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Abstract—A hybrid population based Ant Colony
Optimization (ACO) algorithm PFold-P-ACO for
protein folding in the HP model is proposed in this pa-
per. This is the first population based ACO algorithm
in the bioinformatics. It is shown experimentally that
the algorithms achieves on nearly all test sequences
at least comparable results to other state of the art
algorithms. Compared to the state of the art ACO
algorithm PFold-P-ACO slightly better results and is
faster on long sequences.
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1 Introduction

Proteins are one of the most important classes of bio-
logical molecules. Chemically, a protein is a chain where
each element is one of only 20 different amino acids. Each
amino acid consists of a central carbon atom bonded to
an amino group (NH2), a carboxyl group (COOH) and
a side chain or residue (R) Hence, the amino acids dif-
fer only in the residue R. One of the most important
differences between the residues is their hydrophobicity,
i.e., how much they are repelled from a mass of water.
The properties of the residues together with the environ-
ment are responsible that the protein chain folds into a
complex conformation. This conformation is called the
”native” conformation of the molecule. The native con-
formation is thermodynamically stable, i.e., it has small
Gibbs free energy, and is very important for the function
of the protein.

The structure of a protein can be described on different
levels: the amino acid sequence is the primary structure,
the secondary structure describes characteristic struc-
tures of the backbone of the molecule within local regions
(e.g., alpha-helices or beta-sheets), the tertiary structure
refers to the entire 3-dimensional structure. Different
types of algorithms have been developed to predict the
tertiary or secondary structure of proteins. All these algo-
rithms use a model that is an abstraction of real proteins
and describes important characteristics. An important
class of models are the lattice models. A lattice model
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consists of a lattice that describes possible positions for
the amino acids and an energy function that is to be min-
imized and depends on the positions of the amino acids
on the lattice. The most simplest lattice model is the
HP model which is based on the observation that hy-
drophobic forces are very important factors that drive
the protein folding process. Advantages of the HP model
are simplicity, that it shows several aspects of real pro-
teins, and remains the hardness features of the biological
problem.

In this paper we propose a P-ACO algorithm called
PFold-P-ACO for solving the protein folding in the HP
model. PFold-P-ACO is the first P-ACO algorithm for
the problem domain of bioinformatics.

Section 2 describes the HP model and mentions some
heuristics form the literature for the protein folding prob-
lem in the HP model. An introduction to ACO and ACO
approaches for the protein folding problem is given in Sec-
tion 3. Population based ACO and our algorithm PFold-
P-ACO are described in Section 4. The experiments and
the results are presented in section 5. Conclusions are
given in Section 6.

2 The HP model

The HP model is introduced by Dill [5, 11]. It is based
on the fact that for folding the most important difference
between amino acids is their hydrophobicity, i.e., how
much they are repelled from a mass of water. The reason
is that hydrophobicity is the main driving force to fold
a molecule into the native conformation (at least for of
small globular proteins). In the HP model all 20 different
amino acids are classified into two types: hydrophobic or
non-polar (H) and hydrophilic or polar (P).

A primary structure with n amino acids is viewed as a se-
quence S = s1, . . . , sn with si ∈ {H,P} for i = 1, . . . , n.
A conformation is a mapping C of the amino acids si to
the points of a cartesian lattice. Two and three dimen-
sional cartesian lattices are used here. In the following we
describe the 2-dimensional model. The definitions for the
3-dimensional model are analogous. We use the following
notation: if C is a conformation then (xi, yi) denotes the
position in the lattice to which si is mapped by C. All
valid conformations are self-avoiding paths on the carte-
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sian lattice. A mapping is a path when amino acids si,
sj that are consecutive in the molecule, i.e., |i − j| = 1,
are mapped to neighbored positions (xi, yi), (xj , yj) on
the lattice, i.e., |xi − xj | + |yi − yj | = 1. A path is self-
avoiding when all two different amino acids si, sj , i 6= j
are mapped to different positions, i.e., (xi, yi) 6= (xj , yj).

