

Abstract— In this paper, we describe GCUCE (Grid

Computing for Ubiquitous Computing Environment) core
service modules which are composed of context, environment,
event, task, space management for application mobility. They
are interacting with each other based on context-awareness
infrastructure which provides intelligent functions to users.
Moreover, we present a unified ubiquitous service interacting
with Grid core service modules on Computation Grid and
Access Grid computing, which provides scalability and
collaboration. Also, we describe an enterprise service model,
and base on that model, shall show the performance of GCUCE
by performing several experiments for DOWS (Distributed
Object-oriented Wargame Simulation).

Index Terms—Ubiquitous Computing, Context-Aware,
Context Reasoning, Access Grid, Computation Grid.

I. INTRODUCTION
Ubiquitous computing presents both an opportunity for

users and a challenge for system engineers [4]-[7]. For users,
a wealth of computing, informational, and communication
resources available everywhere should allow them to work
more effectively. For system engineers, however there is a
challenge of using these resources without overburdening
users with management of the underlying technology and
infrastructure. One particularly important aspect of this
problem is to support continuity in the face of time varying
resources.

While ubiquitous computing promises to make many more
resources available in any given location, a set of resources
that can be used effectively is subject to frequent change
because the resource pool itself can change dynamically, and
a user may move to a new environment, making some
resources available and others not accessible. As we detail
later, traditional solutions normally associated with mobile
computing [2],[15] are inadequate to solve this problem
either because they are unable to exploit resources as they
become available in a user’s environment, or because users
must pay too high price to manage those resources.

For the solution to this problem, we insert the concept of
Grid computing [1]-[2] into the existing concept of
ubiquitous computing [3]. Many ubiquitous computing

D. B. Seo is with Ph. D program at the Department of Information and

Communication Engineering in University of Korea, Student Member, IEEE
(e-mail: treeline@korea.ac.kr).

T. D. Lee, was with Ph. D program at School of Electronics Engineering
in Korea University, Korea, Now he is working at Digital Media, Samsung
Electronics (e-mail: leetd@korea.ac.kr).

 C. S. Jeong is the corresponding author, a Professor at the Department
Electronics Engineering in Korea University, Korea (e-mail:
csjeong@korea.ac.kr).

systems provide application developers with a powerful
framework [18]; however, its design is not intended to
support applications either requiring many resources that are
needed to integrate instruments, displays, computational and
information managed by diverse organizations, or requiring
collaborative environment by audio/video conferencing.

Moreover, the existing ubiquitous systems do not consider
coordinating and managing the resources to complete the task
efficiently and effectively. The structure of the paper is as
follows: In section Ⅱ we describes GCUCE(Grid Computing
for Ubiquitous Computing Environment) architecture. In
section Ⅲ, we discuss context reasoning, and in section Ⅳ

mobility in GCUCE. In section Ⅴ , we describe two
experiments on Grid computing, and in section Ⅵ,
conclusions are given.

II. ARCHITECTURE
GCUCE is a context-aware ubiquitous computing

[20]-[21] environment supported by grid computing [1]. It is
composed of three layers as shown in Fig.1: Grid Layer,
Context-aware Layer, and Ubiquitous Main Layer.

Fig. 1. GCUCE Architecture

A. Grid Layer
 The Grid Layer [9]-[12] is divided into two elements:
Computation Grid Framework (CGF), Access Grid
Framework (AGF). The CGF provides the functions of grid
computing using a Java cog kit which supports the fault
tolerance and high performance computation through
resource sharing, monitoring, and allocation. The CGF is
composed of four managers: Resource Manager(RM), Data
Manager(DM) , Job Manager(JM), and Runtime Information
Manager(RIM). RM uses the resource management services
offered by Grid, DM provides speed and reliability for files
being transferred, JM acts as an agent for the tasks in a job,

GCUCE: Grid Computing for Ubiquitous
Computing Environment

Dong-Bum Seo, Tae-Dong Lee and Chang-Sung Jeong

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

providing a single entity from which the tasks will request
resources, and RIM provides the information to applications
or middleware. AGF supplies collaboration with audio/video
streaming and view of sharing through shared applications on
collaborative environments [2]. It consists of four managers:
Collaboration Manager(CM), Collaboration Session
Manager(CSM), Shared Application Manager(SAM), and
Multimedia Manager(MM). CM gathers the information
about the shared stubs from the venue, CSM provides venue
addresses that the user can access, SAM integrates the whole
features of the shared applications used in the AccessGrid,
and MM controls the base service of AccessGrid like
Audio/Video streaming service.

