

Abstract—In this paper, a new hybrid direct-iterative algorithm
for multibody dynamics is discussed. The implementation of the
algorithm on IBM 1350 cluster is then presented. Some Krylov
subspace methods available in Aztec library are utilized to solve
constraint equations for real parallel implementation using
MPI. The parallel simulation results are further compared with
the results produced from different iterative solvers. Integration
between the new algorithm and Aztec will make the algorithm
accommodate various multibody systems easily while keeping its
high simulation speed.

Keywords — hybrid direct-iterative algorithm, Krylov
subspace method, multibody system (MBS), parallel computing

I. INTRODUCTION

 With the development of various parallel computer systems,
the techniques provided by these systems and the concurrent
nature of MBS have been receiving increasing attention. A
few parallel algorithms for computer simulation of dynamical
behaviors of MBS have been put forward by individuals
whose interests may lie in various fields since the first parallel
MBS algorithm developed by Kassahara, Fujii, and Iwata in
1987 [1]. In 1988, Bae, Kuhl and Haug [2] applied the
recursive algorithms developed by them to a shared memory
multiprocessor system to realize parallel computing of MBS.
Lee [3] presented a global)(3nO algorithm from its inception
to develop the equations of motion in such a way as to allow
the exploitation of the concurrent processing to the maximum
degree on a multiple instruction multiple data (MIMD)
machines. Based on his previous work [4] in 1990, Anderson
[5] demonstrated that significantly greater parallelism could
be realized with a modified form of the)(nO algorithm.

Fijany and Bejczy [6] showed that the more traditional

)(3nO methods provide the highest degree of parallelism in
1993. Sharf and D’Eleuterio presented a new parallel solution
procedure for dynamic simulation of multibody chains by
solving joint constraint forces via various iterative parallel
methods [7]. Based on parallel strategies for constraint
equations in [7], Fijany, Sharf, and D’Eleuterio [8]
implemented Constraint-Force algorithm (CF) on parallel
computing system with)(NO processors for solving both
equations of motion and constraint equations. Anderson and
Duan presented a new direct-iterative algorithm (HDIA) for
multibody chain systems [9] and implemented it on IBM SP2
and SGI ONYX [10]. In their work, MBS is constructed

S. Z. Duan is a faculty member with the South Dakota State University,
College of Engineering, Mechanical Engineering Department, Brookings,
SD 57007 USA (the corresponding author: phone: 605-688-5930; fax:
605-688 -5878; e-mail: shawn.duan@ sdstate.edu).
Y. Patel is a graduate student with the South Dakota State University,
College of Engineering, Mechanical Engineering Department, Brookings,
SD 57007 USA

so that largely independent multibody subchain systems are
formed. They specifically applied the HDIA to a pure chain
system and used a 16 body chain for parallel implementation
of their HDIA approach with various joint cutting on IBM
SP2 and SGI ONYX with MPI-supported environment. The
work presented in this paper is an integration of HDIA with
Krylov methods used in Aztec iterative solvers [11] to extend
computational power and application abilities of HDIA.

II. HYBRID ITERATIVE-DIRECT ALGORITHM (HDIA)

In HDIA approach, the MBS model is constructed through
the separation of certain key system interbody joints so that
largely independent multibody subchain systems are formed.
These subchains in turn interact with one another through
associated unknown constraint loads fc at those separated
joints as shown in figure 1. The added parallelism is obtained
through this separation and the explicit determination of fc by

Figure 1: A MBS & Its Associated Subchains

parallel iterative methods at a coarse grain level. Each branch
is assigned to a processor of a parallel computing system for
parallel simulation. An efficient sequential O(n) procedure is
carried out to form and solve equations of motion within each
processor, while parallel strategies are used to form and solve
constraint equation between the processors concurrently. The
O(n) method is embedded with direct method for formation
and solution of equations of motion so that once the equations
of motion is formed they have been solved. The parallel
strategies take advantages provided by iterative method. Thus
HDIA takes a combination of direct and iterative approaches.

