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Abstract—In recent years, the chip leakage power may be 

larger than the chip dynamic power because the 
semiconductor process technology progresses quickly. 
Therefore, leakage power reduction becomes an important 
issue for low power circuit designers. In this paper, we 
propose a heuristic cell replacement algorithm to reduce the 
leakage power of a logic design. The algorithm contains two 
procedures. The first one uses a conventional optimization 
approach and the second one uses a new optimization 
approach. In the first procedure, the algorithm uses high Vt, 
normal Vt, and low Vt cells to do cell replacement. In the 
second procedure, the algorithm employs hybrid threshold 
voltage standard cell libraries (HTVSCLs) to do cell 
replacement. The experimental results show that our 
technique can further reduce the leakage power up to 
14.186% by using the second procedure after invoking the 
first procedure. 
 
Index Terms—Low Power Design, Leakage Current Reduction, 
MTCMOS, Hybrid Threshold Voltage Standard Cell Library 
 

I. INTRODUCTION 

Currently, in an advanced nanometer CMOS chip, the 
leakage power becomes larger than the dynamic power. 
Therefore, if the leakage power of an advanced nanometer 
CMOS chip used in a portable electronic device is not 
properly controlled, the chip will extremely shorten the 
operating time of the device’s battery. Many techniques are 
proposed for leakage power reduction, for example, Vt 
(threshold voltage) assignments, power gating techniques, 
reverse body bias, etc. 

In this paper, we use MTCMOS (Multi-Threshold CMOS) 
cell replacement technique to do leakage power reduction. 
Our work employs three kinds of Vt that are low Vt, normal 
Vt and high Vt. A low Vt transistor has high leakage power 
and short propagation delay while a high Vt transistor has 
low leakage power and long propagation delay. In a circuit, 
high Vt transistors are preferably placed on non-critical 
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paths to reduce the leakage current of the circuit and low Vt 
transistors are placed on critical paths to keep the circuit 
performance.  

Our algorithm contains two procedures. The first one 
uses a traditional optimization approach and the second one 
uses a new optimization approach.  In the first procedure, 
our algorithm uses high Vt, normal Vt, and low Vt standard 
cells to do cell replacement. In the second procedure, it 
employs hybrid threshold voltage standard cell libraries 
(HTVSCLs) to do cell replacement. The cell replacement 
actions can reduce the leakage power of the processed 
circuit and cannot bring any timing violation. 

The rest of the paper is organized as follows. Section II 
describes the first procedure of our algorithm. Section III 
presents the second procedure of our algorithm and the 
characteristics of our HTVSCLs. Section IV shows the 
experimental results. Finally, we conclude this paper in 
Section V. 

II. THE FIRST PROCEDURE OF OUR ALGORITHM 

MTCMOS is a well-known technique. Previous works 
[1]–[11] used dual or triple threshold voltage standard cell 
libraries to synthesize low power circuits. The first 
procedure of our algorithm uses high Vt, normal Vt, and 
low Vt  standard cell libraries  to do cell replacement for 
reducing the leakage power of the input circuit. 

The input circuit of the first procedure of our algorithm 
is a gate level circuit that is synthesized only by a normal 
Vt standard cell library. The output circuit of the procedure 
may contain high Vt, normal Vt, and low Vt gates. Fig. 1 
shows the pseudo code of the procedure. In the code, gN-Vt 
denotes a normal Vt gate. Let pv be a path that has the worst 
timing violation, and let gc be a gate that has the smallest 
cost among all evaluated gates. The cost function used to 
decide which gate is gc will be introduced in the next 
subsection. 
 
