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Abstract— Why are three-player games much more
complex than two-player games? Is it much more dif-
ficult to cooperate or to compete? Three-player Hack-
enbush is a three-player version of Black-White Hack-
enbush, a classic combinatorial game. When Black-
White Hackenbush is played on strings, cooperation
is much more difficult than competition and, as con-
sequence, three-player Hackenbush played on strings
is NP-complete.
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1 Introduction

Combinatorial game theory is a branch of mathemat-
ics devoted to studying the optimal strategy in perfect-
information games where typically two players are in-
volved. To extend this theory so to allow more than two
players is a challenging and fascinating problem for dif-
ferent reasons.

Typically, more than two parties are involved in a real-
world economical, social or political conflict and a win-
ning strategy is often the result of alliances. In two-player
games there exist no coalitions because the two players
are in conflict each other, but in three-player games co-
operation is a key-factor because to determine the win-
ning strategy of a player means to consider the worst
scenario, i.e., assuming that both opponents are allied
against him/her.

The first theories of Li [1] and Straffin [2] concerning im-
partial three-player combinatorial games have made vari-
ous restrictive assumptions about the rationality of one’s
opponents and the formation and behavior of coalitions.
Loeb [3] introduces the notion of a stable winning coali-
tion in a multi-player game as a new system of classifica-
tion of games. Differently, Propp [4] adopts in his work
an agnostic attitude toward such issues, and seeks only to
understand in what circumstances one player has a win-
ning strategy against the combined forces of the other
two.
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Cincotti [5] presents an extension of Conway’s theory of
partizan games [6], [7] to classify three-player partizan
games. Such a theory has been applied to three-Player
Hackenbush, that is to say a three-player version of Black-
White Hackenbush, a classic combinatorial game. In this
paper we show that, in Black-White Hackenbush played
on strings, cooperation is much more difficult than com-
petition, and it causes complexity in three-player Hack-
enbush.

2 Three-player Hackenbush

Black-White Hackenbush is a classic combinatorial game
defined in [6], [8]. Every instance of this game is rep-
resented by G = {G1, G2, . . . , Gn} where Gi for all
1 ≤ i ≤ n is an undirected connected graph such that:

• at least one edge is connected to a certain line called
the ground, and

• every edge is colored either black or white.

Two players, called Left and Right, move alternately.
Left moves by deleting any black edge together with all
the edges that are no longer connected to the ground and
Right moves by deleting any white edge together with
all the edges that are no longer connected to the ground.
The first player unable to move because there are no edge
of his/her color is the loser. An example of Black-White
Hackenbush is shown in Fig. 1.

Three-player Hackenbush is the natural extension of
Black-White Hackenbush where it has been introduced
a third player called Center. Therefore, an instance
of three-player Hackenbush can be represented by G =
{G1, G2, . . . , Gn} where Gi for all 1 ≤ i ≤ n is an undi-
rected connected graph such that:

• at least one edge is connected to a certain line called
the ground, and

• every edge has a color (black for Left, gray for Cen-
ter, and white for Right).

Players take turns making legal moves in cyclic fashion
(. . ., Left, Center, Right, Left, Center, Right, . . .) until
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Figure 1: An example of Black-White Hackenbush.

Figure 2: An example of three-player Hackenbush.

one of the players is unable to move. Then, that player
leaves the game and the remaining players continue in
alternation until one of them cannot move. Then that
player leaves the game and the remaining player is the
winner. An example of three-player Hackenbush is shown
in Fig. 2.

We briefly recall the definition of queer game introduced
by Propp [4]:

Definition 1. A position in a three-player combinatorial
game is called queer if no player can force a win.

In the game of three-player Hackenbush is not always
possible to determine the winner because of queer games
as shown in Fig. 3.

In this case, when Left starts the game no player has a
winning strategy because if Left removes the first string,
then Right has a winning strategy but if Left removes the
second string, then Center has a winning strategy.

3 Three-player Hackenbush played on
strings is NP-complete

We prove that to solve three-player Hackenbush played
on strings is a NP-complete problem.

We briefly recall the definition of Subset Sum Problem.

Definition 2. Let

U = {u1, . . . , un}

be a set of natural numbers and K a given natural num-
ber. The problem is to determine if there exists U ′ ⊆ U
such that

∑

ui∈U ′
ui = K.

This problem is known to be NP-complete [9].

Starting from a general instance of Subset Sum Prob-
lem it is possible to create an instance of three-player
Hackenbush as shown in Fig. 4. We use U to indicate∑
ui∈U ui. For every ui ∈ U we have a string containing

ui gray edges on the bottom and ui black edges on the
top. Moreover, we add two more strings: the first one
containing U + 2 black edges and U + 1 gray edges (the
first string on the left as shown in Fig. 4), and second
one containing 2U + 2 white edges (the last string on the
right as shown in Fig. 4).