The energy function in the HP model reflects the fact that
the hydrophobic amino acids have a propensity to form a
hydrophobic core. Therefore, the energy function adds a
value −1 for every pair of hydrophobic amino acids (H)
that are adjacent on the lattice but not consecutive in the
sequence. Formally, the energy E(f) of a conformation
C is

∑
1≤i≤j−2≤n I(i, j) where I(i, j) = −1 if |xi − xj |+

|yi − yj | = 1 and I(i, j) = 0 otherwise.

The protein folding problem in the HP model — called
HP-Protein Folding problem — is to find for a given pro-
tein S = s1 . . . sn, si ∈ {H, P} a valid conformation C on
the cartesian lattice such that the energy E(f) is mini-
mum. In [3] it was shown that the HP-Protein Folding
problem is NP hard, i.e., it is very unlikely that there ex-
ists a polynomial time algorithm for solving the problem.
Therefore, it is interesting to find heuristics for solving
the HP-Protein Folding problem.

The variety of heuristics that have been developed in-
clude (Metropolis) Monte Carlo algorithms (e.g.,[21]),
chain growth algorithms (e.g.,[10]), evolutionary algo-
rithms (e.g., [20]), memetic algorithms, immune algo-
rithms, and ACO algorithms (e.g., [16, 17]). Due to lim-
ited space an overview on other algorithms can not be
given (for recent overviews see [17, 22]).

3 Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic that
is inspired by the foraging behaviour of real ants ([6]).
ACO has been applied successfully to solve various com-
binatorial optimization problems (see [7, 13]). Shmygel-
ska and Hoos proposed several variants of an ACO al-
gorithm for HP-Protein Folding problem (e.g., [16, 17]).
The latest algorithm ACO-HPPFP-3 iterates over the
following three phases: construction phase, local search
phase, pheromone update phase. In the construction
phase each ant constructs a candidate solution by se-
quentially growing a conformation of the given HP se-
quence, starting from a folding point that is chosen uni-
formly at random among all sequence positions. Since
conformations are rotationally invariant, the position of
the first two amino acids can be fixed without loss of
generality. A candidate conformation for a HP sequence
of length n corresponds to a decision sequence of length
n − 2. Each decision indicates the position of an amino
acid on the 2D or 3D lattice relative to its direct pre-
decessors in the given sequence. Possible decisions are
whether the chain folds straight (S), left (L), right (R)
in 2D, (and also up (U), down (D) in 3D). Each ant

performs probabilistic chain-growth construction, where
in every step, the structure is extended either to the
left or to the right, such that the ratio of unfolded
residues at each end of the protein remains (roughly) un-
changed. The relative direction d ∈ {S,L, R} in which
the conformation is extended in construction step i is de-
termined probabilistically based on a heuristic function
ηi,d and pheromone values τi,d according to the formula:
pi,d = (ηα

i,d · τβ
i,d)/

∑
e∈{S,L,R}(η

α
i,e · τβ

i,e). The pheromone
values τi,d indicate the desirability of using direction d
at sequence position i. Initially, all τi,d values are equal.
Throughout the search process, the pheromone values are
updated to bias the folding towards the use of local di-
rections that occur in low-energy structures.

In the pheromone update phase each pheromone value
τi,d is evaporated according to τi,d := ρ · τi,d where ρ < 1
is the pheromone persistence parameter. Subsequently,
selected ants with low-energy conformations update the
pheromone values according to τi,d := τi,d + ∆i,d,c where
∆i,d,C is the relative solution quality of the given ant’s
candidate conformation C if that conformation contains
local direction d at sequence position i, and zero other-
wise. For further details and information on the follow-
ing parts of the see [17]: i) the heuristic method, ii) the
backtracking method that is used when a direction is not
possible because the chain would run into itself, iii) the
local search method.