A. Cost Function 

The cost of the candidate gate that is chosen for being 
replaced by other Vt gate is defined as follows: 

 

Cost = 1
PathsTotal + ΔPowerLeakage / 1000

              (1) 

 
where PathsTotal is the amount of the paths through the gate, 
and △PowerLeakage is leakage power reduction caused by 
the cell replacement. Fig. 2 shows the function 
Calculate_Replacement_Costs_of_All_Gates that is called 
by our algorithm in order to calculate the cell replacement 
cost (1) of each gate. 
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The_First_Procedure() 
{ 
  /* The input circuit only has normal Vt gates; */ 

For each normal Vt gate gN-Vt 

{ 
    Resynthesize gN-Vt by a high Vt gate; 

} 
Do static timing analysis (STA); 
While ( there exists a timing violation path ) 
{ 
  Call Calculate_Replacement_Costs_of_All_Gates(); 
  Find pv that is the worst timing violation path; 
  If ( there exists a high Vt gate in pv ) 
  { 

Decide which gate is gc from among all high Vt gates in pv; 
/* gc is the gate that has the smallest cost among all evaluated 

gates. */ 
Resynthesize gc by a normal Vt gate; 

    } 
    Else If ( there exists a normal Vt gate in pv ) 
    { 

Decide which gate is gc from among all normal Vt gates in pv;    
Resynthesize gc by a low Vt gate; 

  } 
  Else 

Break; 
  Do incremental STA; 
} 

} 
Fig. 1 : The first procedure of our algorithm. 

 
 
Calculate_Replacement_Costs_of_All_Gates() 
{ 

Let △PLeakage(gi) be leakage power reduction caused by replacing gi by 
a new Vt gate; 

  For each gate gi 

{ 
    Calculate #enteri that is the number of paths entering gi; 

Calculate #leavei that is the number of paths leaving gi; 
  } 
  For each gate gi 
  { 
    If ( gi is a combinational gate ) 
    { 

/* C(gi) is defined as the cell replacement cost of gate gi; */ 

C൫gi൯ =
1

#enteri × #leavei + ∆PLeakage൫gi൯  / 1000
  ; 

    } 
    Else If ( gi is a flip-flop ) 
    { 

C൫gi൯ =
1

#enteri + #leavei + ∆PLeakage൫gi൯  / 1000
  ; 

    } 
    If ( the caller is HYVT1_Sub-Procedure() )  

{ 
  C(gi) = –1 * C(gi); 
  If ( gi is a fixed gate ) C(gi) = ∞; 
} 

} 
} 
Fig. 2 : The function of calculating the cell replacement 
cost of each gate. 

III. THE SECOND PROCEDURE OF OUR ALGORITHM 
We proposed two kinds of HTVSCL cells. They are 

HYVT1 cells and HYVT2 cells. Fig. 3 and Fig. 4 show 
HYVT1 NAND2 cells and HYVT2 NAND2 cells, 
respectively. There are 6 different structures for both 
HYVT1 NAND2 and HYVT2 NAND2. For convenience 
sake, we use different patterns to represent the symbols of 
logic gates that have the different Vt structures. Fig. 5(a), 
Fig. 5(b) and Fig. 5(c) show the symbols of a normal Vt 
NAND2, an HYVT1 NAND2, and an HYVT2 NAND2, 
respectively. We assume that the corresponding circuit of 
the symbol shown in Fig. 5(b) is the one shown in Fig. 3(f). 
Moreover, we assume that the corresponding circuit of the 
symbol shown in Fig. 5(c) is the one shown in Fig. 4(f). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 : HYVT1 cells. 
 

The second procedure of our algorithm consists of two 
sub-procedures. One is HYVT1 sub-procedure, and the 
other is HYVT2 sub-procedure. If a path has asymmetric 
rising and falling delays, HYVT1 sub-procedure can utilize 
the asymmetric property and uses HYVT1 cells to do cell 
replacement. If a gate in a path has asymmetric slacks on its 
input pins, HYVT2 sub-procedure can utilize the 
asymmetric slacks and uses HYVT2 cells to do cell 
replacement. 

We use the circuit shown in Fig. 6 to explain the main 
idea of HYVT1 sub-procedure. We assume that the wire 
delays of n3 and n5 of the circuit are both 0 ns. In the circuit 
shown in Fig. 6, the rising path delay and the falling path 
delay ending in the net n5 are 9 ns and 10 ns, respectively. 
The difference (t1) between the two delays is 1 ns (= 10 − 
9). The difference (t2) between the rising delay associated 
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Fig. 4 : HYVT2 cells. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 : The time arc data for NAND cells. 
 
