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Abstract—Computing the shortest path in a graph

is an important problem and it is very useful in vari-

ous applications. The standard shortest path problem

has been studied extensively and intensively, but it

can’t handle the situation when there is a switch cost

between arcs. For example, in a train transporta-

tion network, the switch cost between arcs contains

waiting time in stations, times of transfer and so on.

Obviously, the switch cost is an important factor for

users to make decisions. Taking into consideration

of the switch cost between arcs, we extend the stan-

dard shortest path problem and propose an algorithm

and its optimized version to solve the extended sin-

gle source shortest path problem. Test results show

that the proposed algorithms can give reasonable and

acceptable results for users.

Keywords: Switch Cost, Extended Shortest Path Prob-

lem, Extended Dijkstra Algorithm, Optimized Extended

Dijkstra Algorithm

1 Introduction

Computing the shortest path is a classic graph prob-
lem. It has many applications in real word such as in-
ternet routing, transportation, games and so on. Many
researches relating to it have been done. Even recently,
there are still a lot of work being carried out.

However, the standard shortest path problem doesn’t
take the switch cost between arcs into account. In some
scenarios, the switch cost between arcs does exist and is
very important. For example, in a train transportation
network where the vertices represent stations and arcs
represent the train routes from stations to stations, the
waiting time in a station is a kind of switch cost between
arcs and it depends on the arcs. Obviously, the waiting
time in stations should be considered when computing
the optimal travel route. To handle the situation with
switch cost between arcs, we will propose an extended
shortest path problem.

Some other works[1] [2][3][4] were done to resolve the Ear-
liest Arrival Problem (EAP ) and Minimum Number of
Transfers Problem (MNTP ). However, those problems
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are different from the proposed one. The proposed prob-
lem focuses on integrating the switch cost between arcs
into the path cost, which provides a more general frame-
work. The EAP and MNTP problem can be regarded
as special cases of the proposed problem.

We also propose an algorithm to solve the extended single
source shortest path problem. The algorithm can easily
combine the switch cost with the path cost. However,
this algorithm tends to expand many arcs. To fix this
problem, we give an optimized algorithm to reduce the
number of expanded arcs.

The contributions can be summarized as follows:

* propose an extended shortest path problem by inte-
grating the switch cost between arcs into the path
cost.

* develop an algorithm and its optimized version to
resolve the single source problem based on the ex-
tended shortest path problem.

The rest of this paper is organized as follows: In Section
2, the extended shortest path problem will be proposed.
The extended Dijkstra algorithm and its optimized one
will be given in Section 3. An application example is
presented in Section 4. The experiment result will be
shown in Section 5. And some conclusions will be drawn
in the end.

2 Extended Shortest Path Problem

The standard shortest path problem only considers the
cost on the arc, and it doesn’t consider the cost of switch-
ing between arcs. But in some applications such as trans-
portation networks, the switch cost between arcs does
exist and is important. So it is necessary to solve the
problem by considering switch cost between arcs. This
paper will focus on this point. To explain the problem
better, we define some notations first.

* G: a weighted directed graph

* V : the collection of vertices in G
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Figure 1: A simple demonstration for the extended short-
est path problem. e2(3) means w(e2) = 3. s(e2, e3) = 1
means the switch cost between e2 and e3 equals 1.

* E: the collection of arcs in G. There may be multiple
arcs with the same direction between two vertices in
G.

* n: the number of vertices in V , i.e. n = |V |.

* m: the number of arcs in E, i.e. m = |E|.

* Ii: the number of arcs that go into vertex vi.

* Oi: the number of arcs that go out from vertex vi.

* v: a vertex of G. v ∈ V

* e: a arc of G. e ∈ E

* e.head: a vertex in G which e goes into.

* e.tail: a vertex in G which e goes out from.

* w(e): the nonnegative weight of arc e

* s(e1, e2): the nonnegative switch cost between arc e1

and arc e2. It is valid only when e1.head equals to
e2.tail.

* p: an arc sequence which is named path. For exam-
ple, path p = e1 → e2 → · · · → ek is a path from
vertex e1.tail to ek.head, where ei.head = ei+1.tail.

