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Abstract—In this paper, we have proposed
an ε-uniform initial value technique for singularly
perturbed convection-diffusion problems in which
an asymptotic expansion approximation of the so-
lution of boundary value problem is constructed
using the basic idea of WKB method. In this
computational technique, the original problem re-
duces to combination of an initial value problem
and a terminal value problem. The initial value
problem happened to be singularly perturbed prob-
lem, which is then solved by using a hybrid scheme
on an appropriate piecewise uniform Shishkin mesh,
whereas trapezoidal scheme is applied to terminal
boundary value problems. Necessary error esti-
mates are derived for the method. Computational
efficiency and accuracy are verified through nu-
merical examples.
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1 Introduction

Singularly perturbation problems(SPP’s) arise in sev-
eral branches of computational science which include
fluid dynamics, quantum mechanics, elasticity, chem-
ical reactor theory, gas porous electrodes theory, etc.
The presence of small parameter(s) in these problems
prevents us from obtaining satisfactory numerical so-
lutions. It is a well known fact that the solutions
of the SPP’s have a multi-scale character. That is,
there are thin transition layers where the solutions
can jump abruptly, while away from the layers the
solution behave regularly and varies slowly.

It is well known that classical methods fail to pro-
vide reliable numerical results for such problems (in
the sense that the parameter ε and the mesh size h
can not vary independently). To solve these type of
problems, mainly there are two approaches namely,
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fitted operator and fitted mesh methods. The first
one has advantage that it does not require the knowl-
edge of location and width of the boundary layer,
however, they are difficult to extend for higher di-
mensional problems. Whereas, the disadvantage of
second approach is requirement of knowledge of lo-
cation and width of boundary layer, but is gaining
popularity because simple piecewise uniform meshes
like Shishkin meshes are sufficient to give satisfactory
results and extension to higher dimensional problems
is comparatively easy. For solving various types of
singular perturbation problems, many techniques are
available in the literature, more details can be found
in books of Farrell et.al.[2] and Roos et.al.[3].

In this article we consider the following convection-
diffusion singularly perturbed boundary value prob-
lems
(SPBVP’s):

Lu(x) ≡ εu′′(x) + a(x)u′(x) = f(x), (1.1)
x ∈ Ω = (0, 1) (1.2)

u(0) = p, u(1) = q (1.3)

where 0 < ε ≤ 1 is a small positive parameter, a(x)
and f(x) are sufficiently smooth functions, such that
a(x) ≥ β > 0 on Ω = [0, 1]. Under these assump-
tions, the (SPBVP)(1.1-1.3) possesses a unique solu-
tion u(x) ∈ C2(Ω) with a boundary layer of width
O(ε) at x=0.

In recent past, some researchers employed tech-
niques for solving (SPBVP’s), which are based on the
idea of replacing a two point boundary value problem
by two suitable initial-value problems. For example
Gasparo and Macconi[7] considered a semi-linear or-
dinary differential equation which was integrated to
obtain a first-order ordinary differential equation and
considered both the inner and outer solutions. A sim-
ilar matching combing the reduced problem and a
WKB approximation for the full problem has also
been employed by Gasparo and Macconi[8] for linear
and semi-linear (SPBVP’s). These matching ideas
are based on on the work of Robert[9]. Robert’s idea
has been extended by Valanarasu and Ramanujam[10]
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to BVP of singularly perturbed ode’s, where the au-
thors used the combination of Euler’s method and
exponentially fitted method. The main disadvantage
of this method is that, it works only for those values
of N(number of mesh points) which are of same order
as of ε(perturbation parameter). Also, its theoret-
ical order of convergence is only one. To overcome
these drawbacks, we have used the method proposed
in[6], which is combination of Euler and Trapezoidal
method on well known Shishkin mesh in such a way
that, the order of convergence is increased to two
and it works for different values of N and ε,even for
h(mesh size)<< ε.