In HDIA, the equations of motion and constraint equation
have the following form, respectively

),,,(),(
c

fuqtRuqtM =⋅ �

),,,(
c

fuqtRHSu =� � (1a)

),,(),(uqtfqt c Ψ=⋅Γ (1b)

In equation (1a) and (1b), M is the system mass matrix

implicitly formed by using the sequential O(n) procedure. q

Parallel Implementation of Hybrid Direct-Iterative Algorithm for Multibody Dynamics via
Krylov Subspace Methods on IBM 1350 Cluster

Shanzhong (Shawn) Duan, Member, IAENG, and Yogesh Patel

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

are the generalized coordinate column-matrix used to define

the configuration of MBS, u are generalized speed column-

matrix that characterizes the motion of the system, and u� are
the generalized accelerations that are to be determined. The

matrix RHS is right hand side matrix which contains all of
external loads, body loads, constraint forces, and as well as
inertia forces and torques associated with centripetal and

Coriolis accelerations. Generally, the elements of RHS are
nonlinear functions of the system state variables and time. The

matrix Γ is the constraint coefficient matrix and the matrix

Ψ consists of nonlinear functions of state variables and time.

Finally, cf is the unknown constraint force measuring

numbers that must exist at separated joints between subchains
of the reduced system, which makes the reduced system
behave like the original system.

There are five computational tasks associated with forming
and solving equation (1a) and (1b) as shown in figure 2. Next
HDIA associated with these five computational tasks will be
discussed and presented.

Task 1
Forming

Equation of
Motion (1a)

Task 2
Solving

Equation of
Motion (1a)

Task 3
Forming

Constraint
Equation (1b)

Task 4
Solving

Constraint
Equation (1b)

Task 5
Determining

State Variables
& Integration

Pr
ec

ed
en

ce

T
im

e

Low

High
Task 1

Forming
Equation of
Motion (1a)

Task 2
Solving

Equation of
Motion (1a)

Task 3
Forming

Constraint
Equation (1b)

Task 4
Solving

Constraint
Equation (1b)

Task 5
Determining

State Variables
& Integration

Task 1
Forming

Equation of
Motion (1a)

Task 1
Forming

Equation of
Motion (1a)

Task 2
Solving

Equation of
Motion (1a)

Task 2
Solving

Equation of
Motion (1a)

Task 3
Forming

Constraint
Equation (1b)

Task 3
Forming

Constraint
Equation (1b)

Task 4
Solving

Constraint
Equation (1b)

Task 4
Solving

Constraint
Equation (1b)

Task 5
Determining

State Variables
& Integration

Task 5
Determining

State Variables
& Integration

Pr
ec

ed
en

ce

T
im

e

Low

High

Figure 2: Precedence and Parallelism between Tasks

 In the following mathematical representation of the HDIA
algorithm, Kane’s equations [12] are taken as axiomatic. The
detail derivation of general formulations of the HDIA method
is presented in references [9, 13, 14]. A notation convention
with key joints Jk of body Bk belonging to subchain i may be
used as shown in figure 3.

��
�

�
��
�

�

k

k

J

B
i

r
Nω�

Figure 3: An Example for Notation Convention

A. Formation and Solution of Equations of Motion
In HDIA, generalized accelerations in equations of motion

(1a) can be expressed in the form
ikikiku ζη +=�),...,2,1(ik ν= (2)

where scalar quantity iν is degree of freedom (DOF) of

subchain i, scalar quantity ikζ is the generalized acceleration
that results from the unknown constraint forces and scalar

quantity ikη is the generalized acceleration from all other
forcing terms. Both of them can be determined using the
following recursive formulations

() ()

�
�

	

�
�

�

+⋅⋅−⋅

�
�

�

�

�
�

�

�

= −��
�

�
��
�

�

−

��
�

�
��
�

�

kkkk

k

k

kB
kJ

i

iBkiTiBiBB

J
iiB

i
kk

T

ik FSI
M

P
ˆ~ˆ 11 ηη

(3)
with

() () ikkiTiBiBik kB
kJ

i

kk PS ηηη ⋅+⋅=
��
�

�
��
�

�

− −1~~ 1 (
ikη~ =0) (4)

and
)1(6 +⋅+⋅=

i
kk i

c

iB
t

i

c

iB
b

ik ff υζ �� (5)

with

()
�
�

	

�
�

�

⋅⋅−⋅

�
�

�

�

�
�

�

�

= −−

��
�

�
��
�

�

��
�

�
��
�

�

11ˆ kkkk

k

k

kB
kJ

i

k
iB

t

TiBiBB

J
iiBik

ti
kk

T

iB
t DSI

M

P

D τ

(6)
and

()
�
�

	

