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Abstract The Telescoping Decomposition Method
(TDM) is a new iterative method to obtain numerical
and analytical solutions for first order nonlinear dif-
ferential equations. The method is a modified form
of the well-known Adomian Decomposition Method
(ADM) where the Adomian polynomials have not to
be calculating. The (TDM) is easier to apply and of-
fers better accuracy than the (ADM). Also, it can be
applied to other systems where the (ADM) does not
work. The (TDM) is proved to be convergent to the
exact solution while it is not the case in the (ADM).
The idea of the (TDM) can be developed to deal with
various types of functional equations, as well.
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1 Introduction

Differential equations appear in various applications in
the physical sciences and engineering. They also, have
been used to study solutions of partial differential equa-
tions, since most techniques reduce the partial differen-
tial equation into a differential or a system of differential
equations. Most of differential equations coming from
real life applications are nonlinear and the seek of ana-
lytical solutions is a difficult task. Therefore, numerical
methods have been introduced. The Runge-Kutta meth-
ods, linear multistep methods and Galerkin method can
be used to integrate differential equations numerically
and obtain accurate solutions [7, 8]. Recently, certain
methods that produce accurate and analytical solutions
have been introduced. Such as the tanh method [11], the
variational iteration method [9] and the Adomian decom-
position method (ADM). The (ADM) method was first
introduced by Adomian [1, 2], and it has been used to in-
tegrate various systems of functional equations [3, 4]. A
main part of the (ADM) is finding the Adomian polyno-
mials. Several Authors have discussed this issue and ob-
tained different approaches for calculating the Adomian
polynomials [6, 12]. However, the most popular one is
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the formula obtained in [1, 3]

An =
1
n!

dn

dλn
f

( ∞∑

i=0

uiλ
i

)
|λ=0,

where An denotes the Adomian polynomial of degree
n, u =

∑∞
i=0 ui is the exact solution of the problem

and f(u) is the nonlinear term in the equation. It is
worth noting that calculating the Admian polynomials
is difficult for large n and the above formula can not
be applied if f is a function of more than one variable,
such as f = f(u, u′). Also, the (ADM) is shown to be
divergent for certain problems [10].

In this paper we introduce the Telescoping decom-
position method (TDM) for solving first order nonlinear
initial value problems. We will use the idea of the
Adomain method but avoid calculating the Adomian
polynomials. In section 2, we present the expansion
procedure of the (TDM) and then show the convergence
of the (TDM) in Section 3. We present some numerical
results and comparison with the (ADM) in Section 4,
and finally we write some concluding remarks in Sections
5.

2 The Expansion Procedure

We consider the initial value problem

ut = f(t, u, ut), t ∈ Ω (1)
u(0) = u0, (2)

where Ω = [0, T ] is compact subset of R. By integrating
the above equation we have

u(t) = u(0) +
∫ t

0

f(τ, u(τ), uτ (τ))dτ. (3)

We consider a solution of the form u(t) =
∑∞

n=0 un(t),
where un(t) has to be determined sequentially upon the
following algorithm:

u0 = u0, (4)

u1 =
∫ t

0

f
(
τ, u0(τ), u0

τ (τ)
)
dτ,

u2 =
∫ t

0

f

(
τ,

1∑

k=0

uk(τ),
1∑

k=0

uk
τ (τ)

)
dτ −
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∫ t

0

f
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τ, u0(τ), u0

τ (τ)
)
dτ,

u3 =
∫ t

0

f
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uk
τ (τ)

)
dτ −

∫ t
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∫ t

0

f
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uk
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dτ −
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.
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un =
∫ t

0

f

(
τ,

n−1∑

k=0

uk(τ),
n−1∑

k=0

uk
τ (τ)

)
dτ −

∫ t

0

f

(
τ,

n−2∑

k=0

uk(τ),
n−2∑

k=0

uk
τ (τ)

)
dτ. (5)

Adding equations between (4) and (5) we have

n∑

k=0

uk(t) = u0+
∫ t

0

f

(
τ,

n−1∑

k=0

uk(τ),
n−1∑

k=0

uk
τ (τ)

)
dτ, n ≥ 1.

(6)
We remind here that the choice of u0 in (4) is not unique,
we can chose it to be any function of t and this depends
on the problem as we will see in Section 4. Also, if
f(t, u, ut) = u the simple linear case then the (ADM)
and (TDM) will coincide and give the exact solution of
the problem.

3 Convergence analysis

In this section we prove that
∑∞

k=0 uk converges uni-
formly to the exact solution of (1-2). We have the fol-
lowing lemmas before writing the main result.

