
 
 

 

 

 
Abstract—In this paper, a new hybrid direct-iterative algorithm 
for multibody dynamics is discussed. The implementation of the 
algorithm on IBM 1350 cluster is then presented. Some Krylov 
subspace methods available in Aztec library are utilized to solve 
constraint equations for real parallel implementation using 
MPI. The parallel simulation results are further compared with 
the results produced from different iterative solvers. Integration 
between the new algorithm and Aztec will make the algorithm 
accommodate various multibody systems easily while keeping its 
high simulation speed.    
 

Keywords — hybrid direct-iterative algorithm, Krylov 
subspace method, multibody system (MBS), parallel computing  

I. INTRODUCTION 

  With the development of various parallel computer systems, 
the techniques provided by these systems and the concurrent 
nature of MBS have been receiving increasing attention. A 
few parallel algorithms for computer simulation of dynamical 
behaviors of MBS have been put forward by individuals 
whose interests may lie in various fields since the first parallel 
MBS algorithm developed by Kassahara, Fujii, and Iwata in 
1987 [1]. In 1988, Bae, Kuhl and Haug [2] applied the 
recursive algorithms developed by them to a shared memory 
multiprocessor system to realize parallel computing of MBS. 
Lee [3] presented a global )( 3nO algorithm from its inception 
to develop the equations of motion in such a way as to allow 
the exploitation of the concurrent processing to the maximum 
degree on a multiple instruction multiple data (MIMD) 
machines. Based on his previous work [4] in 1990, Anderson 
[5] demonstrated that significantly greater parallelism could 
be realized with a modified form of the )(nO algorithm. 

Fijany and Bejczy [6] showed that the more traditional 

)( 3nO methods provide the highest degree of parallelism in 
1993. Sharf and D’Eleuterio presented a new parallel solution 
procedure for dynamic simulation of multibody chains by 
solving joint constraint forces via various iterative parallel 
methods [7]. Based on parallel strategies for constraint 
equations in [7], Fijany, Sharf, and D’Eleuterio [8] 
implemented Constraint-Force algorithm (CF) on parallel 
computing system with )(NO  processors for solving both 
equations of motion and constraint equations. Anderson and 
Duan presented a new direct-iterative algorithm (HDIA) for 
multibody chain systems [9] and implemented it on IBM SP2 
and SGI ONYX [10]. In their work, MBS is constructed  
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so that largely independent multibody subchain systems are 
formed. They specifically applied the HDIA to a pure chain 
system and used a 16 body chain for parallel implementation 
of their HDIA approach with various joint cutting on IBM 
SP2 and SGI ONYX with MPI-supported environment. The 
work presented in this paper is an integration of HDIA with 
Krylov methods used in Aztec iterative solvers [11] to extend 
computational power and application abilities of HDIA.  

II. HYBRID ITERATIVE-DIRECT ALGORITHM (HDIA) 

In HDIA approach, the MBS model is constructed through 
the separation of certain key system interbody joints so that 
largely independent multibody subchain systems are formed. 
These subchains in turn interact with one another through 
associated unknown constraint loads fc at those separated 
joints as shown in figure 1. The added parallelism is obtained 
through this separation and the explicit determination of fc by 

 
Figure 1: A MBS & Its Associated Subchains 

parallel iterative  methods at a coarse grain level. Each branch 
is assigned to a processor of a parallel computing system for 
parallel simulation. An efficient sequential O(n) procedure is 
carried out to form and solve equations of motion within each 
processor, while parallel strategies are used to form and solve 
constraint equation between the processors concurrently. The 
O(n) method is embedded with direct method for formation 
and solution of equations of motion so that once the equations 
of motion is formed they have been solved. The parallel 
strategies take advantages provided by iterative method. Thus 
HDIA takes a combination of direct and iterative approaches. 