In this paper, we are interested in obtaining nu-
merical solutions of (1.1-1.3) for small values of posi-
tive parameter ε. We suggest an initial-value method,
in line of [8] for SPBVP (1.1-1.3). In [8], the BVP is
replaced with one suitable initial value problems(IVP)
and a terminal value problem(TVP). The integra-
tion of these problems goes in opposite directions,
but each problem can be solved independently of the
other. The IVP is of singularly perturbed type, whereas
the TVP does not contain any small parameter. Hence,
we solve TVP by Trapezoidal method and IVP by hy-
brid scheme proposed by Bawa and Kumar [6]. The
hybrid scheme, is the combination of Trapezoidal
method and Implicit Euler method and is applied on
modified Shishkin mesh. The scheme retains the os-
cillation free behavior of Euler’s method and higher
order convergence of Trapezoidal method.

The outline of this paper is as follows: we present
some results in the form of theorems and asymptotic
expansion approximation in section 2. Shishkin mesh
and initial-value technique are given Section 3. Fi-
nally, some numerical examples are presented in Sec-
tion 4. The paper ends with conclusion.

2 Preliminaries

2.1 Asymptotic Expansion Approxima-
tion

It is well known that, by using the fundamental idea
of WKB [1], an asymptotic expansion approximation
for the solution of SPBVP (1.1-1.3)is given by:

uas(x) = uR(x) + (p− uR(0))u1(x) + O(ε) (2.1)

where uR(x) is the solution of reduced problem

u′R(x) = f(x)
a(x) , x ∈ Ω (2.2)

uR(1) = q (2.3)

and u1(x) is defined on Ω by

u1(x) = exp{−
∫ x

0

a(s)
ε

ds} (2.4)

Also,u1(x) satisfies the following initial value prob-
lem

εu′1(x) + a(x)u1(x) = 0, x ∈ Ω (2.5)
u1(0) = 1 (2.6)

Theorem 2.1 The zero order asymptotic expansion
approximation uassatisfies the inequality

|(u− uas)(x)| ≤ Cε, x ∈ Ω

where u(x) is he solution of BVP (1.1-1.3).

Proof.See Ref.[4].

Theorem 2.2 u(x) is he solution of BVP (1.1-1.3).Then:

|u(k)(x)| ≤ C[1 + ε−ke
−βx

ε ], x ∈ Ω, k = 1, 2....

Proof. See Ref.[14].

3 Discretization and Mesh for
Initial-Value Problem

The singularly perturbed initial value problem(2.5-
2.6) is solved by following hybrid scheme[6].

Let the mesh points of Ω = [0, 1] be

x0, xi = Ω
i−1

k=0hk, hk = xk+1−xk, xN = 1, i = 1, 2, ..., N−1.

We define the scheme as

LNUi ≡

 εD−Ui + ai−1Ui−1+aiUi

2 = fi−1+fi

2 0 < i ≤ N/2,

εD−Ui + aiUi = fi, N/2 < i ≤ N
(3.1)

where D−Ui = Ui−Ui−1
hi

and ai = a(xi), fi = f(xi).

3.1 Piece-wise uniform Shishkin mesh

It is known that on an equidistant mesh no scheme
can attain convergence at all mesh points uniformly
in ε, unless its coefficients have an exponential prop-
erty. In order to be ε−uniform convergent, we will
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use the Shishkin mesh on the difference scheme de-
fined above. Shishkin mesh is attractive because of
its simplicity and adequate for handling a vide vari-
ety of singularly perturbed problems[14]. The basic
idea behind this mesh is to divide Ω into [0, σ] and
[σ, 1], where σ is a transition point(a function of N
and ε)and place N/2 points of the mesh in the region
[0, σ] known as ”inner region ” where the solution
varies fast and place remaining N/2 mesh points in
the region [σ, 1] called ”outer region” where the so-
lution varies slowly. In this hybrid scheme, we use
Trapezoidal scheme in the inner region and Euler’s
scheme in the outer region. The transition point
σ,which separates the fine and coarse portions of the
mesh is obtained by:

σ = min{1
2
, σ0ε lnN}

and σ0 ≥ 2√
β
.

Further, we denote the mesh size in the region
[0, σ] by h = 2 σ

N and in (σ, 1] by H = 2 (1−σ)
N .

Proposition 3.1 Let u(x) and Ui be respectively the
solutions of (2.5-2.6) and (3.1). Then, the local trun-
cation error satisfies the following bounds:

|LN
ε (Ui − ui)| ≤ CN−2σ2

0 ln2 N, for 0 < i ≤ N/2,

|LN
ε (Ui − ui)| ≤ C(N−1ε + N−βσ0), forN/2 < i ≤ N

and H ≤ ε,

|LN
ε (Ui − ui)| ≤ C(N−2 + N−βσ0), forN/2 < i ≤ N

and H > ε.

