
 
 

  
Abstract—Since its appearance, CBR methodology has 

drawn many research attentions and already proved its 
potentials in different industrial applications. However the 
related applications up to now are mainly focused on non 
real-time targets. In our work, CBR methodology was 
introduced for solving practical real-time process control 
problems. Its deployments in combustion control of blast 
furnace stoves are provided in this paper. Two examples, the 
dome temperature control and the blast temperature prediction 
applying CBR method, are presented respectively. 
 

Index Terms—Case-based reasoning, Combustion control, 
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I. INTRODUCTION 
 Case-based reasoning is a method that compares the 

present problem with previous ones and applies the problem 
solving of the past to the present problem. In other words, we 
can reuse the problem solving technique that was used in the 
past and apply it to the present problem [1, 2]. Case-based 
reasoning has been used to solve problems in diverse areas 
including decision support, help desk support, product 
cataloguing and maintenance support, etc. In this article, 
CBR applications in combustion control of blast furnace 
stoves, which is a typical real-time process control problem, 
are presented. 

A blast furnace is used to produce molten pig iron from 
iron oxides, coke and flux. One of the major sources of 
energy for this process is the sensible heat coming from the 
preheated air, referred to as blast air, which is injected into 
the furnace. This air is preheated in tall, cylindrical, 
refractory-filled thermal regenerators called Blast Furnace 
Stoves (BFS). Since a BFS has inherently time-delay, 
time-varying and non-linear characteristics, traditional 
control strategies such as PID are no longer in force while 
confronting the combustion control problem of BFSs, 
because there are no exact mathematical models for 
describing the stoves’ characteristics. Therefore some 
advanced control strategies have been researched and 
implemented for solving this combustion control problem, 
such as fuzzy control or expert control methods reported in 
literatures [3, 4]. But the natures of these intelligent control 
strategies are of rule-based, consequently the obstacle or so 
called “bottle neck” for gaining the expert knowledge, which 
is the basis for realizing the above mentioned strategies, is 
inevitable eventually. So a novel control strategy was 
proposed [5], which utilizes CBR rather than RBR as its 
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reasoning machine for getting control decisions, and this 
method has been proved to be effective and easy to be 
implemented in several in-situ applications. 

Iron manufacturing in blast furnace requires a large, 
continuous flow of air preheated at high temperature (above 
1000℃). A battery of 3~4 BFSs, operated cyclically, is 
located in the vicinity of the furnace. From the view point of a 
total blast process, each one in a battery of BFSs works in a 
discontinuous or sequential batch mode, and an entire 
continuous on-blast process is guaranteed by each stove’s 
cyclic and alternating operation. Since the heat energy 
accumulated during the on-gas phase could not be measured 
directly and easily, a fixed on-gas and on-blast duration and 
its correspondent changeover cycle are pre-determined for 
each stove according to formerly manual monitoring 
experiences. Because the blast stoves and their related 
auxiliaries have inherently different characteristics, and the 
quality of their fuel (BFG) is changing frequently, such an 
operation mode with a fixed on-gas and on-blast cycle may 
cause the blast air temperature fluctuate dramatically, and the 
stove just over a better on-gas phase could not thoroughly 
send out its stored heat during the on-blast phase. For coping 
with this problem, a variable cycle control strategy was 
proposed and implemented [5]. This strategy takes the whole 
blast temperature as its control target. The next on-blast 
stove’s heating intensity is adjusted dynamically according to 
the blast temperature prediction of the stove just terminated 
its on-gas phase. The blast temperature prediction is also 
realized based up CBR methodology.  

The article is structured as follows. Section II presents 
the CBR method for controlling the dome temperature. 
Section III describes the blast temperature prediction 
based-on CBR methodology. Section V ends with the 
conclusions. 

 

II. DOME TEMPERATURE CONTROL 
Because a BFS’s heat level could not be directly and 

simply measured, the automatic control system usually takes 
two indirect parameters as its controlled variables, which are 
the BFS’s dome temperature and its waste air temperature. 
The adjusted variables are the air flow rate and the fuel 
(BFG) flow rate, and a suitable ratio of air/fuel should be 
maintained to ensure an optimal and energy-saving 
combustion status. 

