
 
 

  
Abstract—The development of DNA microarray technology 

has made it possible for scientists to study the expression of a 
large number of genes at the same time under various 
conditions. One problem in microarray data analysis is to deal 
with occlusion. In real world datasets, some features of gene 
expression may be partly missing or corrupted easily, causing a 
wrong determination using existing classification methods. In 
this paper, we adopt a sub-dimension based probabilistic neural 
network to solve this problem. Compared with original 
probabilistic neural networks, experiment results show that the 
proposed method achieves a better performance.  
 

Index Terms—Microarray data clustering, probabilistic 
neural network, sub-dimension method, occlusion problem.  
 

I. INTRODUCTION 
The development of the microarray technology has made it 

possible to monitor gene expressions for tens of thousands of 
genes in parallel and enhance our understanding of functional 
genomics. An important task in DNA microarray data 
analysis is to identify genes which have similar expression 
patterns in order to understand their biological functions and 
cellular processes. This process could be done manually, in 
which case the amount of effort would be tremendous and 
intensive. Thus, it is important to develop computerized data 
analysis techniques, such as classification algorithms, which 
is needed in many applications. However, microarray data 
can become partly corrupted easily because of the imperfect 
mechanics of conducting physical tests, such as dye 
inconsistencies and slight mechanical differences in 
measurement equipment [1]. These corruptions can cause 
significant noise in the measured data and lead to incorrect 
classifications in data analysis. Because of the randomness of 
the noise, some measured data values deviate from their true 
values significantly and become unusable. However, we do 
not necessarily know which of the measured data values are 
corrupted. We call this the data occlusion problem. In this 
paper, we propose a sub-dimension based probabilistic 
neural network to solve this problem. Our experiment results 
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show that this method is effective.  
Probabilistic neural network (PNN) was first developed by 

D. Specht [2], [3]. It provides a general solution to pattern 
classification problems by using the Bayes strategy for 
probability density functions. It is frequently employed in 
pattern classification and microarray data clustering due to its 
prominent time efficiency. It provides a considerable 
improvement in training speed compared to the conventional 
back-propagation network (BPN). Furthermore, as discussed 
in [4], PNN could attain the same accuracy as BPN.  

We assume that a dn×  matrix X  contains d  features 
and one or two features partly missing or corrupted. The 
corruption in the datasets may cause significant error in 
conventional clustering methods since all features are 
considered in every training sample. In the proposed method, 
we adopt the sub-dimension method combined with the PNN. 
The sub-dimension method requires the partition of the entire 
dataset into several small parts called sub-dimensions, which 
may or may not be disjoint [5]. The proposed method clusters 
the datasets into their sub-dimensions. We assign 1x  and 2x  
to the same group if more than half of the sub-dimensions of 

jx1  and jx2  belong to the same group. The experiment 

results show a better performance with the proposed method 
that conventional ones.  

In this paper, we first briefly review the structure of the 
PNN and discuss the sub-dimension formulation in Section II. 
Then we describe the proposed method and present 
experimental results from five datasets in Sections III and IV. 
Finally, discussions and conclusions are given in Section V.  

 

II. THEORY 

A. Probabilistic Neural Network 
Instead of using the conventional back-propagation neural 

network, we adopt the PNN in the proposed method, 
considering its primary advantages of convenient binary 
outputs and fast training speed.  

PNN is based on the Bayes strategies, which are 
implemented by a method which minimizes the “expected 
risk” of misclassification [2], [3]. Considering a 
two-category situation for instance, the problem is to decide 
to which classes pattern X  would belong, Aθ  or Bθ . In 
this case, the Bayes decision rule is written as follows:  

( ) AXd θ=     if ( ) ( )XflhXflh BBBAAA >  

( ) BXd θ=     if ( ) ( )XflhXflh BBBAAA <    (1) 

where ( )Xf A  and ( )XfB  are the probability density 
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functions for categories Aθ  and Bθ , respectively; Al  is the 

loss function associated with the decision ( ) BXd θ=   when 

the truth is Aθ , Bl  is the loss function associated with the 

decision ( ) AXd θ=  when the truth is Bθ ; Ah  and Bh  are 
the a priori probabilities of occurrence of patterns from 
categories Aθ  and Bθ , respectively.  

The main task of implementing Equation (1) is to estimate 
the probability density function for each class according to a 
set of known training patterns. As in papers [2] and [3], it is 
shown that a particular estimation of a probability density 
function of category Aθ  is  

( )
( )

( ) ( ) ( )[ ]∑
=

−−−⋅

=

m

i
Ai

t
Ai

ppA

XXXX

m
Xf

1

2

2

2/exp

1
2

1

σ

σπ
    (2) 

where i  is the current pattern number; m  is the total 
number of training patterns; AiX  is the thi −  training 

pattern form category Aθ ; σ  is the smoothing parameter. 