�
�

�

⋅⋅−⋅

�
�

�

�

�
�

�

�

= −−

��
�

�
��
�

�

��
�

�
��
�

�

11ˆ kkkk

k

k

kB
kJ

i

k
iB

b

TiBiBB

J
iiBik

bi
kk

T

iB
b DSI

M

P

D τ

 (7)
where

() k
kB
kJ

i
kkkk iB

t

iB

t

TiBiBiB

t DPDSD ⋅+⋅=
��
�

�
��
�

�

−− 11 (
0iB

tD =0) (8)

and

() k
kB
kJ

i
kkkk iB

b

iB

b

TiBiBiB

b DPDSD ⋅+⋅=
��
�

�
��
�

�

−− 11 (
0iB

tD =0) (9)

In equation (5), kiB
tD and kiB

bD are shifting triangularized

and backsubstituted constraint Boolean matrix, while
6i

c
f

and
)1(+ii

c
f υ

 are constraint load components applying to base

body and terminal body of subchain i respectively. In formula

(3), (6), and (7),
��
�

�
��
�

�

k

k

k B

J
iiB

Î 66×∈ R is the articulated inertia

matrix of body k of subchain i, and scalar term i
kkM is the

diagonal element of the mass matrix M associated with
equation (1a). Both of them can be recursively determined by

()TiBiBB

J
iiBiBiBB

J
i

iBB

J
iiB

kkk

k

kkkk

k

kk

k

k SITII 11

1

11 ˆˆ ++

+
++ ⋅⋅+=

��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�

 (10)

��
�

�
��
�

�
��
�

�
��
�

�

⋅⋅
�
�

�

�

�
�

�

�
=

��
�

�
��
�

�
kB
kJ

i

k

k

k
kB
kJ

i

PIPM B

J
i

iB

T

i
kk (11)

subchain i
body k

index
reference frame N joint k

vector quantity of interest

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

Matrix
��
�

�
��
�

�

kB
kJ

i

P is the partial velocity matrix associated with

DOF of joint k of subchain i, and matrix 1+kk iBiB S is a linear

transformation matrix that shifts forces and inertias from the
inboard joint of body k to an equivalent force/moment system

acting on the inboard joint of body k-1. Matrices
ik
tτ and

ik
bτ

in equations (6) and (7) are the shift-triangularization

matrices that shift constraint measure numbers 6i

c
f and

)1(+ii

c
f υ

from their original acting point on the base body and

terminal body to the proximal joint of body k during

triangularization of O(n) algorithm.
kiB

F̂ 16×∈ R in equation

(3) is the articulated body force matrix of body k of subchain
i, and is determined recursively from

11 ˆˆ ++ ⋅+= kkkkk iBiBiBiBiB
FTFF (12)

where kk iBiB T1− 66×∈ R is the triangularization operation

matrix that recursively triangularizes the equations as they are
being formed, and is determined from

()
��

�
�

�

��

�
�

�

�
�

�

�

�
�

�

�
⋅⋅⋅−⋅=

��
�

�
��
�

�
��
�

�
��
�

�

−−
��
�

�
��
�

�
T

B

J
i

iB
i
kk

iBiBiBiB kB
kJ

i
kB
kJ

i

k

k

kkkkk PPI
M

UST
111

(13)
Through equations (2) – (13), equations of motion (1a)

associated with a MBS is formed and solved at a computing

cost of
�
�

�

�

�
�

�

�

pN
n

O [10], where n is number of DOF of the

MBS, and Np is number of processors of a parallel computing
system.

B. Formation of Constraint Equations
Formulation of constraint equation (1b) is carried out by

enforcing constraints at separating joints (Nsub-1 joints.
Nsub: total number of subchains) through following equations

i
i

cii
i

cii
i

cii

iii

fff Ψ=⋅Γ−⋅Γ+⋅Γ− ++
+

++−
−

+−)1)(1(
)1(

)1()1)(1(
)1(

)1()1(

)()()(υυυ

(i=1, 2,...., Nsub-1) (14)

where

[]
�
�
�

	

�
�
�

�

⋅⋅⋅⋅=Γ −
i

i

iBv
b

iB
b

ivi
ii

D

D

GG �

1

1
1

1)1()(, (15)

[] +
�
�
�

	

�
�
�

�

⋅⋅⋅⋅=Γ
i

i

iBv
t

iB
t

ivi
ii

D

D

GG �

1

1
1

1)(

() ()[]
()

() �
�
�

	

