
 
 

  
Abstract— A method of coupled magneto-superelastic 

analysis by the sequential approach is proposed for shape 
memory alloy (SMA) helical spring actuators controlled by 
magnetic force.  The commercial finite element software 
ANSYS/Emag is used for the magnetic field analysis, while the 
one-dimensional finite element program developed by the 
authors is used for the analysis of superelastic behaviors of 
SMA helical springs.  The validity of the proposed method is 
verified by applying the method to the analysis of actuator 
models utilizing SMA composite or ferromagnetic SMA helical 
springs and comparing the calculated results with the 
experimental results.  
 

Index Terms— Computational Mechanics, Finite Element 
Method, Shape Memory Alloy, Coupled Magneto-Superelastic 
Analysis  
 

I. INTRODUCTION 
Shape memory alloys (abbreviated as SMAs) have been 

attracting much attention as smart materials applicable to 
various fields [1].  The SMA helical springs are often used as 
actuator devices in recent years.  Slow response is pointed out 
as a weakness for the actuators using thermo-reactive SMAs.  
To overcome such a problem, the actuators using the helical 
springs of SMA composites controlled by magnetic force are 
under development.  The computational prediction of the 
magneto-superelastic behaviors is indispensable to the 
efficient and rational design of SMA helical spring actuator 
devices. 

The authors proposed a method of finite element analysis 
for the superelastic, large deformation behaviors of SMA 
devices of one-dimensional shape such as beams and helical 
springs and experimentally verified the validity of the 
proposed method [2]-[4].  Brinson’s one-dimensional 
constitutive modeling [5] was extended to take account of 
torsional deformation.  The incremental finite element 
method for the large deformation analysis with layered linear 
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Timoshenko beam elements was formulated by using the 
extended constitutive equation.  The proposed method is a 
general-purpose computing tool for the superelastic, large 
deformation analysis of one-dimensional SMA devices, 
which can be extended to the magneto-superelastic analysis 
of SMA composite and ferromagnetic SMA devices. 

In the magneto-superelastic analysis of SMA helical 
springs described in the present paper, the commercial finite 
element code (ANSYS/Emag) and the finite element program 
developed by the authors are respectively used for the 
magnetic and the superelastic analysis.  Numerical studies are 
conducted for the SMA composite helical spring actuators 
composed of nonferromagnetic SMA (NiTi) wires and 
ferromagnetic metal (Fe).  The validity of the proposed 
method is illustrated by comparing the calculated results with 
the experimental results given by the CIMS (Center for 
Intelligent Materials and Systems) at the University of 
Washington. 

 

II. FINITE ELEMENT PROCEDURE FOR SUPERELASTIC 
ANALYSIS OF SMA HELICAL SPRINGS 

The normal stress-normal strain relation for the 
superelastic behavior of SMAs as shown in Fig. 1 is 
expressed by the following equation [5]: 

( ) ( ) )( 0000 TTE SS −+−Ω+−=− θξξεεσσ  (1) 

where E ; Young’s modulus, Ω ; transformation 
coefficient, Sξ ; stress-induced martensite volume fraction, 

θ ; thermal elastic coefficient, T ; temperature.  The 
subscript ‘0’ indicates the initial values.  Ω  is expressed as 

ELε−=Ω                                                                            (2) 

where Lε  is the maximum residual strain.  Young’s modulus 

E  is a function of the martensite volume fraction ξ , which 
is given by 

)( ama EEEE −+= ξ                                                 (3) 

where mE  and aE  are Young’s modulus of austenite phase 
and martensite phase respectively.  The total martensite 
volume fraction ξ  is expressed as  

TS ξξξ +=                                                              (4) 

where Tξ  is the temperature-induced martensite volume 

fraction.  ξ , Sξ  and Tξ  are functions of the temperature T  
and the stress σ .  To consider the difference between tensile 
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and compressive behavior, von Mises equivalent stress eσ  

in the evolution equations of ξ , Sξ  and Tξ  is replaced with 

Drucker-Prager equivalent stress DP
eσ   [6] defined as 

pe
DP
e βσσ 3+=                                                             (5) 

where β  is the material parameter and p is the hydrostatic 
pressure given by 

( )zyxp σσσ ++=
3
1

                                                (6) 

In one-dimensional case, the equivalent stress in eq. (5) is 
expressed as 

βσσσ +=DP
                                                  (7) 

The torsional behavior of SMAs, that is the shear 
stress-shear strain behavior due to torsion, is assumed to be 
qualitatively similar to, but independent of the normal 
stress-normal strain behavior.  Accordingly, the relation 
between the shear stress τ  and the shear strain γ  is 
expressed by the following equation: 

( ) ( )000 τττ ξξγγττ ssG −Ω+−=−                           
(8) 

The evolution equation for the martensite volume fraction 

τξ s  due to torsion is assumed to be similar to that due to 
normal deformation.  The equivalent stress describing the 
evolution equation is 

Zθτ3 .  Details of the above-mentioned 

constitutive equation model are given by Toi et al. [2]-[4].  
Although exactly, the tensile and the torsional behavior are 
complicatedly coupled [7], [8], the independency as 
mentioned above is assumed since the torsional deformation 
is dominant in the helical springs to be analyzed in the 
present study. 
 