B. Context-aware Layer
The Context-aware Layer [20]-[21] provides a

Context-Aware Infrastructure(CAI) which has a
responsibility for functions which support the gathering of
context information from different sensors and the delivery
of appropriate context information to applications. Also, it
supports the context model by ontology methods. The
development of formal context models satisfies the need to
facilitate context representation, context sharing and
semantic interoperability of heterogeneous systems. It
provides an abstract context ontology that captures general
concepts about basic context, and also provides extensibility
for adding domain specific ontology in a hierarchical manner.
In CAI, there are eight elements: Context Interpreter(CI),
Context Aggregator(CA), Context Model Factory(CMF),
Context Model(CM), Reasoner Factory(RF), Context
Reasoner(CR), Reasoner Controller(RC), and Information
Repository(IR).

CI gathers contextual information from sensors,
manipulates the contextual information, and makes it
uniformly available to the platform. CA processes and
aggregates the data through sensor network after context
extraction, which provides high-level contexts by
interpreting low-level contexts. CMF defines a context based
on concept of specific domain ontology through
internal/external providers, and associates a data set with
some reasoners to create a CM. RF creates the specified
reasoners, and CR has the functionality of providing the
deduced contexts based on direct contexts, resolving context
conflicts and maintaining the consistency of IR, and RC starts
and stops the specific CR.

C. Ubiquitous Main Layer
The Ubiquitous Main Layer [5]-[8] (called uMain) is

responsible for shielding the user from the underlying
complexity and variability through self-tuning environment
by mobility and adaptation which are weak points in CGF
and AGF. Whenever the user moves from one place to
another, the tasks and devices such as grid authentication,
environment variables, video/audio device or large display
are automatically set up or executed, keeping their
environment. The uMain has six managers: Task
Manager(TM), Environment Manager(EM), DB Manager,
Context Manager, File Manager, and Event Manager(EVM).
TM have something concerned with user’s task processes.

EM supports services concerned with making same user’s
environment in everywhere. The recording about user
information is managed by Database Manager DBM. CM has
a role of detection about user’s activities such as entering or
leaving to/from the environment. FM has to take a charge for
both remote and local file operations. EVM is to send and
receive messages among them locally.

III. CONTEXT REASONING
The basic concept of our context model is based on

ontology[16],[18] which provides a vocabulary for
representing and sharing context knowledge in a pervasive
computing domain, including machine-interpretable
definitions of basic concepts in the domain and relations
among them. An ontology-based model for context
information allows us to describe contexts semantically in a
way which is independent of programming language,
underlying operating system or middleware.

A. Context Ontology
There are several reasons for developing context models

based on ontology. The use of context ontology enables
computational entities such as agents and services in
ubiquitous computing environments to have a common set of
concepts about context while interacting with one another.

Fig.2. Context Ontology Campus Model

This is knowledge sharing. Based on ontology,

context-aware computing can exploit various existing logic
reasoning mechanisms to deduce high-level, conceptual
context from low-level, raw context, and to check and solve
inconsistent context knowledge due to imperfect sensing. By
reuse of well-defined ontologies of different domains, we can
compose large-scale context ontology without starting from
scratch. Fig.2 shows the context model, which is divided into
two layers: abstract context ontology and campus domain
context ontology. The abstract context model is structured
around a set of abstract entities, each describing a physical or
conceptual object including Person, Location, Activity, and
Computational Entity, as well as a set of abstract sub-classes.
Each entity is associated with its attributes (represented in
owl:DatatypeProperty) and relations with other entities
(represented in owl:ObjectProperty). The built-in OWL
property owl:subClassOf allows for hierarchically
structuring sub-class entities, thus providing extensions to

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

add new concepts that are required in a specific domain.
Besides general classes defined in abstract ontology, a
number of concrete subclasses are defined to model specific
context in a given environment. The campus domain
ontology for specific domain model is depicted with
inheritance from abstract context model (e.g., the abstract
class GroupActivity of campus domain is classified into three
sub-classes Class, Meeting, and Sports).