with A-to-Y timing arc of the cell shown in Fig. 5(b) and 
the rising delay associated with A-to-Y timing arc of the cell 
shown in Fig. 5(a) is 1 ns (= 3 − 2). The difference (t3) 
between the rising delays associated with B-to-Y timing 
arcs of the two cells shown in Fig. 5(b) and Fig. 5(a), 
respectively, is also 1 ns (= 5 − 4). Because t1 ≥ t2 and t1 ≥ t3, 
our algorithm can use the HYVT1 cell to substitute the 
normal Vt cell g2 of the circuit shown in Fig. 6 and the 
substitution does not change the maximum (falling) delay 
of the critical path. The substitution result is shown in Fig. 
7. HYVT1 sub-procedure is shown in Fig. 8. 
 
 
 
 
 
 
 

Fig. 6 : An illustration for HYVT1 sub-procedure. 

 
 
 
 
 
 

Fig. 7 : The new circuit using an HYVT1 cell. 
 
HYVT1_Sub-Procedure() 
{ 

For each gate g 
{ 
  Calculate the slack of g; 

Initialize g as an unfixed gate; 
} 
Call Calculate_Replacement_Costs_of_All_Gates(); 
/* gc is the gate that has the smallest cost. */ 
Decide which gate is gc; 

  While ( gc has the positive slack && gc is an unfixed gate ) 
  { 
    If ( gc is not implemented by a high Vt gate ) 
    { 
      Re-implement gc by an HYVT1 gate; 
      Do incremental static timing analysis; 
      If ( the action of re-implementing gc induces timing violation ) 
      { 
        Return gc to its original gate implementation; 
        Do incremental static timing analysis; 
      } 
      For each gate g 
      { 
        Calculate the slack of g; 
      } 
    } 
    Set gc to be a fixed gate; 

  Call Calculate_Replacement_Costs_of_All_Gates(); 
  Update gc; 

  } 
} 

Fig. 8 : HYVT1 Sub-Procedure. 
 

We use the example shown in Fig. 6 again to explain the 
main idea of HYVT2 sub-procedure. In the circuit shown in 
Fig. 6, the rising delay and the falling delay of net n2 are 
assumed as 1 ns and 2 ns, respectively. The maximum 
rising delay of the maximum rising delay critical path 
(n2 g1 n3 g2 n5) is 9 ns (= 1 + 6 + 0 + 2 + 0). The 
rising delay and the falling delay of net n4 are assumed as 2 
ns and 1 ns, respectively. The rising propagation delay and 
the falling propagation delay of the g2’s A-to-Y timing arc 
are 2 ns and 4 ns, respectively. The maximum rising delay 
of the path (n4 g2 n5) that is through pin B of g2 to pin Y 
of g2 is 1 + 4 = 5 ns. 

The difference between the maximum rising delay of the 
maximum rising delay critical path (n2 g1 n3 g2 n5) 
and the maximum rising delay of the path (n4 g2 n5) 
through g2’s pin B is 9 − 5 = 4 ns (t4). The maximum 
difference between B-to-Y rising delays of the two cells 
shown in Fig. 5(a) and Fig. 5(c) is 5 − 4 = 1 ns (t5). Because 
t5 < t4, our algorithm can use the HYVT2 cell to substitute 
the normal Vt cell g2 and the substitution does not change 
the maximum rising delay of the maximum rising delay 
critical path. The substitution result is shown in Fig. 9. 
HYVT2 sub-procedure is shown in Fig. 10. 
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Fig. 9 : The new circuit using an HYVT2 cell. 
 
HYVT2_Sub-Procedure() 
{ 
  For each low Vt and normal Vt gate g 

  { 
    If ( g is a combinational gate && ( replacing g by an HYVT2 gate  

cannot induce any timing violation ) ) 
    { 
       Replace g by an HYVT2 gate; 
    } 
  } 
} 

Fig. 10 : HYVT2 Sub-Procedure. 

 

IV. EXPERIMENTAL RESULTS 
Our algorithm is implemented in C language. Some 

ISCAS benchmark circuits and three benchmark circuits 
got from Global Unichip Corporation are used in the 
experiment. A 90nm standard cell library is used in the 
experiment for logic synthesis. All gate-level circuits used 
in the experiment for evaluating the capability of leakage 
power reduction of our algorithm are created by Synopsys 
Design Compiler. 