�
�
�

�

⋅⋅⋅⋅
+

+

++

6

1

1

1

61
2

11
2

Bi
b

Bi
b

ii

D

D

GG � , (16)

()
() ()[]

()

() �
�
�

	

�
�
�

�

⋅⋅⋅⋅=Γ
+

+

++
+

6

1

1

1

61
2

11
21)(

Bi
t

Bi
t

ii
ii

D

D

GG � , (17)

and

() ()[] −
�
�
�

	

�
�
�

�

⋅=Ψ
+

+

++

6)1(

1)1(

61
2

11
2

i

i

ii
i GG

η

η
��

[] () ()()i
i

i

i iB

t
Bi

t
i

i

i

ivi AAOGG νν

νη

η
−⋅+

�
�
�

	

�
�
�

�

⋅⋅⋅⋅ ++ 611

1

1
1

1 �

(18)
with

�
�
�

�
�
�

Ρ⋅= k
k

B
Jiikik LG 11 , (19)

TiBiBkiik kk SLL)()1()1(
11

+⋅= +
, (20)

and
)1()1(

1
++ =

ii vivi OL . (21)
Similarly

�
�
�

�
�
�+++ Ρ⋅= k

k
B
Jikiki LG)1()1(

2
)1(

2)7(<k , (22)
TBiBikiik kk SLL)()1()1()1()1)(1(

22
+++++ ⋅=)6(<k , (23)

and
)1(6)1(

2
++ Ο=

iviiL . (24)
Equations (14)-(24) are algorithmic formulations of equation
(1b) for constraint measure numbers fc associated with entire

subchain system. In equation (14),
)1)(1()1(+− −ii

c
f υ

,
)1(+ii

c
f υ

,

and
)1)(1()1(++ +ii

c
f υ

are the constraint load measure numbers

of the separated joints between subchain i-1 and i, subchain i
and i+1, and subchain i+1 and i+2, respectively. Matrices

ikG1 and
ikG 2 are those portions of the constraint coefficient

matrix associated with the outboard joint of terminal body and
inboard joint of base body, if a subchain is separated at both
ends. These quantities play the role of implicitly shifting the
DOF of the entire subchain to the separated joints and project
these DOF onto the constraint subspace associated with the

separated joints.
)1(+Ο

ivi
is the orthogonal complement matrix

to the free mode of motion matrix (partial velocity matrix)

��
�

�
��
�

�

kB
kJ

i

P . The joint orthogonal complement
)1(+Ο

ivi
defines the

constraint subspace associated with the separated outboard

joint on terminal body of subchain i. Matrices
ikL1 and

ikL 2

are intermediate quantities that are introduced for convenient

expression of recursive relations algorithmically. iiB

tA ν in
equation (18) is the acceleration remainder terms of terminal
body of subchain i, which are not explicit in the element of

u� . Quantity
() 61 Bi
tA +

in the same equation is the acceleration

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

remainder term matrix associated with all of the terms of the
relative acceleration matrix not explicit in su� of imaginary

body 1+iν relative to the terminal body iν of subchain i.
Through equations (14) – (24), constraint equation (1b)

associated with the reduced MBS is formed at a computing

cost of
�
�

�

�

�
�

�

�
2
pN

nm
O [10], where m is number of constraints for

the reduced subchain system.

III. SOLUTION OF CONSTRAINT EQUATION

For the work presented in reference [10], a simple in-house
Parallel Preconditioned Conjugate Gradient (PPCG) iterative
solver was used to solve constraint equation (1b) in parallel.
PPCG methods work very well for solution of a large sparse,
symmetric, and positive definite system of linear equations. In

reality constraint matrix Γ seldom has such nice properties.
To extend power and application ability of HDIA approach,
other Krylov subspace methods such as Generalized Minimal
Residual (GMRES), Biconjugate Gradient (BiCG), and Quasi
-Minimal Residual (QMR) may be explored and integrated
with HDIA. These nonstationary iterative methods have their
advantages for solution of a large-sized sparse linear system.
For example, by comparison GMRES performs well for non-
symmetric systems and QMR works for non-positive definite
systems [15]. Nonstationary iterative solvers in Aztec has
been used to integrate with HDIA.

A. Aztec Nonstationary Iterative Method Library
There are a few massively parallel iterative solver libraries,

such as Aztec, PETsc, ScaLAPACK etc. for solving sparse
linear systems. Aztec Library has been chosen to integrate
with HDIA for solving constraint equation (1b) in parallel
because Aztec has a similar coding environment as the HDIA
codes and it is ease of availability.