The method for controlling the BFS’s dome temperature 
using CBR is described as follows. 

A.    Case Representation 

Each sample case while using CBR is described as a 
vector form which includes three elementary components, 
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that is: a problem description, a solution description and an 
effect description. Before the reasoning mechanism is put 
into on-line operation, its case representation should be 
carefully researched and constructed. 

For controlling a BFS’s dome temperature during its 
heat storing stage, in addition to the directly related adjusting 
variables (like its gas flow rate and air flow rate), other 
relevant parameters should also be taken into consideration. 
In our work, the case-base’s case representation is 
constructed based on the following considerations: 

(a) The suggestions of experienced operators and the 
analysis of historical data should be taken into account first 
of all. 

(b) Secondly, the selected variables or attributes should 
come out of easy to be measured or calculated process 
parameters. 

Finally, the case representation for stable dome 
temperature control applying CBR methodology is 
determined，and described as in the following Table 1. 

Table 1 Case representation 
No. Name Symbol Description 

1 On-gas duration tON-GAS On-gas Duration from the 
beginning to the current time 

2 Dome 
temperature TDOME Current dome temperature 

3 Change of dome 
temperature ΔTDOME 

Difference between the current 
dome temperature and the 
precedent one 

4 Waste gas 
temperature TEX-AIR Current waste air temperature 

5 Change of waste 
air temperature ΔTEX-AIR 

Difference between the current 
waste air  temperature and the 
precedent one 

6 Pressure of BFG PBFG Current pressure of BFG (gas) 
7 Flow rate of gas FBFG Current flow rate of BFG 

8 Flow rate of air FAIR Current flow rate of combustion 
air 

9 Ration of gas/air RGAS-AIR Current ratio of BFG/air 

10 Position of gas 
valve VGAS Precedent position of gas valve 

11 Position of air 
valve VAIR Precedent position of air valve 

12 Increment of gas 
valve ΔVGAS 

Increment of gas valve of this 
adjustment 

13 Increment of air 
valve ΔVAIR Increment of air valve of this 

adjustment 
14 Adjust effect Eadj 1: normal, 2:better 

After the case representation is determined and checked, 
it should be filled up originally with sufficient sample cases 
before being put into on-line operation. These sample cases 
are called the initial seed [6]. 

B.    On-Line Operations 

Differed from the non real-time applications, the CBR 
method for controlling the dome temperature should do its 
retrieving, reusing and revising as fast as possible because of 
its real-time requirement. Thus some complicated similarity 
calculation methods are unsuitable to such an application. 
Therefore the simple k-nearest neighbour algorithm is used to 
realize searching and matching of the similar cases. The 
essential idea of k-nearest neighbour is defining a certain 
space distance between a query case to be matched and each 
example case stored in the case-base, and taking the distance 
as a definite similarity degree measure. In our work, a 
threshold value is pre-determined before the on-line 
retrieving procedure is doing. If one or more cases with their 

respective distances less than the threshold are found, then 
the sample case which has the smallest distance is taken as 
the retrieved and reused sample. 
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Fig.1 Flow chart of on-line operations 

As shown in Figure 1, the tasks of the CBR method for 
controlling the dome temperature of a BFS in its on-line 
operation phase are just like a typical CBR cycle, which can 
be divided into the following steps: 
        (a) Getting data and submitting problem. Firstly the 
real-time data reflecting the controlled object’s operation 
status and technique parameters are sampled. If some 
problems are found from the on-line data, such as a bias 
between a required temperature value and the measured one 
is greater than a pre-determined threshold, they will be taken 
as a new problem and submitted to the CBR reasoning 
mechanism in the form of a problem description vector to 
look for a suitable solution. 
        (b) Retrieving and matching. Then the CBR reasoning 
machine compares the submitted problem with each sample 
case stored in the case-database to find a similar one. The 
similar case is defined as a sample case which has the 
smallest space distance between it and the submitted problem 
vector. And the space distance is calculated using the 
k-nearest neighbour algorithm. 
       (c) Adopting and reusing. If the similar case’s distance 
calculated in the above step b is less than a pre-determined 
threshold, meaning a similar case is found, this case’s 
solution description will be adopted and reused, and taken 
directly as the reasoning result or the final control decision. 
This control decision is sent to the actuator to execute the 
adjusting action 
       (d) Learning and revising. If no sample case’s distance in 
the case-base is less than a pre-determined threshold, 
meaning no similar case is found, then an incremental or trial 
adjustment will be taken as the definite control decision. This 
trial adjustment is made based on some known control rules. 
And this new problem and new solution will be evaluated 
later and then added to the sample case-base to further extend 
the problem solving ability of the CBR reasoning 
mechanism. 