Lemma 1 Consider the sequence of functions
un(t), n ≥ 0, as defined in (4-5). If f is differen-
tiable on Ω and ∂f

∂u is continuous on Ω, then the infinite
series

∑∞
0 un converges uniformly on Ω.

Proof 1 As f and ∂f
∂u are continuous on Ω, then

there exist positive real numbers M and L such that
‖f(τ, u, uτ )‖ ≤ M and ‖∂f

∂u‖ ≤ L. First we shall use
mathematical induction to prove the inequality

‖un‖ ≤ Ln−1Mtn

n!
, ∀n ≥ 1. (7)

The result is true for n = 1, since ‖u1‖ =
‖ ∫ t

0
f(t, u0, u0

τ )dτ‖ ≤ Mt.

Suppose that for k ≥ 2, ‖uk‖ ≤ Lk−1Mtk

k! , we shall show
that the inequality holds for k + 1. Recall

uk+1 =
∫ t

0

[ f

(
τ,

k∑

i=0

ui(τ),
k∑

i=0

ui
τ (τ)

)
dτ

−
∫ t

0

f

(
τ,

k−1∑

i=0

ui(τ),
k−1∑

i=0

ui
τ (τ)

)
]dτ.

By applying the Mean Value Theorem on the second vari-
able of f , there exists ζk such that

f

(
τ,

k∑

i=0

ui(τ),
k∑

i=0

ui
τ (τ)

)
− f

(
τ,

k−1∑

i=0

ui(τ),
k−1∑

i=0

ui
τ (τ)

)

=
∂f

∂u
(ζk) uk(τ),

where ζk lies on the line segment
(1 − λ)

∑k
i=0 ui(τ) + λ

∑k−1
i=0 ui(τ), for λ ∈ (0, 1). Then

we have

‖uk+1‖ ≤
∫ t

0

‖∂f

∂u
(ζk)‖ ‖uk‖dτ,

therefore by the induction hypothesis, we get

‖uk+1‖ ≤ Lk−1M

k!

∫ t

0

‖∂f

∂u
(ζk)‖tkdτ

≤ LkMtk+1

(k + 1)!
,

and the inequality is proved.

The supremum norm of un on Ω satisfies

‖un‖Ω = sup{‖un(t)‖; t ∈ Ω} ≤ Ln−1MT 0

n!
.

Now as
∑∞

n=0
Ln−1

n! is convergent series of positive
real numbers, then by using the Weierstrass M -test
([5],p.317), we have

∑∞
n=0 un is uniformly convergent on

Ω, hence the lemma has been checked.

Lemma 2 Consider the sequence of functions
un(t), n ≥ 0, as defined in (4-5). If f is differen-
tiable on Ω and ∂f

∂u is continuous on Ω, then the infinite
series

∑∞
0 un

t converges on Ω.

Proof 2 As f and ∂f
∂u are continuous on Ω, then

there exist positive real numbers M and L such that
‖f(τ, u, uτ )‖ ≤ M and ‖∂f

∂u‖ ≤ L. Therefore ‖u1
τ‖ =

‖f(t, u0, 0)‖ ≤ M . Now recall that for all n ≥ 2,

un
τ = f(τ,

n−1∑

i=0

ui(τ),
n−1∑

i=0

ui
τ (τ))−f(τ,

n−2∑

i=0

ui(τ),
n−2∑

i=0

ui
τ (τ)).
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By applying the Mean value theorem on the second vari-
able of f , there exists ζn−1 such that

f(τ,
n−1∑

i=0

ui(τ),
n−1∑

i=0

ui
τ (τ))− f(τ,

n−2∑

i=0

ui(τ),
n−2∑

i=0

ui
τ (τ))

=
∂f

∂u
(ζn−1) un−1(τ),

where ζn−1 lies on the line segment (1− λ)
∑n−1

i=0 ui(t) +
λ

∑n−2
i=0 ui(t), for some λ ∈ [0, 1]. Then by using inequal-

ity (7) we have

‖un
τ (t)‖ = ‖∂f

∂u
(ζn−1)‖ ‖un−1(t)‖

≤ L

(
Ln−2Mtn−1

(n− 1)!

)

=
Ln−1Mtn−1

(n− 1)!

Hence we proved the validity of the argument for all n ≥
1. Therefore,

‖un
t ‖Ω = sup{‖un

t (t)‖; t ∈ Ω} ≤ Ln−1Mβ

(n− 1)!
,

for some positive real number β. As
∑∞

n=0
Ln−1

n! is con-
vergent series of positive real numbers, then by the Weier-
strass M -test, the lemma has been proved.