B. Ontology Relationship
Fig.3 shows a simple definition of specific ontology for a

campus application domain. The Student inherited from
Person is engaged in Class with Notebook in EngBuilding I.
Where each concrete values are set such as Student name,
Class lesson, Notebook owner, and EngBuildingI
roomnumber.

Fig.3. Simple Context Ontology Relationship

IV. MOBILITY IN GCUCE
 The system architecture in uMain has the components:
ubiCore and ubiContainer as shown in Fig.4. The ubiCore is
responsible for the application mobility [20]. When a user
moves from one place to another; ubiCore provides the
automatic movement of computing environment through
ubiContainer which supplies the user information such like
IP, user preference, etc.

Fig.4. Architecture of uMain

The communication component in GCUCE uses socket,

Java RMI (Remote Method Invocation). The socket is used
by File Manager for transferring the files. RMI is Java
mechanism for supporting distributed object based
computing, and it allows client/server based distributed
applications to be developed easily because a client
application running in a Java virtual machine at one node can
invoke objects implemented by a remote Java virtual
machine (e.g., a remote service) in the same way as local
objects.

The RMI mechanism in Java allows distributed application
components to communicate via remote object invocations,
and enables applications to exploit distributed object
technology rather than low level message passing (e.g.,
sockets) to meet their communication needs.

Fig.5. Sequence Diagram of uMain

In Fig.5 shows the sequence diagram of uMain. When a

new user enters into a new place or device, CM detects the
entrance of the user, and TM brings the information related to
the user, and FM makes the directory. TM copies the files
associated with the user by File Requester. File Requester
sends and receives messages to File Provider on remote host,
and File Provider sends the files to File Receiver. After the
end of file copies, EM executes the registered tasks through
JobFactory which commands the start of tasks to Task. If a
user registers the task through the TMUI(TM user interface),
the related files are moved to a user directory and the XML
file is updated.

A. Enterprise Model
 Let us think about mobility the enterprise model of
competitive ubiquitous grid service [8]-[9], [22]. Assume a
set G of N grid service providers. That is,

{ }1, 2, ... , ...G n N= . Each provider can be distinguished

by three service parameters such as { , , }n n nr l m , where nr
is the response time of nth service provider for unit resource
demand from its subscribers and nl is the loss probability

experienced by that service provider, and nm is the mobility
probability accumulated by nth service provider. The
selection of these parameters has a significant impact on
completion of the job of ubiquitous users within a limited
time frame. Due to the competitiveness in between the
service providers, the ubiquitous user gets an option to shift
from one service provider to another for job completion at the
earliest possible time. So, the nth grid service provider
experiences a demand nd , which depends not only on his
own response time, loss probability, mobility probability but
also on the response time, loss probabilities, and mobility
probabilities offered by its competitors. So, nd depends

upon entire response time vector []1 2, , ..., Nr r r r= , loss

probabilities vector []2, , ...,n Nl l l l= , and mobility

probabilities vector []1 2, , ..., Nm m m m= . The strategy of

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

each grid service provider will be always to provide a
response time, loss probability, mobility probability which
are in between the maximum and minimum values offered by
all of its competitors. Then, the strategy space, nS of nth grid
service provider, as in

() min max

min max min max

, , : 0 ;
.