4 P-ACO and PFold-P-ACO

One of the main characteristics of an ACO algorithm
is the pheromone information which stores information
on good solutions that have been found by ants of for-
mer iterations. The pheromone information is what is
transferred from one iteration of the algorithm to the
next. An alternative to this scheme has been proposed
by Guntsch and Middendorf [8] and is called Population
based ACO (P-ACO). Instead of pheromone information
as in ACO, in P-ACO a population of solutions is trans-
ferred from one iteration of the algorithm to the next.
The ants in the new iteration use this population to con-
struct pheromone information from it and then proceed
as in standard ACO. Instead of pheromone update P-
ACO uses a population update and several strategies have
been proposed for a solution to enter or leave the pop-
ulation (see [8]). Two potential advantages of P-ACO
compared to standard ACO are: i) the population up-
date and pheromone construction needs for typical appli-
cations (e.g., for permutation problems like the Traveling
Salesperson problem) time O(n) where n is the problem
size instead of time O(n2) that is necessary for standard
ACO pheromone update, ii) the population can be used
to apply operations on the solutions (e.g. crossover). A
potential disadvantage of P-ACO compared to ACO is
that the number of different pheromone values is small
(typically, the population size) whereas for standard ACO
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it is potentially infinite. Thus, a P-ACO algorithm might
be faster than a standard ACO algorithm but it not clear
whether it can achieve the same solution quality.

It has been shown experimentally that P-ACO works
equally good as ACO even when the P-ACO algorithm
uses only a small population ([8]). It was also shown that
P-ACO can be used for multi-objective problems [1, 9, 4].
Since P-ACO has been tested on classical problem like
TSP ([1, 2, 8, 9, 4]) or single machine scheduling prob-
lems [9] only it is interesting to apply it to other problem
domains.

In the following subsections we describe our hybrid P-
ACO algorithm called PFold-P-ACO. It consists of two
parts: a P-ACO part and a branch-and-bound part.
When the P-ACO part has not found an improvement
over a certain number of iterations, the branch-and-
bound part starts. The branch-and-bound part is a
heuristic that does not do a complete enumeration.

4.1 ACO Part

The population that is used by PFold-P-ACO contains
always the best 10 conformations that have been found.
But to keep enough diversity a new found conformation
has the same HH-contacts as a conformation that is al-
ready in the population is not allowed to enter the popu-
lation. If a new found conformation has the same energy
as a conformation in the population it replaces the one in
the population with probability 0.5. Construction Phase
and Local Search Phase are described in the following
subsections.

Construction Phase. Similar as in ACO-HPPFP-3
from [17] each ant constructs a solution by sequentially
growing a conformation of the given sequence, starting
from an element that is chosen uniformly at random. Dif-
ferent from algorithm ACO-HPPFP-3 in PFold-P-ACO
the probability that the next element to be placed is cho-
sen in direction of the beginning or end of the sequence
equals the relative length of the remaining prefix respec-
tively suffix of the sequence. If it possible that a P subse-
quence can be extended or a prescribed HH-contact can
be realized it is done.

The pheromone values τi,d i = 1, . . . , n − 1, d = S,L, R
are initialized with value 1. Each ant chooses randomly
a conformation from the population and sets all corre-
sponding pheromone values to 4. As heuristic values the
ants use the change of the energy ∆E of the partial con-
formation that occurs when a decision is made, i.e., λi,d =
e∆E . An ant that has to decide how to fold at si+1 makes
with probability 0.05 a decision randomly with equal
probability for S, L, or R (if all are possible). Otherwise,
the ant considers the pheromone values and decides for di-
rection d with probability τα

i,d ·λβ
i,d/(

∑
h∈{S,L,R} τα

i,h ·λβ
i,h)

if all directions are possible where parameters α and β de-

fine the relative influence of pheromone and heuristic. If
not all directions are possible only the pheromone values
corresponding to the allowed directions are taken into ac-
count. If for example direction d = L is forbidden by a
constraint as described in the following then the probabil-
ity to fold in direction d is τi,d ·λi,d/(

∑
h∈{S,R} τi,h ·λi,h).

Several constraints are used that forbid some decisions
for an ant. If the ant can not make an alternative de-
cision it makes a backtrack step and revises the former
decision. This is done until the ant finds a decision that
is not forbidden or until a Time-to-Live (TTL) counter
that counts the number of backtrack steps stops the ant.

Constraint 1. Inspired by an idea from [12] a set of pre-
scribed amino acid contacts is used to guide the search for
good conformation. Different from [12] the set H that is
used by the ants in the PFold-P-ACO contains only HH-
contacts. Further, set H contains only local restrictions,
i.e., for every HH-contact in H the distance of the two
H elements in the sequence is at most 9. If during the
construction phase an ant places the first element of a
HH-contact in H it initializes a vector of counters —-
one counter for every moving direction (up, down, left,
right). The counters are used to check for every decision
in the construction process whether the current element
is placed near enough to the location of first element of
the required HH-contact so that the HH-contact can still
be realized with respect to distance (it is not checked if
it is really possible to realize the HH-contact).