Proof. See Ref.[6]

3.2 Description of Method

In this sub-section, we describe the initial value tech-
nique [8] in brief to solve the (SPBVP) (1.1-1.3)

• Step 1. Solve the TVP (2.2-2.3) by using
Trapezoidal Method.
Let U0(xi) be its solution.

• Step 2. Solve the IVP (2.5-2.6) by using hy-
brid scheme 3.1 on described Shishkin mesh in
section (3.1).
Let V0(xi) be its solution.

• Step 3. Compute solution of(1.1-1.3) as

Ui = U0(xi) + (p− uR(0))V0(xi), x ∈ Ω

4 Numerical Experiments and
Discussions

To illustrate the present technique, two examples are
provided here. Computational results are given in
the form of tables. The results are presented with
maximum point wise error’s for various values of ε
and N. We have also computed the computational
order of convergence and shown in the same table
along with maximum errors. In all the cases, we take
the constant σ0=2. From, Table 1 and 2, we clearly
deduce the second order of convergence(except by a
logarithmic factor). Maximum point wise error are
calculated as:

EN
ε = max

xiεΩ
N
{|u(xi)− uN

i |}

Where u(xi) is the exact solution and uN
i is the nu-

merical solution obtained by using N mesh intervals
in the domain Ω

N
. The rates of convergence are cal-

culated as:

pN =
lnEN

ε − lnE2N
ε

ln2

Example 4.1 Consider the BVP:

εu′′(x) + u′(x) = 0, x ∈ (0, 1)
u(0) = 1, u(1) = 1

The exact solution of this problem is

u(x) =
1− e−x/ε

1− e−1/ε
.

Results are given in Table 1, for various values of N
and ε .

Example 4.2 Consider the non-homogeneous BVP:

εu′′(x) + u′(x) = 1 + 2x, x ∈ (0, 1)
u(0) = 0, g(x) = u(1) = 1.

The exact solution of this problem is

u(x) = x(x + 1− 2ε) + (2ε− 1)
1− e−x/ε

1− e−1/ε
.

The numerical results are given in Table 2.
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Table 1: Maximum point wise errors and rates of convergence for Example 4.1.
ε Number of mesh points

16 32 64 128 256 512 1024

2−8 1.474883E-02 5.822688E-03 2.084745E-03 7.052506E-04 2.301492E-04 7.281707E-05 2.247652E-05
1.340843 1.481815 1.563663 1.615567 1.660221 1.695858

2−10 1.474883E-02 5.822688E-03 2.084745E-03 7.052506E-04 2.301492E-04 7.281707E-05 2.247652E-05
1.340843 1.481815 1.563663 1.615567 1.660221 1.695858

2−12 1.474883E-02 5.822688E-03 2.084745E-03 7.052506E-04 2.301492E-04 7.281707E-05 2.247652E-05
1.340843 1.481815 1.563663 1.615567 1.660221 1.695858

2−14 1.474883E-02 5.822688E-03 2.084745E-03 7.052506E-04 2.301492E-04 7.281707E-05 2.247652E-05
1.340843 1.481815 1.563663 1.615567 1.660221 1.695858

2−16 1.474883E-02 5.822688E-03 2.084745E-03 7.052506E-04 2.301492E-04 7.281707E-05 2.247652E-05
1.340843 1.481815 1.563663 1.615567 1.660221 1.695858

2−18 1.474883E-02 5.822688E-03 2.084745E-03 7.052506E-04 2.301492E-04 7.281707E-05 2.247652E-05
1.340843 1.481815 1.563663 1.615567 1.660221 1.695858

2−20 1.474883E-02 5.822688E-03 2.084745E-03 7.052506E-04 2.301492E-04 7.281707E-05 2.247652E-05
1.340843 1.481815 1.563663 1.615567 1.660221 1.695858

2−24 1.474883E-02 5.822688E-03 2.084745E-03 7.052506E-04 2.301492E-04 7.281707E-05 2.247652E-05
1.340843 1.481815 1.563663 1.615567 1.660221 1.695858