In HDIA, the equations of motion and constraint equation 
have the following form, respectively 

),,,(),(
c

fuqtRuqtM =⋅ �  

),,,(
c

fuqtRHSu =� �  (1a) 

),,(),( uqtfqt c Ψ=⋅Γ   (1b) 

In equation (1a) and (1b), M is the system mass matrix 

implicitly formed by using the sequential O(n) procedure. q  
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are the generalized coordinate column-matrix used to define 

the configuration of MBS, u  are generalized speed column- 

matrix that characterizes the motion of the system, and u�  are 
the generalized accelerations that are to be determined. The 

matrix RHS  is right hand side matrix which contains all of 
external loads, body loads, constraint forces, and as well as 
inertia forces and torques associated with centripetal and 

Coriolis accelerations. Generally, the elements of RHS  are 
nonlinear functions of the system state variables and time. The 

matrix Γ is the constraint coefficient matrix and the matrix 

Ψ consists of nonlinear functions of state variables and time. 

Finally, cf is the unknown constraint force measuring 

numbers that must exist at separated joints between subchains 
of the reduced system, which makes the reduced system 
behave like the original system.  

There are five computational tasks associated with forming 
and solving equation (1a) and (1b) as shown in figure 2. Next 
HDIA associated with these five computational tasks will be 
discussed and presented. 
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Figure 2: Precedence and Parallelism between Tasks 

  In the following mathematical representation of the HDIA 
algorithm, Kane’s equations [12] are taken as axiomatic. The 
detail derivation of general formulations of the HDIA method   
is presented in references [9, 13, 14]. A notation convention 
with key joints Jk of body Bk belonging to subchain i may be 
used as shown in figure 3. 
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Figure 3: An Example for Notation Convention 

 

A. Formation and Solution of Equations of Motion 
In HDIA, generalized accelerations in equations of motion 

(1a) can be expressed in the form 
ikikiku ζη +=�      ),...,2,1( ik ν=                       (2) 

where scalar quantity iν is degree of freedom (DOF) of 

subchain i, scalar quantity ikζ is the generalized acceleration 
that results from the unknown constraint forces and scalar 

quantity ikη is the generalized acceleration from all other 
forcing terms. Both of them can be determined using the 
following recursive formulations 
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In equation (5), kiB
tD and kiB

bD are shifting triangularized 

and backsubstituted constraint Boolean matrix, while
6i

c
f  

and 
)1( +ii

c
f υ

 are constraint load components applying to base 

body and terminal body of subchain i respectively. In formula 

(3), (6), and (7),
��
�

�
��
�

�

k

k

k B

J
iiB
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matrix of  body k of subchain i, and scalar term i
kkM is the 

diagonal element of the mass matrix M associated with 
equation (1a). Both of them can be recursively determined by 
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reference frame N  joint k 

vector quantity of interest 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008



 
 

 

 

Matrix 
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P is the partial velocity matrix associated with 

DOF of joint k of subchain i, and matrix 1+kk iBiB S is a linear 

transformation matrix that shifts forces and inertias from the 
inboard joint of body k to an equivalent force/moment system 

acting on the inboard joint of body k-1. Matrices 
ik
tτ and 

ik
bτ  

in equations (6) and (7) are the shift-triangularization 

matrices that shift constraint measure numbers 6i

c
f  and 

)1( +ii

c
f υ

from their original acting point on the base body and 

terminal body to the proximal joint of body k during 

triangularization of O(n) algorithm. 
kiB

F̂ 16×∈ R in equation 

(3) is the articulated body force matrix of body k of subchain 
i, and is determined recursively from 

11 ˆˆ ++ ⋅+= kkkkk iBiBiBiBiB
FTFF     (12) 

where kk iBiB T1− 66×∈ R is the triangularization operation 

matrix that recursively triangularizes the equations as they are 
being formed, and is determined from  
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Through equations (2) – (13), equations of motion (1a) 

associated with a MBS is formed and solved at a computing 

cost of 
�
�

�

�

�
�

�

�

pN
n

O [10], where n is number of DOF of the 

MBS, and Np is number of processors of a parallel computing 
system. 