Constraint 2. P-rich subsequences make it difficult for
ants to find a good conformation because their deci-
sions are guided by forming HH-contacts. Therefore, it
is required that the elements of P-rich subsequences are
placed near to each other. A P-rich subsequence is de-
fined such before and after it comes an H element and it
contains at least 75% percent P elements and does not
contain a singleton P element that has no P neighbor.
Similar as for the required H-contacts a vector of coun-
ters is used for every P-rich subsequence. It is checked
when an element of a P-rich subsequences is to be placed
that its location would not be too far from the location
of the first element of this subsequence. If, the location is
too far the ant has to make an alternative decision. For
details see [19].

Constraint 3. HP-contacts are not allowed.

Local Search Phase. A local search is used that is sim-
ilar to the filter-and-fan approach from [15]. The move
operator is the pull-move which is initiated by moving
one node of the current conformation to one of its empty
diagonal adjacent positions in the square induced by the
node and one of its adjacent neighbors in the sequence.
Depending on the structure of the conformation the dis-
placement of the initiating node may require other nodes
to change their positions. In a pull-move, displaced nodes
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ID Emin Sequence
D100-1 -24 P2HP5HPHP12HP4H3P (P2H2)2(PH)3P4HP17HP2HP3H3PHP2HP2(PH)2P2H2P6H
D100-2 -42 H2P4H2(PH5)2(PH)3P11HPH3P (HP2)2H2P4H2PHP2H2PHPH6P2H4P3(H2P )4P2HP3H4

D100-3 -52 P2H2P3HPH5P2HPH10PH2P2H(P2H2)2P3HPH3PH2(P2H3)2H(PH3)2H2P3HP2H(PH3)2
HP2H2P4H2

Table 1: Test HP sequences D100-x of length 100 with ID, best known energy value Emin, and sequence

are only allowed to occupy vacant adjacent positions in
the lattice.

The η best conformations from the construction phase are
selected as start conformations for local search. To each
selected conformation 4 pull moves are applied. From all
conformations that have been obtained the 4 best ones are
selected for the next iteration of local search. After each
iteration of local search it is checked whether a better
conformation has been found. If so an iteration counter
is set to zero, otherwise the iteration counter is increased
by one. If the iteration counter equal 10 the local search
procedure is stopped. Restrictions are applied during the
local search: i) a conformation is selected only if it has
at least 0.7 as much HH-contacts as the so far best found
conformation, ii) for each conformation a tabu list that
contains the last 5 pull moves is used in order to hinder
that pull moves are reversed, iii) a conformation is only
accepted if its diameter is at most (4/3)

√
n or if it has

more HH-contacts than the so far best found solution.

4.2 Branch-and-Bound Part

The branch-and-bound process starts with two traces (on
starts at s1 the other at sn) that work independently but
exchange information on the energy of new best confor-
mations. This information is used to estimate whether
a partial conformation can potentially reach a new best
energy value or should be cut. A mix between breadth
first search and depth first search is done. More exactly,
the algorithm searches on level l of the tree (breadth first
search) until it contains more than 300 nodes. The 150
best of these partial conformations are extended to level
l + 1 and so on. Only when the algorithm does not find
a conformation (because all branches on corresponding
subtrees are cut as described afterwards) the other partial
conformations on level l are used. The following five cri-
teria are used to heuristically decide whether the search
tree is extended or cut at a leaf.

Criterion 1. The criterion uses the pheromone infor-
mation as constructed from the population of the ACO
part. Consider a leaf of the search tree and assume
that the corresponding partial conformation C consists
of s1, . . . , si−1 and the element to be placed is si. Let
Imax =

∑i
j=1 max{Sj , Lj , Rj} be the sum of the maxi-

mum pheromone values for all decisions. Then an exten-
sion of C with decision d ∈ {S,L, R} for placing si is not
considered if the sum of pheromone values correspond-

ing to the extended partial conformation is smaller than
Imax · Φl where 0 < Φl < 1 is a parameter.