 
 

Fig. 1  Superelastic stress-strain behavior of SMA 
 

The followings are assumed in the finite element 
formulation using linear Timoshenko beam elements.  The 
axial displacement and the torsional angle as well as the 
lateral deflections in two directions and the rotational angle 
of a cross-section are linearly interpolated in the element.  

The shear strain energy term associated with bending is 
treated as a penalty function since the influence of bending in 
helical springs is much smaller than torsion.  The tangent 
stiffness method considering two types of nonlinearities due 
to superelasticity and finite deformation is formulated 
according to the incremental theory by the total Lagrangian 
approach [9], in which the effect of nonlinear terms with 
respect to the axial displacement of a beam is neglected [10].  
Details of the finite element formulation described above are 
given by Toi et al. [2]-[4]. 

The incremental stress-strain relation for the analysis of 
helical springs is written in the following form: 

{ } [ ] { } { }( )seseD εεσ Δ−Δ=Δ                                        (9) 
where 
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in which xzτ  and yzτ  ( xzγ  and yzγ ) are the shear stresses 

(strains) due to bending.  The final form of eq. (10) is given in 
[2]-[4]. 

The element stiffness equation in an incremental form is 
expressed as follows [2]-[4]:  

[ ] [ ] [ ]( ){ }
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The following symbols are used: [ ]0k ; the incremental 

stiffness matrix, [ ]Lk ; the initial displacement matrix, [ ]Gk ; 

the initial stress matrix, { }fΔ ; the external force increment 

vector, { }Rf ; the unbalanced force vector, [ ]seD ; the 

superelastic stress-strain matrix, { }seεΔ ; the superelastic 

initial strain vector, [ ]G ; the gradient matrix, [ ]S ; the initial 

stress matrix, eV ; the element volume. 
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III.  MAGNETO-SUPERELASTIC ANALYSIS PROCEDURE OF 
SMA COMPOSITE HELICAL SPRING ACTUATORS 

The coupled magneto-superelastic analysis of SMA 
composite helical spring actuators is conducted by the 
sequential procedure (the staggard method or the 
weakly-coupled method) in which the magnetic and the 
superelastic analysis are conducted alternately.  The 
commercial code [11] (ANSYS/Emag) and the superelastic, 
large deformation finite element analysis program of SMA 
helical springs developed by the authors are used for the 
magnetic analysis and the superelastic analysis respectively. 

The sequential analysis procedure is shown in Fig. 2.  The 
coupled analysis starts with the input of the shape 
information of the helical spring into the magnetic analysis 
code from the superelastic analysis program.  The magnetic 
analysis code calculates and outputs the magnetic force 
increments acting on the helical spring, based on the shape 
information input.  The magnetic force output is input into 
the superelastic program, which calculates the incremental 
displacements, strains and stresses.  Based on the calculated 
displacements, the shape information of the helical spring is 
modified and output, which is again input into the magnetic 
analysis code.  The superelastic, large deformation process of 
the SMA helical spring is simulated by conducting the 
above-mentioned procedure repeatedly. 

ANSYS/Emag, which is a commercial software frequently 
used for multi-physics analysis, is employed as the magnetic 
analysis code [11].  The scalar potential method is employed 
for the magnetic analysis because of relatively easy modeling 
and small load on computers.  Eight-node hexagonal solid 
elements and four-node tetrahedral elements (SOLID96) are 
respectively used for the magnetic body such as a helical 
spring and the space.  Six-node triangular column elements 
(INFIN111) are used as infinite-boundary elements.  The 
modeling of an electric source utilizes SOURC36.  The DSP 
(difference scalar potential) method is used for the 
computation.  The shape information of the helical spring 
calculated by the structural analysis program is input into the 
magnetic analysis code as the solid modeling information 
(key points and volume).  The magnetic force increments at 
each node of the helical spring are output as the calculated 
results. 

The transformation of the input and output data between 
the magnetic analysis code and the superelastic analysis 
program is conducted in the interface program.  The 
transformation of nodes and nodal forces is necessary as the 
superelastic analysis program and the magnetic analysis code 
use two-node straight beam elements and eight-node 
hexagonal solid elements, respectively.  The control program 
runs the magnetic analysis code, the superelastic analysis 
program and the interface program sequentially, managing 
the calculated values of loads, displacements, strains and 
stresses.  The total modeling and analysis are done by batch 
processing.  
 

