On the Global Uniform Asymptotic Stability of Nonlinear Dynamic System

Jiemin Zhao

Abstract—We give a concise result of global uniform asymptotic stability for nonlinear dynamical system

\[
\begin{align*}
\dot{x}(t) &= y(t), \\
\dot{y}(t) &= [1 + \sin^2(Ay(t))] \int_0^t y(t+s) K(x(t+s)) \, ds \\
&- By(t) + Cy(t) [1 + \sin^2(Ay(t))]
\end{align*}
\]

where \(a \) is an arbitrary constant. Thus, if

\[
(x(t), y(t)) = (x(t, t_0, x_0), y(t, t_0, y_0))
\]

is a solution of dynamical system (1), then the derivative \(\dot{V} \) of \(V \) along \((x(t), y(t))\) satisfies

\[
\dot{V}(t) = 2Cx(t) \dot{x}(t) + \frac{2y(t)}{1 + \sin^2(Ay(t))} \dot{y}(t) + a \int_0^t [y^2(t) - y^2(t+s)] \, ds.
\]

by means of the method of Liapunov functional.

Index Terms—dynamical system, finite delay, model, Stability.

I. INTRODUCTION

Consider the mathematical model

\[
\begin{align*}
\dot{x}(t) &= y(t), \\
\dot{y}(t) &= [1 + \sin^2(Ay(t))] \int_0^t y(t+s) K(x(t+s)) \, ds \\
&- By(t) + Cy(t) [1 + \sin^2(Ay(t))]
\end{align*}
\]

where \(A, B, C = \text{const.} \), the finite delay \(r = \text{const.} > 0 \), \(K(x) \) is a continuous function, \(B, C > 0 \). The nonlinear dynamical system (1) can be used to describe many practical engineering problems [1—10]. The problem of global uniform asymptotic stability of dynamical system (1) is not only the considerable significance in theory, but also of important background in application [1, 2, 5—11]. In this paper, a convenient and efficient result is given to solve the problem above.

II. ANALYSIS AND COMPUTING

Let

\[
V = Cx^2 + \int_0^t \frac{2z}{1 + \sin^2(Az)} \, dz + a \int_0^t \int_{-r}^0 y(u) \, duds
\]

Using the inequality

\[
2y(t) \int_0^t y(t+s) K(x(t+s)) \, ds \leq 2 \int_0^t |y(t)||y(t+s)||K(x(t+s))| \, ds,
\]

we have

\[
\dot{V}(t) = 2y(t) \int_0^t y(t+s) K(x(t+s)) \, ds -
\]

Manuscript received December 30, 2007
This work was supported by the China National Science Foundation under Grant 40474033.
Jiemin Zhao is with the Department of Applied Mathematics and Physics, Beijing Union University, Beijing 100101, China.
E-mail: jieminzhao@sina.com

ISBN: 978-988-17012-1-3
IMECS 2008
\[
\frac{2B y^{2}(t)}{1 + \sin^{2}(A y(t))} + a \int_{0}^{t} [y^{2}(s) - y^{2}(t + s)] ds.
\]

\[
\leq 2 \int_{0}^{t} \left| y(t) \right| \left| y(t + s) \right| K(x(t + s)) ds - \frac{2B y^{2}(t)}{1 + \sin^{2}(A y(t))} + a \int_{0}^{t} [y^{2}(s) - y^{2}(t + s)] ds.
\]

If there is a constant \(\mu > 0 \) such that \(|K(s)| \leq \mu \), then the derivative \(\dot{V}(t) \) of \(V \) satisfies

\[
\dot{V}(t) \leq 2 \mu \int_{0}^{t} \left| y(s) \right| \left| y(t + s) \right| ds - \frac{2B y^{2}(t)}{1 + \sin^{2}(A y(t))} + a \int_{0}^{t} [y^{2}(s) - y^{2}(t + s)] ds.
\]

Taking \(a = \mu \), we have

\[
\dot{V}(t) \leq 2 \mu \int_{0}^{t} \left| y(s) \right| \left| y(t + s) \right| ds - \frac{2B y^{2}(t)}{1 + \sin^{2}(A y(t))} + \mu \int_{0}^{t} [y^{2}(s) - y^{2}(t + s)] ds.
\]

Using the inequality

\[
2 \alpha \beta \leq \alpha^{2} + \beta^{2},
\]

we have

\[
\dot{V}(t) \leq \mu \int_{0}^{t} [y^{2}(s) + y^{2}(t + s)] ds - \frac{2B y^{2}(t)}{1 + \sin^{2}(A y(t))} + \mu \int_{0}^{t} [y^{2}(s) - y^{2}(t + s)] ds
\]

\[
= 2 \mu \int_{0}^{t} y^{2}(s) ds - \frac{2B y^{2}(t)}{1 + \sin^{2}(A y(t))}
\]

\[
= \mu \int_{0}^{t} y^{2}(t) - \frac{2B y^{2}(t)}{1 + \sin^{2}(A y(t))}
\]

\[
\leq 2 \mu y^{2}(t) - B y^{2}(t).
\]

If \(2 \mu r < B \), then \(\dot{V}(t) \leq (2 \mu r - B) y^{2}(t) \leq 0 \).

Thus,

\[
\dot{V}(t) \leq 0 \quad \text{and} \quad V(t) = 0 \quad \text{only if} \quad (x(t), y(t)) = (0, 0).
\]

In fact, since \(y(t) = 0 \), we have

\[
\dot{x}(t) = y(t) = 0,
\]

\[
\dot{y}(t) = [1 + \sin^{2}(A y(t))] \int_{0}^{t} y(t + s) K(x(t + s)) ds - B y(t) - C \dot{x}(t) = -C \dot{x}(t).
\]

Thus, \(-C \dot{x}(t) = 0 \), since \(C = \text{const.} > 0 \) we have \(x(t) = 0 \).

On the other hand,

\[
C \dot{x}^{2} \rightarrow +\infty \left(|x| \rightarrow +\infty \right)
\]

And

\[
\int_{0}^{t} \frac{2 \xi}{1 + \sin^{2}(A \xi)} d\xi \rightarrow +\infty \left(|\xi| \rightarrow +\infty \right)
\]

Thus, the nonlinear dynamical system (1) is globally uniformly asymptotically stable.

III. MAIN RESULT

From analysis and computing above, we have result as follow:

Suppose \(K(x) \) is a continuous function. If there is a constant \(\mu > 0 \) such that

\[
(i) \quad |K(s)| \leq \mu,
(ii) \quad 2 \mu r < B.
\]

then the system (1) is globally uniformly asymptotically stable.

REFERENCES