B. Formation of Constraint Equations  
Formulation of constraint equation (1b) is carried out by 

enforcing constraints at separating joints (Nsub-1 joints. 
Nsub: total number of subchains) through following equations  
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Equations (14)-(24) are algorithmic formulations of equation 
(1b) for constraint measure numbers fc associated with entire 

subchain system. In equation (14),
)1)(1( )1( +− −ii

c
f υ

,
)1( +ii

c
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, 

and 
)1)(1( )1( ++ +ii

c
f υ

are the constraint load measure numbers 

of the separated joints between subchain i-1 and i, subchain i 
and i+1, and subchain i+1 and i+2, respectively. Matrices 

ikG1  and 
ikG 2 are those portions of the constraint coefficient 

matrix associated with the outboard joint of terminal body and  
inboard joint of base body, if a subchain is separated at both 
ends. These quantities play the role of implicitly shifting the 
DOF of the entire subchain to the separated joints and project 
these DOF onto the constraint subspace associated with the 

separated joints.
)1( +Ο

ivi
is the orthogonal complement matrix 

to the free mode of motion matrix (partial velocity matrix) 
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constraint subspace associated with the separated outboard 

joint on terminal body of subchain i. Matrices 
ikL1 and 

ikL 2  

are intermediate quantities that are introduced for convenient 

expression of recursive relations algorithmically. iiB

tA ν  in 
equation (18) is the acceleration remainder terms of terminal 
body of subchain i, which are not explicit in the element of  

u� . Quantity 
( ) 61 Bi
tA +

in the same equation is the acceleration 
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remainder term matrix associated with all of the terms of the 
relative acceleration matrix not explicit in su�  of imaginary 

body 1+iν relative to the terminal body iν of subchain i. 
Through equations (14) – (24), constraint equation (1b) 

associated with the reduced MBS is formed at a computing 

cost of 
�
�

�

�

�
�

�

�
2
pN

nm
O [10], where m is number of constraints for 

the reduced subchain system. 

III. SOLUTION OF CONSTRAINT EQUATION 

For the work presented in reference [10], a simple in-house 
Parallel Preconditioned Conjugate Gradient (PPCG) iterative 
solver was used to solve constraint equation (1b) in parallel. 
PPCG methods work very well for solution of a large sparse, 
symmetric, and positive definite system of linear equations. In 

reality constraint matrix Γ seldom has such nice properties. 
To extend power and application ability of HDIA approach, 
other Krylov subspace methods such as Generalized Minimal 
Residual (GMRES), Biconjugate Gradient (BiCG), and Quasi 
-Minimal Residual (QMR) may be explored and integrated 
with HDIA. These nonstationary iterative methods have their 
advantages for solution of a large-sized sparse linear system. 
For example, by comparison GMRES performs well for non- 
symmetric systems and QMR works for non-positive definite 
systems [15]. Nonstationary iterative solvers in Aztec has 
been used to integrate with HDIA.  

A. Aztec Nonstationary Iterative Method Library  
There are a few massively parallel iterative solver libraries, 

such as Aztec, PETsc, ScaLAPACK etc. for solving sparse 
linear systems. Aztec Library has been chosen to integrate 
with HDIA for solving constraint equation (1b) in parallel 
because Aztec has a similar coding environment as the HDIA 
codes and it is ease of availability.  

Aztec is a parallel iterative library for solving linear 
systems, which is both easy-to-use and efficient. It is written 
in ANSI-standard C language. The source code of Aztec is 
available freely from the Sandia National Laboratory website. 
Aztec has been adopted to a number of parallel machines and 
platforms: workstation clusters (DEC, SGI, SUN, LINUX, 
etc.), Cray T3E, Intel TeraFlop, Intel Paragon, IBM SP2, 
nCUBE2 as well as other parallel platforms. There are a 
number of Krylov subspace methods such as CG, CGS, 
BiCGSTAB, GMRES, and TFQMR available in Aztec. 
These Krylov methods may be used in conjunction with 
various preconditioners. Point & block Jacobi, Gauss-Seidel, 
and least-squares polynomials are samples of preconditioners 
in Aztec [11]. 

B. Integration between HDIA and Aztec Iterative Solvers 
Aztec can work with user-supplied matrix-vector product 

routines or two specific sparse matrix formats (in which case 
Aztec provides the matrix-vector product) - a point entry 
modified sparse row (MSR) format or a block-entry variable 
block row (VBR) format. These two formats have been 
generalized for parallel implementation and, as such, are 
referred to as “distributed” yielding DMSR and DVBR 
references. To invoke Aztec from an external program 

through a user-supplied matrix-vector product interface, the 
following steps are required: 
1. Describe the machine (serial/parallel) 
2. Initialize the matrix and vector data structures 
3. Choose the iterative method, preconditioner and the 
convergence criteria 
4. Initialize the right hand side and initial guess 
5. Supply the preconditioner 
6. Supply the left hand side implicitly through the 
matrix-vector product routine 
7. Invoke the solver 

The flow chart in figure 4 shows the integration between 
HDIA and iterative solvers in Aztec. 
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Figure 4: Flow Chart for Integrating HDIA with Aztec 

The Message-Passing Interface (MPI) is chosen for parallel 
computing communication. MPI is the most widely used 
parallel communication interface [16]. It has a library of 
subprograms that can be called within either C, C++, C# or 
Fortran programs. Two outstanding features of MPI are its 
portability and its independence from specific computing 
systems. 