0 ; 0
n n n n

n
n n

r l m r r r
S

l l l m m m
⎧ ⎫≤ ≤ ≤⎪ ⎪= ⎨ ⎬

≤ ≤ ≤ ≤ ≤ ≤⎪ ⎪⎩ ⎭

 We assume minr depends on nl in the sense that if the

value of the loss probability increases, then the service
provider has to decrease its response time nr . The upper
bound on the response time and loss probability express that
after a certain value, the demand will be zero.

B. Demand Model

 For a particular grid service provider, the demand nd for

its services decreases as its response time nr increases; on
the other hand, it increases with the increase of its competitor
response time mr , for m n≠ . The analogous relationship

holds for loss probabilities, but then, nd increases with

decrease of nl and increase of ml , for m n≠ . The reverse

relationship holds for mobility probabilities, but then, nd

increases with increase of nm and decrease of mm , for
m n≠ . We now consider the case where the demand
function (nd) is linear in all QoS parameters [9]. That is,

()
,

,

,

, , (1)

nm m n n
m G m n

n nm m n n
m G m n

nm m n n
m G m n

r r

d r l m l l

m m

α θ

β δ

χ η

⊆ ≠

⊆ ≠

⊆ ≠

⎧ ⎫
− +⎪ ⎪

⎪ ⎪
⎪ ⎪= − −⎨ ⎬
⎪ ⎪
⎪ ⎪+
⎪ ⎪⎩ ⎭

∑

∑

∑

 where , , , , ,nm n nm n nm nα θ β δ χ η are constants, and nm is
mobility value at nth grid service provider. Here we make
some minimal assumptions regarding the demand function.

() () ()

() () ()

, , , , , ,
0 , 0, 0;

, , , , , ,
0 , 0, 0;

n n n

n n n

n n n

m m m

d r l m d r l m d r l m
l m

d r l m d r l m d r l m
l m

m n

γ

γ

⎡ ⎤∂ ∂ ∂
≤ ≤ ≥⎢ ⎥∂ ∂ ∂⎢ ⎥

⎢ ⎥∂ ∂ ∂
⎢ ⎥≥ ≥ ≤

∂ ∂ ∂⎢ ⎥
⎢ ⎥∀ ≠⎢ ⎥
⎢ ⎥⎣ ⎦

This results in a decrease of own demand while increasing

those of its competitors, if a service provider increases
response time (loss probability), assumption the demand nd
is non-negative over the strategy space (i.e., response time
and loss probability are decreasing) and negative over the
non-strategy space (i.e. response time and loss probability are

increasing). Now each service provider n will charge a cost,

cn , per unit of the demand provided to the ubiquitous user.
Then the gain earned by the nth service provider is

(), , (2)n n n n nG c d r l m c d= × = ×

We define thatε is the ratio of proportionate change in

quantity demanded to proportionate change in cost

()
()

/
 (3)

/
n n n n

n n n n

d d d c
c c c d

ε
∂ ⎛ ⎞ ⎛ ⎞∂

= − = − ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

Since the revenue of nth service provider is given by
n n nG c d= × , then taking the partial derivative of both

sides we get,

()// (4)

/ 1 1

n n
n n

n n

n n n nn n

n n

n n

n n n

G dd c
c c

d c d cG c
G G

G c
G c c

ε ε

⎡ ⎤∂ ∂
= + ×⎢ ⎥

∂ ∂⎢ ⎥
⎢ ⎥+ × ∂ ∂∂ ∂⎢ ⎥=
⎢ ⎥
⎢ ⎥

⎛ ⎞∂ ∂ − −⎢ ⎥= = − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Now integrating Equation (2) and considering the initial

value to demand as k, and then we get,

()
1/

 is initial value (5)n n
n n

k kd c k
c d

ε

ε

⎛ ⎞
= ⇒ = ⎜ ⎟

⎝ ⎠

Equation (5) represents a more generalized demand

function by incorporating constant price elasticity model
which is more sensible and appropriate for our scenarios.