Theorem 1 Consider the initial value problem (1-2),
and the sequence of functions un(t), as defined in (4-5).
If f is differentiable on Ω and ∂f

∂u is continuous on Ω,
then

∑∞
0 un converges uniformly to the exact solution of

the initial value problem.

Proof 3 Recall that for every positive integer n,

n∑

k=0

uk = u0 +
∫ t

0

f(τ,
n−1∑

k=0

uk,
n−1∑

k=0

uk
τ )dτ.

Let

sn =
n−1∑

k=0

uk, s̃n =
n−1∑

k=0

uk
τ

and define the sequence of functions gn by
gn := f(τ, sn, s̃n).

By Lemma (1), we have that sn is uniformly convergent
on Ω to some function V , and by Lemma (2), we get s̃n

converges uniformly on Ω to V ′ ([5],p.317).

Moreover, as f is uniformly continuous on Ω, then the
sequence gn converges uniformly to f(τ, V, V ′). There-
fore,

∞∑

k=0

uk = u0 + lim
n→∞

∫ t

0

gndτ

= u0 +
∫ t

0

lim
n→∞

gndτ

= u0 +
∫ t

0

f(τ, lim
n→∞

sn, lim
n→∞

s̃n)dτ

= u0 +
∫ t

0

f(τ, V (τ), V ′(τ))dτ

and hence the result is obtained.

4 Numerical Results

In the following we present various applications to illus-
trate the validity and effectiveness of the (TDM). We de-
note uT =

∑n
k=0 uk and uA =

∑n
k=0 uk the approximate

solutions obtained by the (TDM) and (ADM), respec-
tively.

Example 1 Consider the initial value problem

u′ = 2 + 2t + 2t2 + 2t3 + t4 − (1 + t2)u2

u(0) = 1.

The problem has been discussed in [10] and the infinite se-
ries solution obtained by the (ADM) is proved to be diver-
gent. Since f(t, u) is differentiable and ∂f

∂u = −2(1 + t2)u
is continuous, then the infinite series solution obtained by
the (TDM) converges to the exact solution u(t) = 1 + t.
Integrating the equation with respect to t we have

u(t) = 1+2t+ t2 +
2
3
t3 +

1
2
t4 +

1
5
t5−

∫ t

0

(1+ τ2)u2(τ)dτ.

We start with u0 = 1 + 2t + t2 + 2
3 t3 + 1

2 t4 + 1
5 t5 and

the approximate solution uT =
∑n

k=0 uk is obtained by
applying the (TDM) algorithm. Figures 1 and 2 show the
exact and approximate solutions of the problem obtained
by the (TDM) for n=3,4,5 and 6 with t ∈ [0, .5]. Figure 1
show that the approximate solutions uT are close enough
to the exact solution u for t ∈ [0 .25]. While they are
little bit far from the exact solution in [.25 .5]. However,
for n = 4 and 5 the approximate solutions are very close
to the exact one in [0 .5] as shown in Figure 2. That is, we
have to increase the number of terms n in order to achieve
accurate approximate solution as the time increases.

Example 2 Consider the initial value problem

u′ = 1 + u2

u(0) = 0.

The Taylor series expansion of the exact solution

u(t) = tan(t) = t +
t3

3
+

2t5

15
+

17t7

315
+

62t9

2835
+ · · ·
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We have u(t) = u(0)+t+
∫ t

0
u2(τ)dτ, and since u(0) = 0,

we start with u0 = t. Applying the (TDM) we have

u1 =
1
3
t3,

u2 =
2
15

t5 +
1
63

t7,

u3 =
4

105
t7 +

38
2835

t9 +
134

51975
t11 +

4
12285

t13

+
1

59535
t15,

u4 =
8

945
t9 +

148
31185

t11 +
11344

6081075
t13 +

366292
638512875

t15

+
1522814

10854718875
t17 + · · ·+ 1

10987690297
t31.

Hence,

u0 +u1 +u2 +u3 +u4 + · · · = t+
t3

3
+

2t5

15
+

17t7

315
+

62t9

2835

+O(t11),

which coincides with the Taylor series of the exact solu-
tion. That is, the exact solution of the problem is ob-
tained by the (TDM).

Example 3 Consider the initial value problem

u′ = 1 + 2u− u2

u(0) = 0.