Aztec is a parallel iterative library for solving linear
systems, which is both easy-to-use and efficient. It is written
in ANSI-standard C language. The source code of Aztec is
available freely from the Sandia National Laboratory website.
Aztec has been adopted to a number of parallel machines and
platforms: workstation clusters (DEC, SGI, SUN, LINUX,
etc.), Cray T3E, Intel TeraFlop, Intel Paragon, IBM SP2,
nCUBE2 as well as other parallel platforms. There are a
number of Krylov subspace methods such as CG, CGS,
BiCGSTAB, GMRES, and TFQMR available in Aztec.
These Krylov methods may be used in conjunction with
various preconditioners. Point & block Jacobi, Gauss-Seidel,
and least-squares polynomials are samples of preconditioners
in Aztec [11].

B. Integration between HDIA and Aztec Iterative Solvers
Aztec can work with user-supplied matrix-vector product

routines or two specific sparse matrix formats (in which case
Aztec provides the matrix-vector product) - a point entry
modified sparse row (MSR) format or a block-entry variable
block row (VBR) format. These two formats have been
generalized for parallel implementation and, as such, are
referred to as “distributed” yielding DMSR and DVBR
references. To invoke Aztec from an external program

through a user-supplied matrix-vector product interface, the
following steps are required:
1. Describe the machine (serial/parallel)
2. Initialize the matrix and vector data structures
3. Choose the iterative method, preconditioner and the
convergence criteria
4. Initialize the right hand side and initial guess
5. Supply the preconditioner
6. Supply the left hand side implicitly through the
matrix-vector product routine
7. Invoke the solver

The flow chart in figure 4 shows the integration between
HDIA and iterative solvers in Aztec.

Start

Initial conditions & given
iν

i=1, i=i+1, parallel in i

i=1, i=i+1, parallel in i

i>=Nsub?

Solving (1b) by iterative solvers
in Aztec in parallel for i

c
f

i=1, i=i+1, parallel in i

k=1, k=k+1

compute &ikζ iku�

k>= ?iν

i>=Nsub?

i>=Nsub?

Integrate & to update & iku ikqikuiku�

t < Tfinal?

End

1st outward pass for kinematical
quantities

k=1, k=k+1

k>= ?iν

Generation of kinematical, kinetic &
geometric quantities ,1 kk iBiB S− ,1 kk iBiB C−

,���
�

��
�

�

k

k
k B

J
iiB I kiBF,���

�
��
�

�

k

k

B

J
iP

,
kiB

tA,kiBV
kiB

k
t

iB A1−

Inward pass for triangularization of
(1a) & forming quantities ,ˆ kiB

F

,1 kk iBiB T− ,1
ikG,ˆ ��

�

�
��
�

�

k

k
k B

J
iiB

I ,i
kkM

,ik
tτ

,ik
bτ ikG 2

2nd outward for backsubstitution of
(1a) & forming quantities ,ikη

,kiB
tD

,~ ikη

,kiB
bD ,kiB

tD kiB
bD

no

yes

no

no

no

yes

Start

Initial conditions & given
iν

Start

Initial conditions & given
iν

Initial conditions & given
iν

i=1, i=i+1, parallel in ii=1, i=i+1, parallel in ii=1, i=i+1, parallel in i

i=1, i=i+1, parallel in ii=1, i=i+1, parallel in ii=1, i=i+1, parallel in i

i>=Nsub?

Solving (1b) by iterative solvers
in Aztec in parallel for i

c
f

i=1, i=i+1, parallel in ii=1, i=i+1, parallel in ii=1, i=i+1, parallel in i

k=1, k=k+1k=1, k=k+1k=1, k=k+1

compute &ikζ iku�

k>= ?iνk>= ?k>= ?iν

i>=Nsub?i>=Nsub?

i>=Nsub?i>=Nsub?

Integrate & to update & iku ikqikuiku�

t < Tfinal?