Through the integration between HDIA and iterative 
solvers in Aztec, and use of MPI, a computational cost of 
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for the solution of constraint 

equation (1b) can be achieved, where γ is iteration index  

10 << γ . 

IV. PARALLEL IMPLEMENTATION 

The algorithm is coded in C and MPI, and integrated with 
iterative solvers in Aztec. The algorithm has been run on IBM 
1350 cluster, a distributed memory parallel computing system 
at South Dakota State University (SDSU). The simulation 
results reported here will demonstrate: 1. the validity of the  
integration of HDIA with Aztec. 2. Comparison of results 
produced by various solvers and joint separation cases. 

For this purpose, a 32 body chain with identical bodies 
connected by simple revolute joints has been used for the 
modeling and simulation as shown in figure5. The properties 
of each body are: mass mk=1kg; inertial Ik=[1,0, 0; 0, 1, 0; 0, 

0, 1] kg.m2; position vector ks
�

=[0, -2, 0] m; position vector 
kr

�
=[0, -1, 0] m. The initial conditions of the system are 

generalized speeds uk=0.0 (rad/s) (k=1, … , 32), generalized 
coordinates qk =0.1745 rad (k=1,…, 8, 17,…, 24) and qk 

=-0.1745 rad (k= 9,…, 16, 25,…, 32). The numbering of each 
body/joint increases sequentially from the base body/ joint 1 
to terminal body/joint. 

……1 2 3 4 5 28 29 30 31 32……1 2 3 4 5 28 29 30 31 32

(a) 32 body chain  

−k

ks
�

kr
�

+k
jointCM

(b) geometric parameters of body k  
Figure 5: A 32 Body Chain Example 

Table 1 shows that six different cases of joint separation are 
applied to this chain system. For example, case 3 has 3 joint 
separations (cuts), which results in 4 subchains. Each 
subchain is assigned to 1 processor for parallel computing and 
each processor contains 8 bodies. Case 1 has no cut, which is 
purely sequential. In case 6, each joint from 2 to 32 is cut and 
each processor contains one body only. 

Table 1: Cases with Various Joint Separations 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

#. of 
processors 1 2 4 8 16 32 

# of bodies 
/processor 32 16 8 4 2 1 

#. of cuts 0 1 3 7 15 31 

 Figure 6 (a) and (b) show time histories of the generalized 
coordinates q1, q6, q11, q16, q21, q26,and q31 of case 2, and q3,  
q8, q13, q18, q23, and q28 of case 4. These time history curves 
agree with those produced by commercial dynamical analysis 
software Autolev. In figure 7, motion trace simulations 
associated with each body of each subchain for case 3 are 
given. From figure 7, it can be seen clearly that configurations 
of four subchains are updated in parallel. Due to constraints 
imposed between subchains being communicated correctly 

during concurrent simulation, the motion of outboard tip of 
each proximal sub- 
chain is exactly same as the motion of inboard tip of each 
distal subchain. If the motion trace of each subchain in figure 
7 (a), (b), (c), (d) is superposed on another, the motion trace of 
the entire subchain can be obtained as in figure 7 (e). 
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(a) Time histories of q1, q6, q11, q16, q21, q26,and q31 of case 2 
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(b) Time histories of q3, q8, q13, q18, q23, and q28 of case 4 

Figure 6: Time Histories of Generalized Coordinates 
Table 2 shows average time cost of a function evaluation of 

six cases with application of five Krylov subspace methods in 
Aztec to each case.  Take case 4 as an example. From table 1 it 
is clear that there are 7 cuts and 8 processors for case 4. Each 
processor contains 4 bodies. In table 2, average time cost of a 
single function evaluation is 1.06e-3 seconds for  CG, 1.17e-3 
seconds for CGS, 1.17e-3 seconds for TGQMR, 1.15e-3 
seconds for BiCGSTAB, and 1.1e-3 seconds for GMRES 
respectively.  