( )Xf A  is the sum of multivariate Gaussian distributions 
centered at each training sample. It could be any smooth 
density function, not limited on the Gaussian.  

The PNN network consists of input units, two hidden 
layers, and output units. Fig. 1 shows the PNN structure for a 
two group classification.  

The input units in the PNN correspond to input features. 
The first hidden layer is called pattern units. In each unit, 
input pattern X  is performed a dot product with a weight 
vector iW , ii WXZ ⋅= , and then a nonlinear operation is 
implemented. Unlike back-propagation, the sigmoid 
activation function is replaced by an exponential function 
which could be represented as follows:  

( )[ ]2/1exp δ−iZ               (3) 

If both X  and iW  are normalized to unit length, Equation 
(3) becomes:  

( ) ( ) ( )[ ]22/exp δXWXW i
t

i −−− .       (4) 
Summation units which are the second hidden layer simply 

sum the input from the corresponding pattern units according 
to the training process. The connection between two hidden 
layers is made in that way that each pattern unit in the first 
layer matches only one appropriate node in the second layer.   

The output units, or decision units, simply produce a 
binary output, as indicated in Fig. 1.  

PNN employs the training patterns to estimate the 
probability distribution of each class during the training 
routine, and classifies the input according to the weighted 
average of the closest training examples in the testing 
process. In this paradigm, learning for small and moderate 
sized databases is faster since the iteration process is avoided. 
However, the entire training datasets need to be stored and 
large networks require large databases. These are the 
disadvantage of PNN [6]. 
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Figure 1. PNN network.   
Figure 1. The PNN structure for a two group classification.  

 

B. Sub-dimension 
The sub-dimension method [5] can be implemented by 

dividing the data bases into smaller parts and applying a 
classification procedure to each part. Let ijx  be a matrix with 

i  objects (rows) and j  features (columns), and  

[ ]dj AAAAX LL21=  

where dj ≤≤1 , jA  represents the jth feature of all 
objects. We redefine 

[ ]pBBBX L21=  

[ ]jsjjj AAAB L21=  

where dp ≤ , s  represents the number of features in each 
sub-dimension and ds ≤ . Now X  is expressed by a set of 
overlapping sub-dimensions jB .  

 
Figure 2. The sub-dimensions of dataset X . 

 
Instead of considering all features as evidence for 

classification, the sub-dimension based algorithm respects 
the sub-dimension jB  as input pattern and implements a 

classification method to each sub-dimension respectively. 
The observable benefit of this approach is that results of each 
sub-dimension are not affected by features in other 
sub-dimensions.  
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We conclude that object 1X  is closer to 2X  than 3X  

when more than half of the sub-dimensions ( )BjX1  are closer 

to ( )BjX 2  than ( )BjX 3 . This can be formulated by:  
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where ( )SCard  refers to the cardinality (or the number of 

elements) of the set S  [5].  
In this paper, we simply employ the majority decision as 

the class label determination. We assign object ix  to a group, 

if a majority of sub-dimensions ijx  are classified to that 

group.  
 

III. SIMULATION METHOD 

We assume that the original dn×  dataset  
[ ]dj xxxxX LL21=   

where each dimension jx (where dj ≤≤1 ) has n  

objects. Since the purpose of the proposed method is to solve 
the occlusion problem, we add white Gaussian noise (wgn) 
into one of the dimensions of datasets as corruption. In this 
paper, we add noise in different dimensions for different 
datasets.  

[ ]dj xwgnxxxX LL )(21 +=   

The learning session is important for PNN which affects 
the response of the network directly. We partition the objects 
(rows) into two parts randomly: the training set taX  for 

training the network and the testing set teX  for testing the 
proposed method.  

Then, both taX  and teX  were divided into p  

sub-dimensions (columns). We denoted them as pY .  

[ ]pYYYX L21=   

where dp ≤  and each sub-dimension has s  features.  

We adopt the sub-dimension 1Y  in the training set taX  as 
the input pattern for the PNN training and obtain a classifier. 
Then we use the classifier to determine the class label of the 
testing set teX . We reiterate the process for all 
sub-dimensions by using the same random order training set 

taX  and testing set teX . Thus, after all sub-dimension 
network clustering, we obtain a set of class labels in which 
every testing object has p  class labels from p  classifiers.  

To combine the p  class labels into one, we vote for each 
testing object and choose the majority as the class label. In 
the last step, we compare the results of proposed method with 
the known results to calculate the accuracy.  

 

IV. RESULTS 
Experiments based on the proposed method are performed 

on three real world datasets: iris data, wine data, Wisconsin 
diagnostic breast cancer (wdbc) data, and two microarray 
datasets: yeast cell cycle data [7], and sporulation data [8]. 
For each dataset, we run the steps in section III 30 times and 
employ their average and standard derivation (STD) to show 
the performance. The normal PNN is adopted for 
comparison.  