End

1st outward pass for kinematical
quantities

k=1, k=k+1k=1, k=k+1k=1, k=k+1

k>= ?iνk>= ?k>= ?iν

Generation of kinematical, kinetic &
geometric quantities ,1 kk iBiB S− ,1 kk iBiB C−

,���
�

��
�

�

k

k
k B

J
iiB I kiBF,���

�
��
�

�

k

k

B
J

iP

Generation of kinematical, kinetic &
geometric quantities ,1 kk iBiB S− ,1 kk iBiB C−

,���
�

��
�

�

k

k
k B

J
iiB I kiBF,���

�
��
�

�

k

k

B
J

iP

,
kiB

tA,kiBV
kiB

k
t

iB A1−

Inward pass for triangularization of
(1a) & forming quantities ,ˆ kiB

F

,1 kk iBiB T− ,1
ikG,ˆ ��

�

�
��
�

�

k

k
k B

J
iiB

I ,i
kkM

,ik
tτ

,ik
bτ ikG 2

2nd outward for backsubstitution of
(1a) & forming quantities ,ikη

,kiB
tD

,~ ikη

,kiB
bD ,kiB

tD kiB
bD

no

yes

no

no

no

yes

Figure 4: Flow Chart for Integrating HDIA with Aztec

The Message-Passing Interface (MPI) is chosen for parallel
computing communication. MPI is the most widely used
parallel communication interface [16]. It has a library of
subprograms that can be called within either C, C++, C# or
Fortran programs. Two outstanding features of MPI are its
portability and its independence from specific computing
systems.

Through the integration between HDIA and iterative
solvers in Aztec, and use of MPI, a computational cost of

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

()
�
�

�

�

�
�

�

�
−+ 1log 2 p

p

Nm
N
m

O γ
γ

for the solution of constraint

equation (1b) can be achieved, where γ is iteration index

10 << γ .

IV. PARALLEL IMPLEMENTATION

The algorithm is coded in C and MPI, and integrated with
iterative solvers in Aztec. The algorithm has been run on IBM
1350 cluster, a distributed memory parallel computing system
at South Dakota State University (SDSU). The simulation
results reported here will demonstrate: 1. the validity of the
integration of HDIA with Aztec. 2. Comparison of results
produced by various solvers and joint separation cases.

For this purpose, a 32 body chain with identical bodies
connected by simple revolute joints has been used for the
modeling and simulation as shown in figure5. The properties
of each body are: mass mk=1kg; inertial Ik=[1,0, 0; 0, 1, 0; 0,

0, 1] kg.m2; position vector ks
�

=[0, -2, 0] m; position vector
kr

�
=[0, -1, 0] m. The initial conditions of the system are

generalized speeds uk=0.0 (rad/s) (k=1, … , 32), generalized
coordinates qk =0.1745 rad (k=1,…, 8, 17,…, 24) and qk

=-0.1745 rad (k= 9,…, 16, 25,…, 32). The numbering of each
body/joint increases sequentially from the base body/ joint 1
to terminal body/joint.

……1 2 3 4 5 28 29 30 31 32……1 2 3 4 5 28 29 30 31 32

(a) 32 body chain

−k

ks
�

kr
�

+k
jointCM

(b) geometric parameters of body k
Figure 5: A 32 Body Chain Example

Table 1 shows that six different cases of joint separation are
applied to this chain system. For example, case 3 has 3 joint
separations (cuts), which results in 4 subchains. Each
subchain is assigned to 1 processor for parallel computing and
each processor contains 8 bodies. Case 1 has no cut, which is
purely sequential. In case 6, each joint from 2 to 32 is cut and
each processor contains one body only.

Table 1: Cases with Various Joint Separations
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

#. of
processors 1 2 4 8 16 32

of bodies
/processor 32 16 8 4 2 1

#. of cuts 0 1 3 7 15 31

 Figure 6 (a) and (b) show time histories of the generalized
coordinates q1, q6, q11, q16, q21, q26,and q31 of case 2, and q3,
q8, q13, q18, q23, and q28 of case 4. These time history curves
agree with those produced by commercial dynamical analysis
software Autolev. In figure 7, motion trace simulations
associated with each body of each subchain for case 3 are
given. From figure 7, it can be seen clearly that configurations
of four subchains are updated in parallel. Due to constraints
imposed between subchains being communicated correctly

during concurrent simulation, the motion of outboard tip of
each proximal sub-
chain is exactly same as the motion of inboard tip of each
distal subchain. If the motion trace of each subchain in figure
7 (a), (b), (c), (d) is superposed on another, the motion trace of
the entire subchain can be obtained as in figure 7 (e).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

time t (sec)

ge
ne

ra
liz

ed
 c

oo
rd

in
at

es
 q

 (r
ad

)