C. Gain maximization
 The revenue maximization problem is

()
()

,
, , (6)max

n n

n n n
c d

G c d r l m= ×

Subject to the following constraints:

0, (7)nc n N≥ ∀ ∈

, ,

,

 (8)
(, ,),

nm m n n nm m n n
m G m n m G m n

nm m n n n
m G m n

r r l l

m m d r l m n N

α θ β δ

χ η
⊆ ≠ ⊆ ≠

⊆ ≠

⎧ ⎫− + − −
⎪ ⎪
⎨ ⎬

+ ≤ ∀ ∈⎪ ⎪
⎩ ⎭

∑ ∑

∑

In the above formulation, the cost and demand variable
(), ,nd r l m are both present. We will find it convenient to

replace the price variable by Equation 6 and retain only the
demand variables. The optimum price may be recovered from
the demands in the solution. Transforming the objective
function gives: max

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

() () ()
1/

,
, ,

, ,max
n n

n n
c d n

kG d r l m
d r l m

ε
⎛ ⎞

= ×⎜ ⎟⎜ ⎟
⎝ ⎠

()
-1

1/ , , (9)nk d r l m
ε

ε ε= ×

subject to the constraints in (7), (8). Here we use a Lagrange
multiplier λ , associated with the constraint implied by
demand satisfaction in (9) to form the Lagrange expression

()() ()
1

1/, , , , ,n nL d r l m k d r l m
ε

ε ελ
−

= ×

()
,

,

,

, , (10)

nm m n n
m G m n

n nm m n n
m G m n

nm m n n
m G m n

r r

d r l m l l

m m

α θ

λ β δ

χ η

⊆ ≠

⊆ ≠

⊆ ≠

⎛ ⎞⎛ ⎞
− +⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟+ − − −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑

∑

Now the first-order condition for maximization of

()(), ,nL d r l λ is found by equating the partial derivative

of L to zero. Thus,

()

1/
10 0

, ,

1 (11)

n n

n

L k
d d r l m

c

ε
ε λ

ε

ε λ
ε

⎡ ⎤⎛ ⎞∂ −⎢ ⎥= ⇒ + =⎜ ⎟⎜ ⎟∂ ⎢ ⎥⎝ ⎠⎣ ⎦
−⎛ ⎞⇒ = ⎜ ⎟

⎝ ⎠

So, the strategy of each grid service provider are will be

always to provide a response time, loss probability, mobility
probability which are in between the maximum and minimum
values offered by all of its competitors.

V. EXPERIMENT
 We use DOWS (Distributed Object-oriented Wargame
Simulation) on RTI (RunTime Infrastructure) on Grid [3, 19].
DOWS is an object-oriented simulation system based on a
director-actor model which can be mapped efficiently on
object-oriented and distributed simulation. The existing RTIs
for HLA (High Level Architecture) do not consider
coordinating and managing the resource for distributed
simulation to complete the simulation efficiently and
effectively. The RTI on Grid is a grid-enabled
implementation of RTI for solving the problems.

In the scenario as shown in Fig.6, John wants to know the
result when DOWS simulation ends while he moves around
the building, and continues to do other tasks. Currently, John
is at lab B, and registers DOWS and RTI on computation
Grid, and executes DOWS on RTI. After execution, he leaves
the lab, and will go into the meeting room (Room C in
Building C) which is 30 minutes away. The simulation will
end 20 minutes after execution, and is transferred to GCUCE
as text result. When John arrives at Room C in Building C, he
will receive and analyze the result file. For test, the
implementation is accomplished on 4 PCs as clients, and 10

clusters (5: Pentium IV 1.7GHz, 5: Pentium III 1.0GHz Dual)
and one 486 computer as servers on a VO.

Fig.6. Testbed of DOWS on RTI using Grid for GCUCE

Our experiments are accomplished to confirm key services

of CGF. The first experiment is for the automatic distribution
service. We organize the system which has five servers (we
assume that 486 computer is included as server, because of
the limitation in local condition), and the GCUCE which has
a VO (Virtual Organization) of 11 servers (10 clusters and
486 PC). Then, we estimated the complete time of simulation
as the number of forces increases. As we expected, the
resource selection of the GCUCE did not choose the 486
computers.

