486 0.500

x1 6.66 6.04 6.32 6.27
x2 4.90 3.16 4.05 4.09
x3 6.00 9.69 7.85 7.88

6 Conclusion

In the present work, we have proposed a fuzzy random
multiobjective linear programming model and defined the
FM-α-Pareto optimal solution concept. We have shown
that fuzzy random programming problem is transformed
into the deterministic equivalent problem. In order to
derive a satisficing solution from a set of FM-α-Pareto
optimal solutions, we have established an interactive al-
gorithm. It should be remarkable that a minimax prob-
lem to be iteratively solved in the interactive algorithm
is a convex feasibility problem. Although it is generally
difficult to obtain an optimal solution of the problem in-
cluding both fuzziness and randomness due to its com-
plexity, our model has an advantage that the resulting
problem is solved by some algorithm for solving convex
feasibility problems.

In the future, it is interesting to consider decision mak-
ing models based on other stochastic programming mod-
els such as the expectation optimization model and the
variance minimization model.
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