Time history of generalized coordinates of body 1,6,11,16,21,26,31 for Case 2

q1
q6
q11
q16
q21
q26
q31

(a) Time histories of q1, q6, q11, q16, q21, q26,and q31 of case 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

time t (sec)

ge
ne

ra
liz

ed
 c

oo
rd

in
at

es
 q

 (r
ad

)

Time history of generalized coordinates of body 3,8,13,18,23,28 for Case 4

q3
q8
q13
q18
q23
q28

(b) Time histories of q3, q8, q13, q18, q23, and q28 of case 4

Figure 6: Time Histories of Generalized Coordinates
Table 2 shows average time cost of a function evaluation of

six cases with application of five Krylov subspace methods in
Aztec to each case. Take case 4 as an example. From table 1 it
is clear that there are 7 cuts and 8 processors for case 4. Each
processor contains 4 bodies. In table 2, average time cost of a
single function evaluation is 1.06e-3 seconds for CG, 1.17e-3
seconds for CGS, 1.17e-3 seconds for TGQMR, 1.15e-3
seconds for BiCGSTAB, and 1.1e-3 seconds for GMRES
respectively.

Table 2: Average Time Cost of a Function Evaluation
 Time in Seconds

Krylov
Method

CG CGS TFQMR BiCGSTAB GMRES

Case 1 4.7e-4 4.75e-4 4.7e-4 4.65e-4 4.7e-4
Case 2 5.4e-4 5.6e-4 5.7e-4 5.75e-4 5.55e-4
Case 3 9.2e-4 9.1e-4 9.35e-4 9.25e-4 9.3e-4
Case 4 1.06e-3 1.17e-3 1.17e-3 1.15e-3 1.1e-3
Case 5 1.23e-3 1.83e-3 1.73e-3 1.765e-3 1.54e-3
Case 6 2.34e-3 2.49e-3 2.51e-3 2.465e-3 2.39e-3

The time data from table 2 agree well with the theoretical
estimation of computational cost as follows [10]:

 ()1log2 −+++≈ p
ppp

Nm
N
m

N
nm

N
n

Cost γ
γ

.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

-8 -6 -4 -2 0 2 4 6 8 10 12

0

2

4

6

8

10

12

14

16

Motion trace of subchain 1 of case 3

x (m)

y
 (m

)

subchain 1 contains body 1-8

initial position

-15 -10 -5 0 5 10 15 20 25

5

10

15

20

25

30

35

Motion trace of subchain 2 of case 3

x (m)

y
 (

m
)

subchain 2 contains body 9-18

floating joint on base body due to cutting initial position

(a) subchain 1 (b) subchain 2

-15 -10 -5 0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

Motion trace of subchain 3 of case 3

x (m)

y
 (m

)

subchain 3 contains body 19-24

initial position

floating joint on base body due to cutting

-15 -10 -5 0 5 10 15 20 25

5

10

15

20

25

30

Motion trace of subchain 4 of case 3

x (m)

y
 (m

)

subchain 4 contains body 25-32

initial position floating joint on base body due to cutting

(c) subchain 3 (d) subchain 4

-30 -20 -10 0 10 20 30 40 50

0

10

20

30

40

50

60

Motion trace of entire chain of case 3

x (m)

y
 (m

)

entire chain contains 32 bodies

(e) the entire chain

Figure 7: Motion Trace of Case 3

V. CONCLUSIONS

A new HDIA procedure and its parallel implementation on
IBM 1350 cluster via integration with various nonstationary
iterative solvers in Aztec have been introduced in this paper.
Joint separation is utilized to distributed computing loads in
parallel so that five computational tasks associated with
formation/solution of equation (1) and consequent integration
for updating state variables can be carried out efficiently for
parallel simulation. An efficient sequential O(n) method is
utilized within each processor in parallel for formulation and
solution of equations of motion (1a), and parallel techniques
are applied between processors for formation and solution of
constraint equation (1b). A combination of direct and iterative
linear equation solution methods is created to achieve high
overall computational efficiency. Thus the algorithm can fully
offer advantages of both the sequential O(n) procedure and
parallel computation. A computational complexity of

O ()
�
�

�

�

�
�

�

�
−+++ 1log2 p

ppp

Nm
N
m

N
nm

N
n γ

γ

performance can be achieved with Np processors for a chain
system with n degrees of freedom and m constraints due to
separation of interbody joints. The index γ is the parameter

for iterative solver performance. It depends on effectiveness
of the preconditioner, the quality of the solution initial guess,
the eigenvalue spectra of the constraint force coefficient

matrix, and the convergence criteria used.
The integration of the HDIA with Krylov subspace iterative

solvers in Aztec enhances the application power of HDIA so
that it can handle various properties that constraint coefficient
matrix in equation (1b) may have. Both the algorithm and its
integration with Aztec have been validated and implemented
on IBM 1350 with MPI. Various joint separation cases and
iterative solvers have been used to show flexibility of HDIA.