Fig.7. Evaluation and result of GCUCE

As shown in the result of experiment, the demand in

GCUCE is increasing because the response time in automatic
distribution test is shorter, loss rate in dynamic migration test
is smaller, and mobility rate in dynamic migration test is
higher. In Fig.7 (a), GCUCE is superior as the scale of
simulation is increasing, although the time consumption of
initialization have an effect on the state of small forces.
GCUCE can utilize abundant computing power and adapt for
various environments, as well as provide convenient user
interface. This brings a fast response time, and the demand
becomes larger. To verify the dynamic migration service, we
execute a second experiment. In this test, we measured

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

accumulated received packets updated by 600 forces per 30
second. One packet has the size of 100 bytes. In 70 minutes,
we intentionally made a failure on one server. The
information related to execution like object information is
stored periodically, and then the application resigns from the
execution. The application sends the stop message to
applications before resignation. RM gathers the information,
and DM sends the application to a selected host. The
application sends the restart message to all applications and
receives the data stored before failure. As shown Fig.7 (b),
GCUCE can fulfill its mission after the failure, while the
original DOWS is halted. The enterprise model shows that
both responses time and loss probability are decreased,
mobility is increased, and the demand of this service is
increased.

VI. CONCLUSION
In the paper, we have described the development of

GCUCE that is the unified ubiquitous computing
environment using grid computing. The GCUCE is
composed of the modules which support the unified efficient
ubiquitous computing interacting with the core service
modules among high performance computing, collaborative
computing and context-aware infrastructure.

For the traditional distributed computing model, we have
developed two frameworks based on grid computing:
Computation Grid Framework (CGF) and Access Grid
Framework (AGF). For a large computation application,
CGF provides the high performance computing framework
which processes the real time data with high speed
computation through distributed resources using
computation grid. For collaborative computing, AGF
supplies the collaborative computing framework which
co-works the analysis, agreement and discussion among
people with a lot of data using Access Grid. The framework
gives the merits of collaboration with multimedia functions.

As a primitive element for ubiquitous computing, the
context-aware infrastructure (CAI) provides the intelligent
context after process of data entering through sensor network.
The context ontology model was suggested, which provides
an abstract context ontology that captures general concepts
about basic context, and also provides extensibility for
adding domain-specific ontology in a hierarchical manner.
The development of context models satisfies the need to
facilitate context representation, context sharing and
semantic interoperability of heterogeneous systems. Also,
CAI brings the merits to the system such as adaptation, self
organization, and self reconfiguration.

The heterogeneity and mobility among a number of
devices for ubiquitous computing make the system vastly
more complex. The development for solution of the
requirements as ubiquitous infrastructure is needed, and we
have developed the uMain (Ubiquitous Main) as the core
modules which provides the automatic computing
environment, and provides applications or services used
everywhere.

For GCUCE, we did several experiments for both DOWS
(Distributed Object-oriented Wargame Simulation) on CG
and DOWS on AG, including completion time, packet bytes,
and frame rate after we explained the enterprise service
model, an interactive simulation, and RTI-G (RunTime
Infrastructure on Grid). The experiments showed the superior

result of the performance of enterprise service model for
GCUCE.

REFERENCES
[1] I. Foster, C. Kesselman and S. Tuecke, “The Anatomy of the Grid:

Enabling Scalable Virtual Organizations,” International J.
Supercomputer Applications, 15(3), 2001.

[2] R. Stevens, M. E. Papka, and T. Disz, “The Access GRID: Prototyping
the workspaces of the future, Internet Computing, IEEE, Volume: 7
Issue: 4, pp 51-58, July-Aug. 2003.

[3] IEEE Standard for Modeling and Simulation, “High Level
Architecture (HLA) Federate Interface Specification,” IEEE Std
1516.1-2000.

[4] M. Weiser, “The Computer for the Twenty-First Century,” Scientific
Am., 1991, pp. 94–101.

[5] G. D. Abowed, “Software engineering issues for ubiquitous
computing,” Software Engineering, 1999. Proceedings of the 1999
International Conference on, 16-22 May 1999 Page(s): 75 – 84.