The exact solution of the problem u(t) = 1 +√
2 tanh

(√
2t + 2 log(

√
2−1√
2+1

)
)

. Figure 3 and 4 present the
exact and approximate solutions uA and uT of the prob-
lem obtained by the (ADM) and (TDM), respectively, for
n = 2, 3, 4 and t ∈ [0 1.5]. One can see that the (ADM)
and the (TDM) produce solutions which converge to the
exact solution of the problem but the (TDM) converges
faster. To illustrate this conclusion, we compute the er-
rors eA and eT between the exact and approximate solu-
tions obtained by the (ADM) and (TDM), respectively.
We define

eA = ||u− uA||2 =

√∫ T

0

(u− uA)2dt,

and in a similar manner we define eT . Tables 1-5 present
the errors eA and eT for different values of n and T. One
can see that both errors increase as T increases. For
T = 1.5 the error eA is not necessarily decreasing with n,
which indicates the (ADM) produces unstable solution.
While, the error eT is decreasing with n in all cases of
T . Also, we have eT < eA except for the case when
T = 0.5 and n = 2 as indicated in Table 1. The above
discussion demonstrates that the (TDM) is more efficient
and converges faster than the (ADM) and we expect it
to have the same feature for other problems, as well.

Table 1: The errors between the exact and approximate
solutions obtained by the (ADM) and (TDM) for n=2.

eA eT

0.0 ≤ t ≤ 0.5 0.0009246 0.0018798
0.0 ≤ t ≤ 1.0 0.0336764 0.0048257
0.0 ≤ t ≤ 1.5 0.1727480 0.0557244

Table 2: The errors between the exact and approximate
solutions obtained by the (ADM) and (TDM) for n=3.

eA eT

0.0 ≤ t ≤ 0.5 0.0002836 0.0002096
0.0 ≤ t ≤ 1.0 0.0135943 0.0005716
0.0 ≤ t ≤ 1.5 0.0505807 0.0115319

Table 3: The errors between the exact and approximate
solutions obtained by the (ADM) and (TDM) for n=4.

eA eT

0.0 ≤ t ≤ 0.5 0.0000854 0.0000204
0.0 ≤ t ≤ 1.0 0.0027531 0.0000555
0.0 ≤ t ≤ 1.5 0.0753189 0.0072910

5 Concluding Remarks

We have presented and analyzed the Telescoping Decom-
position Method (TDM) for solving nonlinear first order
initial value problem of the form

ut = f(t, u, ut), u(0) = u0, t ∈ Ω,

where Ω is a compact subset of R. We proved that the
(TDM) converges uniformly to the exact solution of the
problem provided that f is differentiable and ∂f

∂u is con-
tinuous on Ω. We have applied the (TDM) for a variety
of applications and obtained an accurate solutions as well
as, exact solutions for certain problems.
The (TDM) has several advantages over the Adomian
Decomposition Method (ADM): no need to calculate the
Adomian polynomials and replace them by a simple for-
mula, the (TDM) always converges to the exact solution
while the (ADM) is not, and it converges faster to the
exact solution. Also, there is no general formula for cal-
culating the Adomian polynomials with nonlinear term
f(t, u, ut).
The idea of the (TDM) can easily be modified to obtain
solutions of higher order differential equations but prov-
ing the convergence of the method is not an easy task.
Also, it can be applied for various systems of partial and
integral equations, as well. However, we leave these issues
for a future work.
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Figure 1: The exact solution u and the approximate solution uT obtained by the (TDM) for n = 3 (left) and n = 4
(right) and t ∈ [0, .5] .

Figure 2: The exact solution u and the approximate solution uT obtained by the (TDM) for n = 5 (left) and n = 6
(right) and t ∈ [0, .5] .

Figure 3: The exact solution u and the approximate solutions uA and uT for n = 2 (left) and n = 3 (right) and
t ∈ [0, 1.5] .

Figure 4: The exact solution u and the approximate solutions uA and uT for n = 4 and t ∈ [0, 1.5].
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Table 4: The errors between the exact and approximate
solutions obtained by the (ADM) and (TDM) for n=5.

ADM TDM
0.0 ≤ t ≤ 0.5 7.59768 ∗ 10−6 1.75221 ∗ 10−6

0.0 ≤ t ≤ 1.0 0.0029373 5.04844 ∗ 10−6

0.0 ≤ t ≤ 1.5 0.0169083 0.0001582

Table 5: The errors between the exact and approximate
solutions obtained by the (ADM) and (TDM) for n=6.

ADM TDM
0.0 ≤ t ≤ 0.5 1.76954 ∗ 10−6 1.34047 ∗ 10−7

0.0 ≤ t ≤ 1.0 0.0004265 4.07328 ∗ 10−7

0.0 ≤ t ≤ 1.5 0.0353069 0.0000394
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