C.    Control result 

An adjustment example using CBR method is given out 
in Table 2. At the 4th sampling time, the dome temperature is 
2℃ lower than the required value (1285℃) and the 
difference is bigger than ε (1.5℃), so the CBR mechanism is 
activated. This new problem is described as a vector: (22, 
1283.0, -2.0, 253.1, 1.0, 21538, 9940, 2.17, 5.21, 51, 60). 
After the space distance calculations with each sample case in 
the case-base, a similar case is found, which is: C39 = (22, 
1283.1, -1.9, 265.9, 1.6, 21683, 9824, 2.21, 5.27, 52, 58, -3, 
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0). Therefore this case’s solution description is reused and 
put into the actuators as the control decision, which is the gas 
valve’s increment (-3, 0), meaning an open variation of the 
gas valve from 51% to 48%. 

Table 2 Adjustment Example 
No. TDOME TEX-AIR FBFG FAIR PBFG VGAS VAIR 
1 1284.5 252.1 20904 10191 5.06 51 60 
2 1284.2 252.7 21100 9971 5.13 51 60 
3 1283.8 253.2 21372 9858 5.20 51 60 
4 1283.0 253.1 21538 9940 5.21 51 60 
5 1283.0 252.9 20276 10345 5.01 50 60 
6 1283.7 253.3 20647 9913 5.05 49 60 
7 1282.8 253.9 21130 9920 5.08 48 60 
8 1283.2 255.3 20964 9851 5.09 48 60 
9 1283.9 255.5 20939 9910 5.08 48 60 
10 1284.8 255.7 20198 9991 5.09 48 60 

 

III. BLAST TEMPERATURE PREDICTION 
To ensure efficient furnace operation, the required 

flow-rate and temperature of the blast air must be maintained. 
A common disadvantage of the combustion control methods 
for BFSs presented before is that they take into account only 
the individual stove’s control problem, not considering a 
battery of BFSs as a whole system. In reality, each stove’s 
heat storage ability in a blast system is different inherently, 
and the caloricity of BFG ejected from BF as the main fuel 
for blast stoves is changing frequently, therefore a total 
optimal blast effect could not be guaranteed while applying a 
fixed cycle operation. Therefore, a variable cycle operation 
mode was proposed and implemented. It dynamically 
changes the heating intensity of the next on-blast BFS 
according to the predicted blast temperature of the BFS just 
beginning its on-blast phase.. 

Obviously, the key factor for implementing the variable 
cycle strategy is how to predict the blast temperature timely 
and correctly based on the measured and/or calculated data. 
Some study on predicting the blast air temperature profile of 
the BFSs that just over on-gas phase have been presented in 
literatures. There are the methods based on the mathematic 
model [7, 8] or data reconciliation [9]. However, these 
methods are difficult to be applied because they need the craft 
parameters, which reflect the characteristics of the BFS itself 
and its refractory bricks, and the predicted result is not ideal 
because these parameters are commonly uncertain. Unlike 
the above mentioned methods, the presented one in this 
article is using CBR methodology as an effective predicting 
tool and based on the statistical data (not real-time data) 
during the on-gas phase. 

A.    Case Representation 

Before doing the prediction, the case description and the 
case-base structure should be defined first of all, and then 
draw out sufficient cases from the precedent on-gas and 
on-blast cycles and put them into the case-base. 