 
 

Fig. 2  Coupled magneto-superelastic analysis 
 

IV. RESULTS OF MAGNETO-SUPERELASTIC ANALYSIS OF 
SMA COMPOSITE HELICAL SPRING ACTUATORS 

The magneto-superelastic, large deformation behavior of 
the SMA composite helical spring actuator is analyzed.  The 
SMA composite helical spring actuator is composed of a pair 
of driving units, a SMA composite helical spring and two 
extra SMA helical springs as shown in Fig. 3.  The composite 
helical spring elongated downward by the weight of 2.5N is 
compressed upward by the magnetic force from the driving 
units. 

Fig. 4 is a sketch of the driving unit and the composite 
helical spring.  The driving unit is composed of a hybrid 
reluctance magnet [12] combining a permanent magnet with 
an electromagnet as shown in Fig. 4(a).  The permanent 
magnet is neodymium 35 with the specific magnetic 
permeability of 1.17 and the retentivity of 835,563A/m.  The 
electric current of 0~6A flows through the electromagnet coil 
with 264 turns.  The composite helical spring is composed of 
two SMA (NiTi) wires and 16 ferromagnetic (Fe) blocks.  
The magnetic permeability μ  ( HB μ= , B ; magnetic 

density, H ; magnetic intensity) of Fe is shown in Fig. 5.  
The magnetic control of the nonferromagnetic SMA helical 
spring becomes possible by such composition.  The material 
constants of NiTi are shown in Table 1.  The extra helical 
spring with the outer radius of 10mm and the total length of 
14mm is composed of a NiTi wire with the diameter of 1mm.  
The extra helical springs are neglected in the magnetic 
analysis as the magnetic permeability of NiTi is small. 

 

 
 

Fig. 3  SMA composite spring actuator 
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(a) driving unit 

 

 
(b) SMA composite spring 

 
Fig. 4  Driving unit and SMA composite spring 
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Fig. 5  B-H curve for Fe 

 
Table 1  Material constants for NiTi 

 
Young’s modulus of 

austenite phase [MPa]70000=aE  

Young’s modulus of 
martensite phase [MPa]33000=mE  

starting stress for martensite 
transformation [MPa]8.427=Msσ  

finishing stress for martensite 
transformation 

[MPa]8.542=Mfσ  

starting stress for austenite 
transformation [MPa]5.210=Asσ  

finishing stress for austenite 
transformation 

[MPa]4.110=Afσ  

residual normal strain 047.0=Lε  

residual shear strain 047.0=Lγ  

material parameter 15.0=β  

Fig. 6 shows the calculated and experimental results for 
the relation between the distance from the upper to the lower 
driving unit and the electric current.  The composite helical 
spring elongates to 28mm by the initial weight loading and is 
fully compressed by the electric current of 6A.  The 
calculated results are in good agreement with the 
experimental results given by the CIMS of the University of 
Washington.  Fig. 7 shows the deformation profiles of the 
composite helical spring with the variation of electric current.  
Fig. 8 shows the shear stress-shear strain curve of the NiTi 
wire in the composite helical spring, which exhibits linear, 
elastic behavior.  Fig. 9 is the deformation process of the 
extra helical spring.  It is seen from the shear stress-shear 
strain curve in Fig. 10 that the martensite transformation 
takes place in the spring during the tensile process under the 
initial loading, exhibiting the superelastic behavior. 
 

 
 

Fig. 6  Current-displacement curve for SMA composite 
spring actuator 
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Fig. 7  Deformation of SMA composite spring actuator 
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Fig. 8  Shear stress-shear strain curve for NiTi wire in 
composite spring 

 
 

 

 
 

Fig. 9  Deformation of extra spring 
 
 

 
 

Fig. 10  Shear stress-shear strain curve for extra spring 
 

The number of finite elements for the magnetic analysis is 
91,864 to 217,053 (30,242~51,036 nodes), while 64 (65 
nodes) for the superelastic analysis.  The total number of 
incremental steps for the superelastic analysis is 700, while 

the magnetic analysis is conducted at every 100 steps. 
 

V. CONCLUSION 
In the present study, the finite element procedure for the 

superelastic, large deformation behavior of SMA devices of 
one-dimensional shape previously proposed by the authors 
has been extended to the magneto-superelastic analysis of 
SMA composite helical spring actuators.  The 
magneto-superelastic analysis system has been developed for 
the SMA composite helical spring actuators, which employs 
the sequential method combining the magnetic analysis by 
the commercial code ANSYS/Emag with the superelastic, 
large deformation analysis of SMA devices by the finite 
element program developed by the authors.  The magnetic 
analysis of SMA composite actuators is based on the exact 
shape modeling of the helical springs.  The validity of the 
proposed analysis system as a simulation tool for the design 
of SMA actuators has been illustrated by comparing the 
calculated results with the experimental results given by the 
CIMS of the University of Washington. 
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