Criterion 2. For each H element i in the sequence a mini-
mum energy value is computed that has to be reached by
a partial conformation that consist of elements s1, . . . , si.
This minimum value is based on the average energy value
Eavg(i) of the prefixes of length i of the conformation in
the population delivered by the ACO part. The longer
the conformation becomes the higher the required energy
value. For i ∈ [1, n/2] the minimum value bEavg(i)c+ 1,
for i from n/2+1 up to the position before of the last few
H elements the minimum value bEavg(i)c is used, and for
the rest of the sequence it is required that the best so far
found energy value can still be obtained.

Criterion 3. It is checked whether it is possible to extend
the current partial conformation so that it can become
a new best found conformation. The computation con-
siders: i) the energy value of the current partial confor-
mation, ii) the number of free locations next to H in the
partial conformation, iii) the number of H elements with
even and with odd indices that have not been placed (for
details see [19]). Note, that ii) and iii) can be viewed as
measures for the potential that the partial conformation
has for improving its energy value.

Criterion 4. For a long subsequence that consists only
of P elements (pure P subsequence) there exists many
possibilities how to fold it but the energy value of the
partial conformation will not change during. Therefore,
for all partial conformations for s1, . . . , sj where the last
two elements of a pure P subsequence si, . . . , sj , j ≥ i+2
is placed on the same location and where and which have
an equal prefix of length i all those are cut which satisfy
the following criterion: the weight of the prefix of length i
of the conformation is less than the average weight of the
prefixes of length i of the this conformations. Basically
the weight is high when the energy of the partial confor-
mation is small, the corresponding pheromone value are
high, and its potential is high (see for details [19]).

Criterion 5. If the weight of a partial sequence of length
k is not at least 5% higher than the weight of its prefix
of length k − 5 the node is cut.

5 Experiments and Results

The parameter values used for PFold-P-ACO are: α =
1.2, β = 1.6. Each TTL counter has inital value 2.5 · n
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Protein PERM F&F HPPFP-3 PFold-P
S1-1 -9 -9 -9 -9
S1-2 -9 -9 -9 -9
S1-3 -8 -8 -8 -8
S1-4 -14 -14 -14 -14
S1-5 -23 -23 -23 -23
S1-6 -21 -21 -21 -21
S1-7 -36 -36 -36 -36
S1-8 -42 -42 -42 -42
S1-9 -53 -53 -53b -53

S1-10 -50 -49 -49 -49d

S1-11 -48 -47 -47 -48e

B30-6 -13 - -13 -13
B30-9 -18 - -18 -18
B50-5 -22 - -22 -22c

B50-7 -17 - -17 -17c

D1 -19 - -19 -19
D2 -17 - -17 -17

D100-1 - - -24a -24
D100-2 - - -42a -42
D100-3 - - -52 -52c

Table 2: Energy of best conformation found with PERM
[10, 17], filter-and-fan [15] (F&F), ACO-HPPFP-3 [17]
(HPPFP-3), and PFold-P-ACO (PFold-P); a (b,c,d) en-
ergy value obtained only for 2/5 (2/5,1/2, 9/10) of the
runs; e energy value obtained only for 3/5 of the runs,
the other results obtained -47

when n is the length of the sequence. The ACO part of
PFold-P-ACO stops after a maximum number of itera-
tions 100000. The population size is 10 and the number
of ants per iteration is 20. Test runs have been executed
on 2.8GHz Intel Xeon double processor PC with 4GB
RAM. The HP test sequences are 11 standard bench-
mark sequences from [18] (S-1,. . . S-11), 4 sequences that
have been used in [17] from the PDB [14] (B-30-6,B-30-
9, B-50-5,B-50-7), and 2 sequences from [17] (D-1, D-2).
Moreover 3 sequences that are shown in Table 1 have been
created by us using a method provided in [17] (D100-x).
For the sequences of length ≥ 85 10 runs have been made
per test sequences and for the shorter sequences 100 runs.