The combustion process of the BFSs is a kind of 
sequential batch process. It is demonstrated that the hot blast 
produced during the on-blast phase has a definite relation 
with the accumulative heating effect during its corresponding 
on-gas phase. Therefore 9 characteristic variables that 
appeared to be relative with the heating effect are taken as the 
problem description of the case representation. These 9 
characteristic variables are easy to be calculated or summed 
up in terms of the measured process variables, they are: even 

dome temperature (EDT), initial dome temperature (IDT), 
even exhaust-gas temperature (EEGT), heating time (HT), 
gas flux sum (GFS), combustion air sum (AFS), last blast 
temperature (LBT), initial blast dome temperature (IBDT), 
and even gas pressure (EGP). The correlative measured 
process variables include: dome temperature, exhaust gas 
temperature, gas pressure, gas flow, combustion air flow and 
hot blast temperature, etc. 

In order to fill up the case-base with various samples 
that covering nearly all the possible combustion situations, 
100,000 measured sample data records were collected from 
the No.2 blast furnace control system at Baofeng Iron & Steel 
Company in Heibei, China. From these records, 48 cases 
representing both the on-gas and on-blast features were 
drawn out and chosen eventually, and stored in the case-base 
as the basis of the prospective reasoning. 

B.    On-Line Operations 

In our study, the k-nearest neighbour algorithm is used 
to realize searching and matching of the similar cases. The 
specific predicting steps in our applications are described as 
follows: 

(a) Sum up and record the above defined 9 attributes 
values from the gathered sample data after an on-gas phase 
having been terminated, and then take these values as a query 
case (or problem). This new query is an input to the CBR 
system, which generates the adequate problem descriptions 
by querying the case-base. 

(b) Calculate the Euclidean distances that clarifies the 
similarity measure between the query case and each example 
case.  Then choose k nearest example cases that have the 
smallest Euclidean distances, where k equals to [ ]n  (“[ ]” 
means an integer operation), and n is the total number of 
example cases stored in the case-base. In our applications, n 
is 48, so k is 7. 

(c) Do cluster analysis in the above k nearest cases to 
categorize them further into two parts, and choose the k′ 
nearest cases to be used in the next step from the smaller 
distance category.  

(d) Finally calculate the arithmetic average values of the 
corresponding blast air temperature’s time sequence of the k′ 
nearest example cases at each sample time, and take the 
averaged time sequence as the predicted blast air temperature 
profile. 

1 0 2 0 . 0 0
1 0 3 0 . 0 0
1 0 4 0 . 0 0
1 0 5 0 . 0 0
1 0 6 0 . 0 0
1 0 7 0 . 0 0
1 0 8 0 . 0 0
1 0 9 0 . 0 0
1 1 0 0 . 0 0
1 1 1 0 . 0 0
1 1 2 0 . 0 0
1 1 3 0 . 0 0
1 1 4 0 . 0 0

1 4 5 8 9 1 3 3 1 7 7 2 2 1 2 6 5

Predicted temperature Measured temperature
 Fig.2 A good prediction result 

C.    Predicting result 

The application results produced by this CBR method are 
very promising. Figure 2 shows an example for a good 
prediction of the blast temperature. We can see from the 
figure that the measured and predicted temperature curves are 
almost identical.  
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IV. CONCLUSION 
(a) Compared with other intelligent control strategies, 

like fuzzy control or rule-based expert control, the presented 
case-based one has an obvious advantage: it is very easy to be 
implemented. The obstacle or bottle neck for obtaining the 
control rules is entirely overcome. And more importantly, 
since the control decisions in manual operations were made 
by the operators with taking into account several factors 
affecting the control results, and the decisions were fuzzy in 
some degree, thus the final control decisions using CBR 
based on the sample cases drawn out from experienced 
practices would inherit naturally the characteristics of both 
fuzzy and multi-factors.  

(b) This article also presents a novel approach to predict 
the blast temperature without a mathematical or logic model, 
but only based on the measured and statistical data during the 
on-gas phase. Though this CBR method seems easier to be 
implemented than the other mathematical model methods, it 
has been shown that its temperature prediction precision is 
quite satisfied. 

It is shown with the presented applications that the CBR 
methodology could be used for dealing with not only the 
reasoning of non real-time objectives, but also the real-time 
control of industrial processes. It is proved once again with 
the presented article that CBR is a powerful AI methodology, 
and it will be found more successful applications on more 
industrial domains in the future. 
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