2−28 1.474883E-02 5.822688E-03 2.084745E-03 7.052506E-04 2.301492E-04 7.281707E-05 2.247652E-05
1.340843 1.481815 1.563663 1.615567 1.660221 1.695858

2−32 1.474883E-02 5.822688E-03 2.084745E-03 7.052506E-04 2.301492E-04 7.281707E-05 2.247652E-05
1.340843 1.481815 1.563663 1.615567 1.660221 1.695858

2−36 1.474883E-02 5.822688E-03 2.084745E-03 7.052506E-04 2.301492E-04 7.281707E-05 2.247652E-05
1.340843 1.481815 1.563663 1.615567 1.660221 1.695858

2−39 1.474883E-02 5.822688E-03 2.084745E-03 7.052506E-04 2.301492E-04 7.281707E-05 2.247652E-05
1.340843 1.481815 1.563663 1.615567 1.660221 1.695858

Table 2: Maximum point wise errors and rates of convergence for Example 4.2.
ε Number of mesh points

16 32 64 128 256 512 1024

2−8 2.037855E-02 1.131160E-02 8.282743E-03 7.700625E-03 7.636503E-03 7.622467E-03 7.617530E-03
0.849248 0.449623 0.105133 0.012063 0.002654 0.000935

2−10 1.599539E-02 7.063400E-03 3.427317E-03 2.205096E-03 1.956126E-03 1.940117E-03 1.938630E-03
1.179221 1.043283 0.636238 0.172843 0.011855 0.001106

2−12 1.499298E-02 6.105652E-03 2.400336E-03 1.035524E-03 5.935718E-04 4.940730E-04 4.874028E-04
1.29607 1.346909 1.212876 0.802866 0.264699 0.01961

2−14 1.480987E-02 5.893433E-03 2.163653E-03 7.850824E-04 3.115463E-04 1.613726E-04 1.250964E-04
1.329378 1.445639 1.462553 1.333397 0.949051 0.367356

2−16 1.476409E-02 5.840375E-03 2.104472E-03 7.252094E-04 2.498768E-04 9.294108E-05 4.415560E-05
1.337959 1.472602 1.536989 1.537181 1.426829 1.07372

2−18 1.475265E-02 5.827110E-03 2.089677E-03 7.102403E-04 2.350812E-04 7.770487E-05 2.746580E-05
1.340121 1.479501 1.5569 1.595148 1.597082 1.500368

2−20 1.474978E-02 5.823794E-03 2.085978E-03 7.064980E-04 2.313822E-04 7.403903E-05 2.369299E-05
1.340663 1.481236 1.561966 1.610408 1.64392 1.643826

2−24 1.474889E-02 5.822758E-03 2.084822E-03 7.053285E-04 2.302263E-04 7.289344E-05 2.255195E-05
1.340832 1.481779 1.563557 1.615243 1.659191 1.692537

2−28 1.474883E-02 5.822693E-03 2.084749E-03 7.052554E-04 2.301540E-04 7.282185E-05 2.248123E-05
1.340843 1.481813 1.563656 1.615546 1.660156 1.69565

2−32 1.474883E-02 5.822689E-03 2.084745E-03 7.052509E-04 2.301495E-04 7.281737E-05 2.247681E-05
1.340843 1.481815 1.563662 1.615565 1.660217 1.695845

2−36 1.474883E-02 5.822688E-03 2.084745E-03 7.052506E-04 2.301492E-04 7.281739E-05 2.247654E-05
1.340843 1.481815 1.563663 1.615566 1.66022 1.695857

2−39 1.474883E-02 5.822688E-03 2.084745E-03 7.052506E-04 2.301492E-04 7.281738E-05 2.247652E-05
1.340843 1.481815 1.563663 1.615566 1.660221 1.695858
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5 Conclusions

In the recent past, Many initial-value technique have
been applied to solve various(SPBVPs), But either
they work under very severe restriction on mesh size
or they converge very slow.In the present paper, we
have proposed a computational technique for obtain-
ing numerical solutions of BVP (1.1-1.3). This paper
demonstrates, the effectiveness of the Shishkin mesh
by modifying the initial value technique[8] in a very
simple way so that higher order, almost second order
of convergence can be achieved with no restrictions
on values of h and ε. Our method is easy for com-
puter implementation and more effective in the sense
of solution error’s.
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