ACKNOWLEDGMENT

Authors wish to acknowledge and thank financial support
from SD NASA EPSCoR Research Initiative fund and SDSU
Research Start-up grant.

REFERENCES
[1] H. Kassahara, H. Fujii, and M. Iwata, “Parallel Processing of Robot

Motion Simulation”, Proc. IFAC 10th World Conference, Munich,
FRG, July, 1987.

[2] D. S. Bae, J. G. Kuhl, and E.J. Haug, “A recursive Formation for
Constrained Mechanical System Dynamics: Part III, Parallel
Processing Implementation,” Mechanisms, Structures, and Machines,
Vol. 16, 1988, pp. 249-269.

[3] S. S. Lee, “Symbolic Generation of Equation of Motion for
Dynamics/Control Simulation of Large Flexible Multibody Spaces
Systems”, Ph. D. Dissertation, University of California at Los
Angeles, 1988, UMI No. 8814809

[4] K. S. Anderson, 1990. “Recursive Derivation of Explicit Equations of
Motion for Efficient Dynamic/Control Simulation of Large Multibody
Systems.” Ph.D. Dissertation, Stanford University. UMI No. 9108778.

[5] K. S. Anderson, “An Efficient Modeling of Constrained Multibody
Systems for Application with Parallel Computing,” Zeitschrift fur
Angewante Mathematic un Mechanik, Vol. 73, No. 6, 1993, pp.
520-528.

[6] A. Fijany, and A. K. Bejczy, “Parallel Computation of Forward
Dynamics of Manipulators”, JPL New Technology Report
NPO-18706, NASA Technical Brief, Vol. 17, No. 12, Item 82,
December 1993.

[7] I. Sharf, and G.M.T. D'Eleuterio, “An Iterative Approach to Multibody
Simulation Dynamics Suitable for Parallel Implementation,” Journal
of Dynamic Systems, Measurement and Control, Vol. 115, Dec. 1993,
pp. 730-735.

[8] A. Fijany, I. Sharf, and G.M.T. D'Eleuterio, “Parallel O(log N)
Algorithms for Computation of Manipulator Forward Dynamics,”
IEEE Transactions on Robotics and Automation, Vol. 11, No. 3, June
1995, pp. 389-400.

[9] K. S. Anderson and S. Z. Duan, “A Highly Parallelizable Low Order
Algorithm for Dynamics of Multi-Rigid-Body Systems: Part I, Chain
Systems”, Journal Mathematical and Computer Modeling, Vol. 30,
1999, pp. 193-215

[10] Duan, S. Z. and K. S. Anderson, “Parallel Implementation of a Low
Order Algorithm for Dynamics of Multibody Systems on a Distributed
Memory Computing System”, Journal Engineering with Computers,
Vol. 16, No. 2, 2000, pp. 96-108.

[11] R.S. Tuminaro, M. Heroux, S.A. Hutchinson, and J.N. Shadid,
Official aztec user's guide version 2.1. Massively Parallel Computing
Research Laboratory, Sandia National Laboratories, Albuquerque,
NM, 1999.

[12] T. R. Kane, and D. A. Levinson, 1985. Dynamics: Theory and
Application. McGraw Hill, NY.

[13] S. Z. Duan, and Y. Patel, “A Hybrid Parallelizable Algorithm for
Computer Simulation of the Motion Behaviors of a Branched
Multibody System.” Proceedings of 2006 ASME International
Conference and Exposition. Chicago. November 5-10, 2006.

[14] S. Z. Duan, and J. A. Ries, “Efficient Parallel Computer Simulation of
the Motion Behaviors of Closed-loop Multibody Systems”
Proceedings of 2007 ASME International Mechanical Engineering
Congress and Exposition, November 11-15, 2007, Seattle,
Washington.

[15] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, Boston,
2000.

[16] P. S. Pacheco, Parallel Programming with MPI, Morgan Kaufmann
Publishers, Inc., San Francisco, CA, 1997.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