* cs(p): the cost of path p in the standard shortest
path problem

* ce(p): the cost of path p in the extended shortest
path problem

Given a path p = e1 → e2 → · · · → ek, the cost of
the path p is defined as cs(p) = w(e1) + w(e2) + · · · +
w(ek−1) + w(ek) in the standard shortest path problem,
while it is defined as ce(p) = w(e1) + s(e1, e2) + w(e2) +
· · ·+w(ek−1)+s(ek−1, ek)+w(ek) in the extended shortest
path problem. When s(ei, ej) is a const c for all arc
pairs, the extended shortest path problem is identically
to the standard shortest path problem. Since let w

′

(ei) =
w(ei)+ c, then ce(p)+ c = c

′

s(p) = w
′

(e1)+w
′

(e2)+ · · ·+
w

′

(ek−1) + w
′

(ek).

In the standard shortest path problem, if p = e1 → e2 →
· · · → ek is the shortest path between e1.tail and ek.head,

Figure 2: Add a virtual node v0 and a virtual arc e0

where e0.head equals to the src node.

then pij = ei → ei+1 → · · · → · · · ej must be the shortest
path between ei.tail and ej .head. But it is no longer right
when there exists non-zero switch cost between arcs. Fig
1 is a simple example. In the standard shortest path
problem, the shortest path between vertex v1 and v4 is
e1 → e4, while the shortest path between vertex v1 and
v3 is e1. But in the extended shortest path problem, the
shortest path between vertex v1 and v4 is e2 → e3 → e4,
and the shortest path between vertex v1 and v3 is e1, but
not e2 → e3.

3 Extended Algorithms

Dijkstra algorithm[5] is a classic one to solve the single
source shortest path problem in a directed graph with
nonnegative arc weights. Many efforts [6] [7] [8] [9] [10]
[11] have been done to speed up this algorithm in both
theory and practice.

However, Dijkstra is based on the standard shortest path
problem, so it can’t take into account the switch cost
between arcs. Inspired by the Dijkstra algorithm, we
propose extended algorithms based on it to resolve the
extended single source shortest path problem.

3.1 Overview of the algorithms

Before diving into the algorithms, we make some trans-
formation in the graph which can help better understand
the algorithm. We add a virtual vertex v0 and a virtual
arc e0 to G, where w(e0) = 0, e0.tail = v0, e0.head = v1

( suppose that v1 is the src node here) . Fig 2 is a simple
demonstration.

In the standard Dijkstra algorithm, each vertex has two
labels: previous vertex and shortest value. Since there
may be multiple arcs with some direction between arcs,
previous arc is used to replace previous vertex. v.prevArc
and v.val are used to represent these two labels sepa-
rately. In our algorithm, each arc has two labels: previ-
ous arc and shortest value, and each vertex also has two
labels: selected arc and shortest value. e.prevArc, e.val,
v.selectedArc and v.val are used to represent these labels
separately.
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We will detail the explanation with Fig 1. Supposing
we want to compute the shortest path from vertex v1 to
other vertices. Fig 3(a) is the label result for the standard
Dijkstra algorithm. Fig 3(b) is the label result for the
extended Dijkstra algorithm. To explain how to get the
shortest path by using the label result, we’ll take v1 and
v4 for example. Suppose we want to get the shortest path
from v1 to v4, the steps in Fig 3(a) are shown as follows:

1. Check v4.prevArc and find that it is e4. And
e4.tail = v3.

2. Check v3.prevArc and find that it is e1.

3. Since e1.tail = v1, then we get the standard shortest
path from v1 to v4 is e1 → e4.

In Fig 3(b),the steps are given as follows:

1. Check v4.selectedArc and find that it is e4.

2. Check e4.prevArc and find that it is e3.

3. Check e3.prevArc and find that it is e2.
e2.prevArc = 0 means we reach the virtual
arc.

4. Check e2.tail and find that it is v1, which means that
the extended shortest path from v1 to v4 is e2 →
e3 → e4.

In the following algorithms, the first parameter of the
corresponding function means the graph, and the second
means the source vertex. The ExtractMin function ex-
tracts the element with minimum value from the given
set O.

3.2 Extended Dijkstra Algorithm

The extended Dijkstra algorithm is used to solve the ex-
tended single source problem. Since it is similar to the
standard Dijkstra algorithm, we omit the proof of cor-
rectness here. This algorithm will be called E-Dijkstra
algorithm in the following.

program ExtendedDijkstra(G,u)

1 for each vertex v in V[G]

2 v.val=infinity; v.selectedArc=undefined;

3 for each arc e in E[G]

4 e.val=infinity; e.prevArc=undefined;

5 e0.val=0; e0.prevArc=null;

6 e0.tail=null; e0.head=u;

7 O=E[G] union e0; C={};

8 while O is not empty

9 e=ExtractMin(O);

10 C=C union e;

11 if e.val<e.head.val

12 e.head.val=e.val;

13 e.head.selectedArc=e;

14 for each arc a outgoing from e.head

15 if e.val+s(e,a)+w(a)<a.val

16 a.val=e.val+s(e,a)+w(a);

17 a.prevArc=e;

The space complexity of this algorithm is O(n+m). The
computation complexity of this algorithm is O(N log N +
M), where N = m + 1 is the number of arcs and
M =

∑n

i=0
IiOi + O(u) is the number of expanded arcs.

m, n, Ii, Oi have been defined before and O(u) is the num-
ber of u’s in-arcs.