Who has a winning strategy?

Table 1 shows the number of edges for each player. We
observe that Right can always make 2U+2 moves remov-
ing always the highest edge, but Center has just 2U + 1
edges therefore, even in the best case, he/she will never
be the winner.

The situation is a bit different for Left because even if
he/she has 2U + 2 edges, he/she can make 2U + 2 moves
only if he/she starts to play before Center because after
Center has removed all his/her edges Left can make just
one more move.
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Figure 3: A queer game.

Figure 4: Subset Sum Problem is reducible to three-player Hackenbush.
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Table 1: Number of edges.

Player Number of edges

Left 2U + 2

Center 2U + 1

Right 2U + 2

It follows that, if Left or Center starts the game, then
Right has always a winning strategy; however, when
Right starts the game we have two possibilities:

• If Left, cooperating with Center, is not able to make
2U+2 moves, then Right has still a winning strategy,

• If Left, cooperating with Center, is able to make
2U + 2 moves then, Right does not have a winning
strategy and the game is queer because Left can win
the game only assuming that Center cooperates with
him/her.

The problem to determine if Right has a winning strat-
egy when he/she starts the game is strictly connected to
Subset Sum Problem as shown in the following theorem.

Theorem 1. Let G = {G1 ∪ G2 ∪ . . . Gn} be a general
instance of three-player Hackenbush where every Gi is a
string for all 1 ≤ i ≤ n. Then, to establish the outcome
of G is a NP-complete problem.

Proof. The problem is clearly in NP .

We show that it is possible to reduce every instance of
Subset Sum Problem to G. Previously we have described
how to construct the instance of three-player Hackenbush,
therefore we have just to prove that Subset Sum Problem
is solvable if and only if Left, cooperating with Center,
can win the game, i.e., Right does not have a winning
strategy.

Let’s introduce some useful notations:

• U ′ indicates a solution of Subset Sum Problem such
that ∑

ui∈U ′
ui = K.

• S indicates the set of all the strings containing ui
gray edges on the bottom and ui black edges on the
top for 1 ≤ i ≤ n.

• S ′ ⊆ S indicates a subset of strings corresponding to
U ′.

If U ′ is a solution of Subset Sum Problem, then Left,
cooperating with Center, has a trivial way to win the

game. During the first K moves, Left removes K edges
in S ′ and Center removes K edges from the top of the
first string. During the next K moves, Left removes K
edges from the top of first string and Center removes K
edges in S ′.

At this point there are no more edges in S ′ and Left can
removes U − K edges in S − S ′ while Center removes
U − K edges from the top of first string. Successively,
Left removes U−K edges from the top of first string and
Center removes the last U − K edges in S − S ′. Now,
the first string contains a black edge on the bottom, a
gray edge in the middle and another black edge on the
top therefore Left can make two more moves and Center
one more move.

Summarizing, Center makes

K +K + U −K + U −K + 1 = 2U + 1

moves and Left makes

K +K + U −K + U −K + 2 = 2U + 2

moves therefore Right does not have a winning strategy.

Conversely, let us suppose that when Right starts the
game, he/she does not have a winning strategy, i.e., Left,
cooperating with Center, is able to to make 2U+2 moves.
We recall that Left can remove only one more edge after
that Center has removed all his/her edges, therefore Cen-
ter has to make exactly 2U + 1 moves.

Let’s consider the first time, during the course of the
game, when the substring of K gray edges and K black
edges on the top of the first string have been just removed
and Left has to move. In this moment, S must contain at
least U −K black edges and U −K gray edges to remove
all the U −K gray edge and all the U −K black edges
in the first string. Moreover, at least K black edges and
K gray edges have been removed from S, therefore there
are exactly U −K black edges and U −K gray edges in
S.

For every string in S the number of black edges is always
less than or equal to the number of gray edges, therefore
in our case every string must contain the same number of
black and gray edges, i.e., there exists a subset of strings
containing U −K gray edges on the bottom with U −K
black edges on the top.

It follows that in the original instance there exists a sub-
set of strings containing K gray edges on the bottom and
K black edges on the top. To this subset of strings there
corresponds a subset U ′ such that

∑

ui∈U ′
ui = K.

Therefore, the problem to establish the outcome of G is
NP-hard and NP-complete.
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It is remarkable that the same instance, represented by
all the strings with black and gray edges and easily
solvable when Left and Center are in competition using
Berlekamp’s rule [10], becomes NP-hard when players
cooperate each other.

It is interesting to observe that the strategy of Right
does not affect the strategies of Left and Center because
the white edges are not connected to the black and gray
edges.

Moreover, strings are the simplest structure in Black-
White Hackenbush, therefore the instances represented
by strings are the simplest hard-instances in the game of
three-player Hackenbush.
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