 The experimental results are shown in Table I. The 
Tech1 (column 4) indicates that Synopsys Power Compiler 
uses high Vt, normal Vt, and low Vt standard cells and our 
HTVSCLs to do leakage power optimization. The Tech2 
(column 5) indicates that our program only uses the first 
procedure of our algorithm to do cell replacement. The 
Tech3 (column 6) indicates that our algorithm uses both the 
first procedure and the second procedure to do cell 
replacement. In the table, LVT indicates that a circuit is 
synthesized by Design Compiler only using low Vt standard 
cells.  

In the experiment, Power Compiler uses high Vt, 
normal Vt, and low Vt standard cells and our HTVSCLs to 
do leakage power reduction and then reports the timing 
results and the leakage power data. Our program uses our 
algorithm and HTVSCLs to do cell replacement and then 
produces a gate level Verilog file. The Verilog file is read 
by Design Compiler for reporting the timing data and the 
leakage power data. Power Compiler and our program use 
the same timing constraints when they reduce the leakage 
power of each benchmark circuit. For each benchmark 
circuit, there is no timing violation after the cell 
replacement or circuit optimization in this experiment. The 
experimental results show that our algorithm can reduce 
more leakage power than Power Compiler. Moreover, our 
algorithm does not slow down the performance of the 
optimized circuit. The second procedure of our algorithm 
can averagely reduce 10.518% (shown in column 7 of Table 
I) leakage power of the circuit that has been optimized by 
the first procedure of our algorithm. Compared with Power 

Compiler (shown in column 8 of Table I) and LVT (shown 
in column 9 of Table I), our program can save more leakage 
power. 
 

V. CONCLUSION 
The algorithm contains two procedures. The first one is 

traditional and the second one is new. In the first procedure, 
the algorithm uses high Vt, normal Vt, and low Vt cells to 
do cell replacement. In the second procedure, it employs 
hybrid threshold voltage standard cell libraries to do cell 
replacement. The experimental results show that our 
technique can further reduce the leakage power up to 
14.186% by invoking the second procedure after the 
optimization performed by the first procedure. 
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Table I : Experimental results for benchmark circuits 

Benchmark 
circuit 

Total 
cells 

Flip/ 
Flops 

Leakage power (nW) 
Tech2 - Tech3

Tech2

(%) 

Tech1 - Tech3
Tech1

 

(%) 

LVT - Tech3
LVT

(%) 

CPU 
time 
(s) 

Power Compiler Our algorithm 

Tech1 Tech2 Tech3 

C5315 1548 0 28027.0 30304.7 26844.1 11.419 4.221 65.044 4 

C6288 3216 0 179200.5 172832.1 148314.3 14.186 17.236 36.7 16 

C7552 2046 0 50508.7 49714.9 44261.6 10.969 12.368 57.97 4 

S386 93 6 2611.7 1777.3 1548.0 12.902 40.728 72.207 3 

S420 176 16 7652.3 6879.0 6144.4 10.679 19.705 54.881 3 

S838 386 32 14593.0 13973.7 12793.5 8.446 12.331 51.259 3 

S1488 483 6 10042.0 11126.7 9847.9 11.493 1.933 58.525 3 

S5378 1224 176 40030.7 41174.3 37635.2 8.595 5.984 65.78 3 

S9234 1004 145 41813.9 40377.3 36965.1 8.451 11.596 61.063 3 

S15850 3194 513 41980.2 44933.7 41698.5 7.2 0.671 84.470 5 

S35932 8750 1728 435177.2 413218.0 373030.2 9.726 14.281 59.528 30 

S38584 9545 1275 89070.7 87050.9 81782.7 6.052 8.182 88.028 16 

GUC1 13363 992 346731.2 292565.3 254381.5 13.051 26.634 72.832 41 

GUC2 17639 384 527158.8 464455.0 402883.1 13.257 23.575 59.725 269 

GUC3 32286 384 634412.1 486355.8 431168.3 11.347 32.037 71.916 536 

Average − − − − − 10.518 15.432 63.995 − 
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