We can find that the number of expanded arcs is too huge
in the proposed algorithm. In order to reduce the number
of expanded arcs, we propose an optimized version of this
extended algorithm in the following.

3.3 Optimized Extended Algorithm

We need to compute e.minCost for each arc in ad-
vance. e.minCost is the minimum switch cost between
e.tail.inArcs and e, where e.tail.inArcs is the collection
of arcs which goes into e.tail. Similarly, in the following
codes, e.head.outArcs means the collection of arcs that
goes out from e.head.

Round i represents the ith time during which codes
11-23 in the following program are executed. Suppos-
ing at Round i, eri

is the arc with minimum value
i.e. eri

= ExtractMin(O), and at Round j erj
=

ExtractMin(O),where j > i. According to Dijkstra al-
gorithm, we know that eri

.val ≤ erj
.val. This prop-

erty is also exist in our algorithm. Supposing arc a
is in eri

.head.outArcs and also in erj
.head.outArcs. If

s(eri
, a) = a.minCost, then we know that a.val ≤

eri
.val + s(eri

, a) + w(a) at Round j. Since eri
.val ≤

erj
.val and s(eri

, a) ≤ s(erj
, a), we can get a.val ≤

erj
.val+s(erj

, a)+w(a), which means a won’t be updated
at Round j. So if at Round i s(eri

, a) = a.minCost, we
can delete a from eri

.head.outArcs which will never be
updated after Round i. According to this reason, we ob-
tain the optimized algorithm as following:

program OptimizedExtendedDijkstra(G,u)

1 for each vertex v in V[G]

2 v.val=infinity; v.selectedArc=undefined;

3 for each arc e in E[G]

4 e.val=infinity; e.prevArc=undefined;

5 e0.val=0; e0.prevArc=null;

6 e0.tail=null; e0.head=u;

7 for each arc e outgoing from u

8 e.minCost=0;

9 O=E[G] union e0; C={};

10 while O is not empty

11 e=ExtractMin(O);
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12 C=C union e;

13 if e.val<e.head.val

14 e.head.val=e.val;

15 e.head.selectedArc=e;

16 outArcs={};

17 for each arc a in e.head.outArcs

18 if e.val+s(e,a)+w(a)<a.val

19 a.val=e.val+s(e,a)+w(a);

20 a.prevArc=e;

21 if s(e,a)>a.minCost

22 outArcs=outArcs union a;

23 e.head.outArcs=outArcs;

The time bound of this algorithm is same as that of the
extended Dijkstra algorithm. But in many situations this
optimized algorithm can significantly reduce the number
of expanded arcs in the extended algorithm. This can
be shown in the experiment part. The algorithm will be
named as O-E-Dijkstra algorithm in the following.

Figure 3: Label results for the two algorithms. In
(a), v4(e4, 7) means v4.prevArc = e4, v4.val = 7. In
(b), v4(e4, 12) means v4.selectedArc = e4, v4.val = 12.
e4(e3, 12) means e4.prevArc = e3, e4.val = 12.

4 Application

We’ll take transportation network as example. In trans-
portation network, each node represents a train station
or airdrome, and each arc has an ID to represent its
train/plane number. Each arc has a departure time and
an arrival time. There may be multiple arcs between two
nodes.

In the transportation network, the transferring times and
the waiting time in stations are two key factors which in-
fluence people’s decisions when they select travel pathes.
These two factors can be summarized as switch cost be-
tween arcs in transportation network.

The standard shortest path problem is unable to handle
the switch cost, so the result given by classic shortest path
algorithm may be unacceptable. In the following section,
some examples will be shown to demonstrate this. While
our algorithms are used to solve the extended shortest
path problem which can integrate switch cost, they can
solve this problem easily.

A struct SVal is used to represent both weight cost and

switch cost. In this scenario, SVal contains two fields:
transfers and time. SVal can be written as a pair (trans-
fers,time).