A. Real world data 
The iris dataset includes 150 objects in three groups with 

four features. We add the noise in the first dimension as 
corruption and 50 objects are selected as training samples and 
the remaining 100 objects are used for testing. Table 1 shows 
that the proposed method achieves an improvement of 3% in 
recognition accuracy that the conventional PNN.  

The wine dataset contains 178 objects in three groups and 
13 features. In our experiment, we adopt 78 objects as 
training samples and the remaining 100 objects for testing. 
The noise is added in the seventh dimension which is the 
middle of all the features. As shown in Table 2, the proposed 
method obtains 93 correct out of 100, compared with 72 
correct out of 100 in normal PNN. We can see that the 
proposed method provides a significant improvement in 
accuracy for this classification problem.  

The wdbc dataset has 576 objects in two classes and 30 
features in which 276 training samples and 300 testing 
samples are used to test the recognition results. The last 
dimension becomes corrupted by Gaussian noise. As in the 
case for the iris and wine data, the proposed method shows 
better results in the wdbc dataset, 281 correct classifications 
compared with 265 by the conventional PNN.  

For all the three datasets, the STD is lower compared to the 
normal PNN method. This shows that the consistency of our 
method is comparatively better than the normal PNN method. 

B. Microarray data 
Two microarray datasets are used in our experiments: the 

yeast dataset and the sporulation dataset. For both of these the 
proposed method shows a better performance.  

The yeast cell cycle dataset consisting of 6220 genes is 
published by Cho et al. [7]. In the study of the sub-dimension 
method [5], we adopt 384 genes and normalized each gene 
expression profile so that it has zero mean and unit variance. 
The dataset has five cycle phases which are the G1 phase, late 
G1 phase, S phase, S2 phase and M phase, and 17 time 
points, in which the first dimension is corrupted. The results 
are given in Table 4. The proposed method correctly 
classifies 150 out of 200 testing samples with the standard 
derivation 5.0 and the conventional PNN correctly classifies 
142 with a standard derivation of 5.6.  

The sporulation dataset contains 6118 genes with seven 
features. In [5], after pre-processing, we only adopt 1136 
genes of which the value of the root mean square of the log2 
transformed the data greater than 1.13. The dataset has seven 
phases: metabolic, early I, early II early middle, middle, 
mid-late, and late. We corrupt the last dimension and adopt 
736 genes as training and the remaining 400 genes for testing. 
As shown in Table 5, the proposed method works well with 
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an accuracy rate 49.5% (198 out of 400) compared with 44% 
for the conventional PNN. The standard derivation of the 
result from the proposed method is larger than for the 
conventional PNN, but this is the only case in all the datasets 
that has a larger STD.  

As shown in the tables, the proposed method performs 
better than the conventional PNN in all datasets.  

 

V. DISCUSSION AND CONCLUSION 
Instead of considering all features of a dataset at the same 

time, the proposed method partitions the dataset into small 
parts and implements the PNN for each part of the 
dimensions at a time. Thus, the corrupted dimension which 
may cause a wrong classification in one sub-dimension will 
hardly affect the accuracy of others. Since we choose the 
majority class that all sub-dimensions represent, the effect of 
the corrupted dimension can be minimized, and thus the final 
result of the proposed method is more accurate.  

The running time of the proposed method is more than the 
conventional network because of the repeated network 
operations for each sub-dimension. However, the fast 
training speed of the PNN may compensate for this 
disadvantage.  

Microarray data has a strong correlation among the 
adjoining features. The experiment results show that a large s 
can produce a better accuracy in microarray data analysis. 
However, the determination of the s value still depends on the 
nature of different experiments. This is an issue that needs to 
be studied further.  

 

APPENDIX 
Table 1. Classification results for the iris data.  

IRIS Group 
PNN Proposed method 

1 34 35 
2 28 30 
3 29 28 

Total 91 93 
% 91% 93% 

STD 2.5 1.9 
 
Table 2. Classification results for the wine data.  

WINE Grou
p PNN Proposed method 

1 29 33 
2 29 34 
3 14 26 

Total 72 93 
% 72% 93% 

STD 4.0 2.2 
 
Table 3. Classification results for the wdbc data.  

WDBC Grou
p PNN Proposed method 

1 177 181 
2 88 100 

Total 265 281 
% 88.3% 93.7% 

STD 4.1 3.2 
 
Table 4. Classification results for the yeast cell cycle.  

YEAST Phases 
PNN Proposed method 

Early G1 25 26 
Late G1 61 64 
S phase 15 18 

G2 16 18 
M phase 25 24 

Total 142 150 
% 71% 75% 

STD 5.6 5.0 
 
Table 5. Classification results for the sporulation data.  

SPORULATION Phases 
PNN Proposed method 

Metabolic 28 33 
Early I 46 55 
Early II 37 43 

Early middle 24 24 
Middle 20 20 

Mid-late 2 2 
Late 19 21 
Total 176 198 

% 44% 49.5% 
STD 8.3 9.0 
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