In addition to the best existing ACO algorithm ACO-
HPPFP-3 from [17] we compare PFold-P-ACO with an-
other state of the art algorithm PERM [10] and with the
very good algorithm filter-and-fan algorithm of Rego et
al. [15] (F&F). A variant of PERM is used which folds
from both sides and is called PERMtexp in [17] where also
the run times results for PERM and F&F can be found.

A comparison between PERM, F&F, ACO-HPPFP-3 and
PFold-P-ACO can be found in tables 2 and 3. All algo-
rithms produce very good results on the S-x sequences
but only PERM found the best results for all of them.
PFold-P-ACO is the second best algorithm and found
the optimal results for all sequences but sequence S1-10.

Protein PERM F&F HPPFP-3 PFold-P
S1-1 <1s 0s <1s 0.06s
S1-2 <1s 2s <1s 0.4s
S1-3 2s 0.5s <1s 0.2s
S1-4 <1s 4s 4s 1.1s
S1-5 2s 10s 1m 13.3s
S1-6 3s 22s 15s 15.4s
S1-7 4s 56s 20m 4m
S1-8 78h 24s 1.5h 35m
S1-9 60s 1.3m 24h 4.5h

S1-10 - 6.8h 12h 15h
S1-11 8m 13.5m 10h 1.5h(-47)

8.5h(-48)
B30-6 1.6s - 70.9s 8.5h
B30-9 0.06s - 0.06s 0.9s
B50-5 9.4s - 13m 9.3m
B50-7 4.5m - 2m 2.5m

D1 2s - 4m 2.2m
D2 3.5h - 16m 25m

D100-1 - - 42.4h 3.5h
D100-2 - - 38.5h 1.5h
D100-3 - - 25.8h 14.5h

Table 3: Average computation times for PERM [10, 17],
filter-and-fan [15] (F&F), ACO-HPPFP-3 [17] (HPPFP-
3), and PFold-P-ACO (PFold-P); the run times for s1-11
for PFold-P-ACO are averages over the runs that pro-
duced a conformation with energy -48.

The other two algorithms found the optimal values for all
but the two sequences S1-10 and S1-11. With respect to
run time PERM is often relatively fast, but has serious
problems with some sequences, e.g., symmetric sequences
(see also [10]). This can be seen for sequence S1-8 where
PERM needs 78h, but ACO-HPPFP-3 needs only 1.5h
and the other two algorithms need less than 1h. F&F
has a similar runtime on most S-x Sequences as the ACO
algorithms and is significantly faster on sequences S1-8
and S1-11. Unfortunately, so far we could not get results
of F&F for the other sequences from the authors of [15].

Comparing the ACO algorithms it has to be taken into
account that results on S-x, B-x, D-1 and D-2 from [17]
were obtained on a one 2.4GHz processor PC, whereas for
PFold-P-ACO we used a two processor 2.8GHz PC. On
the other hand ACO-HPPFP-3 is written in C whereas
PFold-P-ACO is written in Java. The results for se-
quences D-100-x have been obtained by us for PFold-P-
ACO and ACO-HPPFP-3 on the same two processor PC.
Talking all this into account, it seems that PFold-P-ACO
is slightly faster on the S-4,...,S-11 sequences (an excep-
tion is S-10) and seems slightly slower on the B-x and
the D-1 and D-2 sequence. On the long sequences D-100-
x PFold-P-ACO is clearly faster. Altogether, PFold-P-
ACO seems faster on long sequences whereas both algo-
rithms are similar on small and medium length sequences.
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Figure 1: Run time until the optimum is found for S1-4
(left scale) and S1-7 (right scale) for different relative sizes
of set H compared to number of estimated HH-contacts
with distance at most 9 in the final conformation

Figure 1 shows the influence of relative size of H com-
pared to number of estimated HH-contacts with distance
≤ 9 in the final conformation (for details see [19]). It can
be seen that the size of H has a strong influence on the
run time. The results indicate that for long sequences a
medium size number of prescribed HH-contacts is advan-
tageous whereas for small sequences a larger number of
prescribed HH-contacts is better.

6 Conclusions

A hybrid population based ACO algorithm for HP-
Protein folding has been proposed. It was shown ex-
perimentally that algorithm PFold-P-ACO achieves on
nearly all test sequences at least comparable results to
other state of the art algorithms and is slightly better
and faster than other ACO algorithms.
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