To compute the extended shortest path, we need provide
a comparison method between two struct SVals. Differ-
ent methods represent different need. Two methods are
provided as follows:

Method 1:

int Compare(SVal val1,SVal val2)

if(val1.transfers!=val2.transfers)

return sign(val1.transfers-val2.transfers);

else return sign(val1.time-val2.time);

Method 2:

int Compare(SVal val1,SVal val2)

v1=val1.transfers*w+val1.time;

v2=val2.transfers*w+val2.time;

return sign(v1-v2);

Method 1 means that people care more about number
of transfers. Method 2 is more general. Here w is a
factor, which reflects the importance of transfers. For
example, w = 2 hours/per transfer means one transfer
equals to 2 hours. w = 0 means people doesn’t care
about transfers. When w → ∞, method 2 is equivalent
to method 1. Since method 1 is more intuitional, we’ll
use this in the following parts.

For each arc e, w(e) = (0, e.arrivalT − e.departureT ).
For each arc pair ei → ej , the switch cost s(ei, ej) is
defined as follows:{

(0, e2.departureT − e1.arrivalT ) if ei.id = ej.id
(1, e2.departureT − e1.arrivalT ) if ei.id �= ej.id

Then we can use our algorithms to compute the extended
shortest path on this model. The experiment bellow
will show that our algorithms can give acceptable results
which the classic ones solve.

The MNTP problem can be solved by using switch cost
mentioned above. The EAP problem can be solved when
the transferring times is ignored. Since these problems
are not the foci of this paper, we won’t discuss them in
detail.

5 Experiment

5.1 Part One

In this section, we’ll compare the performance of our al-
gorithms with the standard Dijkstra algorithm with dif-
ferent types of switch cost.
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5.1.1 Experiment data

The experiment data used is part of the train transporta-
tion graph of China. This graph contains 3067 nodes and
31368 arcs.

5.1.2 Experiment results

For each arc pair ei → ej, we define three different types
of switch cost s(ei, ej) as follows:

* Type 0: s(ei, ej) = (0, 0)

* Type 1: s(ei, ej) = (0, ej .departureT − ei.arrivalT )

* Type 2: switch cost mentioned in Section 4.

The experiment is shown in table 1. We run the single
source problem for each vertex and compute the average
run time and number of expanded arcs for each algo-
rithms. From the experiment result we can find that:

* Our algorithms need more run time than Dijkstra al-
gorithm. But the time cost is worth handling switch
cost which the Dijkstra algorithm can’t finish.

* Our O-E-Dijkstra algorithm can significantly reduce
the number of expanded arcs in E-Dijkstra algo-
rithm.

* When the switch cost is zero, the number of ex-
panded arcs in O-E-Dijkstra algorithm is equal to
that in Dijkstra algorithm.

5.2 Part Two

We use the standard Dijkstra algorithm and the E-
Dijkstra algorithm to compute the shortest path between
two given stations or airdromes of China. Fig 4 shows
the results on the train transportation network and Fig
5 shows the results on the air transportation network. In
these pictures, represnts a tranfer station/airdrome.
Since the standard Dijkstra algorithm can’t integrate the
switch cost, the results it gives need a lot of transfers.
Another more serious problem is that the time the stan-
dard Dijkstra algorithm gives is not the real time, be-
cause it doesn’t take into account the waiting time in
stations/airdromes. So according to the path computed
by the standard Dijkstra, people might wait for more
than one day to take another train or plane. Obviously,
it is unacceptable.

6 Conclusion

We proposed a general framework by integrating switch
cost between arcs. The proposed algorithms can han-
dle many real problems with switch cost, such as train
transportation network, bus transportation network and
so on. The E-Dijkstra algorithm and the O-E-Dijkstra al-
gorithm can solve the single source extended shrotst path
problem while the standard Dijkstra algorithm can’t.
The E-Dijkstra algorithm may expand huge number of
arcs while the O-E-Dijkstra algorithm can significantly
reduce the number of expanded arcs. Our algorithms
can give acceptable result in most of applications where
switch cost exists.
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Dijkstra
transportation network type of switch cost average run time (in second) E-Dijkstra O-E-Dijkstra
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Table 1: Experiment results on dense graph and sparse graph. The program is written in C++ and ran on a server
with 3.2GHZ processor running Windows Server 2003.

Figure 4: Left: shortest path computed by the standard Dijkstra algorithm on train transportation network. Right:
shortest path computed by the extended algorithm on the same network. Obviously, the result on the left has too
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Figure 5: Left: shortest path computed by the standard Dijkstra algorithm on air transportation network. Right:
shortest path computed by the extended algorithm on the same network. Obviously, the result on the left has too
many transfers to be accepted.
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