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Existence of Periodic Motions

for Dynamical Systems with Finite Delay

Jiemin Zhao

Abstract—We give a concise existence result of periodic
motions for nonlinear dynamical system

X()+ax(@)+[2+sin(bx(t))] f(x(t—r)) =cos(wt+ @)
by means of the analysis and computing method.

Index Terms—boundedness, dynamical system, model, periodic
motion.

I. INTRODUCTION

Consider the mathematical model

@) +ax(t)+[2+sin(bx(2))] f(x(t—7r))
=cos(wt+ ) (1

where a =const.>0, f(x)eC', b, w, p=const., the finite

delay r = const.> 0. The nonlinear dynamical system (1) can
be used to describe many practical engineering problems [1—
8]. The existence problem of periodic motions of dynamical
system (1) is not only the considerable significance in theory,
but also of important background in application [1, 2, 5—9]. In
this paper, a convenient and efficient result is given to solve the
problem above.

II. ANALYSIS AND COMPUTING

Equivalent system of the dynamical system (1) is

x() = y(0)
y(O)==ay(®)=[2+sin(bx(r))] f(x(1))+

[2+sin(bx(t)] | y(1+5)f/(x(t+5))ds
+cos(wt+¢@).

If f(x)sgnx—>+o (|x|—>+0), then we choose
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V(xy)= | [2+sin(b$)] f(é)d§+%y2

as the V-functional of the system (2). Therefore,

V o) (x(0), p(1) ) =[2+sin (bx(0))] f(x(1))%(1)
+ () ¥(1)
=[2+sin(bx(#))] f(x(1))y(?)
+y@){-ay@)
—[2+sin(bx(¢))] f(x(1))
+[2+sin(bx(t))] x
[ v+ fixrs)yds
+cos(wt+@)}
=—ay’(t)+ y(t)cos(wt + @)+
[2+sin(bx(2))]y(t)x

fiy(t+s)f!(x(t+s))ds.

If 3rc <a, then there is a positive constant ¢ >1 such that

3qrc<a.When|f'(x)|£c,c:const.>0, |y(@)|>0 and

qly@®)|=|y@+s)| (-r<s<0), wehave

Vo (x(0), y(£) )= —ay* (1) + y(1) cos(wt + @)+
[2+sin(bx(2))]y(¢)x

[* v(t+s)f(xte+s))ds

<—ay’(t)+ y(t)cos(wt+ @)+
|2+sin (bx(2))| | ¥(7) | %

[*1(+9)11 £(x(e+5)) |ds
<—ay’(0)+y(t)cos(wt+¢)

#3130 | [ el pr+s)ds
<—ay’(t)+ y(t)cos(w1+p)

3¢ 1y | [ qly0)|ds

=—ay’(t)+ y(t)cos(wt + @)+
+3grcy’(t)
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S[—a+7lcos|(ya();;|¢)|+3qrc]yz(t)

|cos(wt+@)|, »

=—[a-3 - t

[a=3qrc O 1y=(
<Ja-3qgrc- ! 1v%(@).

[ v(0)]

Therefore, there is a positive constant M and a positive
constant & such that

[a—grc— 12 u

| y(1)]

for | y(¢)|2M and q| y(¢)| = | y(t+s)]|. Thus, we have
V(z)(x(t)ay(l) )S—/uyz(t)

for [y(@)|=2M and q|y(1)[=]y(+s)].

coordinate of the solutions of system (1) is uniformly ultimately
bounded for a positive constant D .

If |y|<D and V(x,y)=V(x,y)+y, then there is a

Hence, the y

positive constant L such that

V i (X(0), () )=V 5, (x(2), y(0) )+
=—ay’(t)+ y(t)cos(wt + @)+
[2+sin(bx(2))]y(t)x

I_O,y(fﬂ)f;(x(ns))ds

—[2+sin(bx(t))] f(x(t))+
[2+sin(bx(2))] x

[* v+ ) fix+s))ds
+cos(wt+@)—ay(t)
<—ay* O+ y(0)]+
3151 [ 19 +9) 1| £Gx(a+5)|ds
—[2+sin(bx(¢))] f(x(?))+
3[° 10+ |1 £(x(t+5)) |ds

—ay(t)+1
<—[2+sin(bx(?))] f(x(@))+L.

Since f(x)sgnx—>+oo(|x|—)+oo), we can choose a

constant L >0 such that
V iy (x(0), 9(0) )<—0.5  ifx()>1L.

Therefore, there is a positive constant £ such that the x

coordinate of the solutions of system (1) satisfies x(¢) < S
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for| y| < D. Similarly, we can obtain the x coordinate of the
solutions of system (1) satisfies x(¢)>— f for|y|<D.Itis

shown that solutions of system (1) are uniform ultimately
bounded [1, 2, 5].
If f(x)eC', then the system (1) generates a 27/@w—

periodic processU on the Banach spaceé( [-r, 0], R?).
Since the solutions of system (1) are uniform ultimately
bounded, there is a bounded set D < C([-r, 0], R?*) such

that Rx D attracts all points in C([-b, 0], R*). Hence, the
system (1) is 27/ w—periodic [1, 2, 5].

III. MAIN RESULT

From analysis and computing above, we have result as
follow:

Suppose /' (x) is a continuous function. If there is a constant
¢ > 0 such that

(1) | rml<e,

(ii) 3cr<a,

(i) f(x)sgnx—+oo (|x]|>+x),
then there is a 27 /®— periodic motion of the dynamical
system (1) .
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