[6] M. Glesner, T. Hollstein and T. Murgan, “System design challenges in
ubiquitous computing environments,” Microelectronics, 2004. ICM
2004 Proceedings. The 16th International Conference on 6-8 Dec. 2004
Page(s): 11 – 14.

[7] Tim Kindberg, A. Fox, “System software for ubiquitous computing,”
Pervasive Computing, IEEE, Volume 1, Issue 1, Jan.-March 2002
Page(s): 70 – 81.

[8] N. Davies, A. Friday and O. Storz, “Exploring the grid's potential for
ubiquitous computing,” Pervasive Computing, IEEE Volume 3, Issue 2,
April-June 2004 Page(s): 74 – 75.

[9] N. Roy, S.K Das, K. Basu, and M. Kumar, “Enhancing Availability of
Grid Computational Services to Ubiquitous Computing Applications,”
Parallel and Distributed Processing Symposium, 2005 Proceedings.
19th IEEE International 04-08 April 2005 Page(s): 92a - 92a.

[10] I. Foster, C. Kesselman, “Globus: A Metacomputing Infrastructure
Toolkit,” Intl J. Supercomputer Applications, 11(2): 115-128, 1997.

[11] J. Frey, T. Tannenbaum, M. Livny, I. Foster, S. Tuecke, “Condor-G: A
Computation Management Agent for Multi-Institutional Grids,”
Proceedings of the Tenth International Symposium on High
Performance Distributed Computing (HPDC-10), IEEE Press, August
2001.

[12] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W.
Smith, S. Tuecke, “A Resource Management Architecture for
Metacomputing Systems,” Proc. IPPS/SPDP '98 Workshop on Job
Scheduling Strategies for Parallel Processing, pg. 62-82, 1998.

[13] R. El Azouzi, E. Altman and L.Wynter “Telecommunications Network
Equilibrium with Price and Quality-of-Service Characteristics”,
Proceedings of the ITC, Berlin, Sept 2003.

[14] Towards Open Grid Services Architecture,
http://www-fp.globus.org/ogsa/.

[15] Access Grid, http://www.accessgrid.org/
[16] J. Tsujii, “Domain ontology and top-level ontology: how can we

co-ordinate the two?” Natural Language Processing and Knowledge
Engineering, 2003. Proceedings. 2003 International Conference on
26-29 Oct. 2003 Page(s): 814.

[17] Hsin-Chuan Ho and Chao-Tung Yang Chi-Chung Chang," Building an
Elearning Platform by Access Grid and Data Grid Technologies",
Proceedings of the 2004 IEEE International Conference on
e-Technology, e-Commerce and e-Service (EEE’04), IEEE Press,
2004.

[18] R. Harrison, D. Obst, C.W. Chan, “Design of an ontology management
framework,” Cognitive Informatics, 2005. (ICCI 2005). Fourth IEEE
Conference on 8-10 Aug. 2005 Page(s): 260 – 266.

[19] P. Ghosh, N. Roy, S. K. Das and K. Basu, “A Game Theory based
Pricing Strategy for Job Allocation in Mobile Grids”, Proceedings of
18th International Parallel and Distributed Processing Symposium,
Snata Fe, New Mexico, Apr 2004.

[20] T. Gu, H.K. Pung, and D.Q. Zhang, “A middleware for building
context-aware mobile services,” Vehicular Technology Conference,
2004. VTC 2004 Spring. 2004 IEEE 59th Volume 5, 17-19 May 2004
Page(s): 2656 - 2660 Vol.5.

[21] W.G Griswold, R. Boyer, S.W Brown, T.M. Truong, “A component
architecture for an extensible, highly integrated context-aware
computing infrastructure,” Software Engineering, 2003. Proceedings.
25th International Conference, 3-10 May 2003 Page(s): 363 – 372.

[22] N. Roy,“Providing Better QoS Assurance to Next Generation
ubiquitous Grid Users”, MS Thesis, University of Teaxs at Arlington,
USA, Apr 2004.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