Table 2: Average Time Cost of a Function Evaluation 
 Time in Seconds 

Krylov
Method 

CG CGS TFQMR BiCGSTAB GMRES 

Case 1 4.7e-4 4.75e-4 4.7e-4 4.65e-4 4.7e-4 
Case 2 5.4e-4 5.6e-4 5.7e-4 5.75e-4 5.55e-4 
Case 3 9.2e-4 9.1e-4 9.35e-4 9.25e-4 9.3e-4 
Case 4 1.06e-3 1.17e-3 1.17e-3 1.15e-3 1.1e-3 
Case 5 1.23e-3 1.83e-3 1.73e-3 1.765e-3 1.54e-3 
Case 6 2.34e-3 2.49e-3 2.51e-3 2.465e-3 2.39e-3 

The time data from table 2 agree well with the theoretical 
estimation of computational cost as follows [10]:  

 ( )1log2 −+++≈ p
ppp

Nm
N
m

N
nm

N
n

Cost γ
γ

. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008



 
 

 

 

 

-8 -6 -4 -2 0 2 4 6 8 10 12

0

2

4

6

8

10

12

14

16

Motion trace of subchain 1 of case 3

x  (m)

y 
 (m

)

subchain 1 contains body 1-8 

initial position 

-15 -10 -5 0 5 10 15 20 25

5

10

15

20

25

30

35

Motion trace of subchain 2 of case 3

x  (m)

y 
 (

m
)

subchain 2 contains body 9-18 

floating joint on base body due to cutting initial position 

 
(a) subchain 1       (b) subchain 2 

-15 -10 -5 0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

Motion trace of subchain 3 of case 3

x  (m)

y 
 (m

)

subchain 3 contains body 19-24 

initial position 

floating joint on base body due to cutting 

-15 -10 -5 0 5 10 15 20 25

5

10

15

20

25

30

Motion trace of subchain 4 of case 3

x  (m)

y 
 (m

)

subchain 4 contains body 25-32 

initial position floating joint on base body due to cutting 

 
(c) subchain 3       (d) subchain 4 

-30 -20 -10 0 10 20 30 40 50

0

10

20

30

40

50

60

Motion trace of entire chain of case 3

x  (m)

y 
 (m

)

entire chain contains 32 bodies 

 
(e) the entire chain 

Figure 7: Motion Trace of Case 3 

V. CONCLUSIONS 

A new HDIA procedure and its parallel implementation on 
IBM 1350 cluster via integration with various nonstationary 
iterative solvers in Aztec have been introduced in this paper. 
Joint separation is utilized to distributed computing loads in 
parallel so that five computational tasks associated with 
formation/solution of equation (1) and consequent integration 
for updating state variables can be carried out efficiently for 
parallel simulation. An efficient sequential O(n) method is 
utilized within each processor in parallel for formulation and 
solution of  equations of motion (1a), and parallel techniques 
are applied between processors for formation and solution of 
constraint equation (1b). A combination of direct and iterative 
linear equation solution methods is created to achieve high 
overall computational efficiency. Thus the algorithm can fully 
offer advantages of both the sequential O(n) procedure and 
parallel computation. A computational complexity of  

O ( )
�
�

�

�

�
�

�

�
−+++ 1log2 p

ppp

Nm
N
m

N
nm

N
n γ

γ

 

performance can be achieved with Np processors for a chain 
system with n degrees of freedom and m constraints due to 
separation of interbody joints. The index γ is the parameter 

for iterative solver performance. It depends on effectiveness 
of the preconditioner, the quality of the solution initial guess, 
the eigenvalue spectra of the constraint force coefficient 

matrix, and the convergence criteria used. 
The integration of the HDIA with Krylov subspace iterative 

solvers in Aztec enhances the application power of  HDIA so 
that it can handle various properties that constraint coefficient 
matrix in equation (1b) may have.  Both the algorithm and its 
integration with Aztec have been validated and implemented 
on IBM 1350 with MPI. Various joint separation cases and 
iterative solvers have been used to show flexibility of HDIA. 
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