

Abstract—The Reference Model for Open Distributed

Processing (RM-ODP) defines a framework for the
development of Open Distributed Processing (ODP) systems in
terms of five viewpoints. Each viewpoint language defines
concepts and rules for specifying ODP systems from the
corresponding viewpoint However the ODP viewpoint
languages are abstract and do not show how these should be
represented. We treat in this paper the need of formal notation
for behavioral l concepts in the enterprise language. Using the
Unified Modelling Language (UML)/OCL (Object Constraints
Language) we define a formal semantics for a fragment of
ODP behavior concepts defined in the RM-ODP foundations
part and in the enterprise language. We mainly focus on time,
action, sequentiality, non determinism, behavior constraints
and permission, obligation and prohibition.

Index Terms—RM-ODP, Enterprise Language, Behavior,
Semantics, UML/OCL

I. INTRODUCTION
The Reference Model for Open Distributed Processing

(RM-ODP) [1-4] provides a framework within which support
of distribution, networking and portability can be integrated.
It consists of four parts. The foundations part [2] contains the
definition of the concepts and analytical framework for
normalized description of arbitrary distributed processing
systems. These concepts are grouped in several categories
which include structural and behavioral concepts. The
architecture part [3] contains the specifications of the
required characteristics that qualify distributed processing as
open. It defines a framework comprising five viewpoints,
five viewpoint languages, ODP functions and ODP
transparencies. The five viewpoints are enterprise,
information, computational, engineering and technology.
Each viewpoint language defines concepts and rules for
specifying ODP systems from the corresponding viewpoint.
However, RM-ODP is a meta-norm [5] and can not be
directly applicable. Indeed it defines a standard for the
definition of other ODP standards. The ODP standards
include modelling languages.

In this paper we treat the need of formal notation of ODP
viewpoint languages. The languages Z, SDL,, LOTOS, and
Esterel are used in RM-ODP architectural semantics part [4]

Mohamed Bouhdadi, Department of Mathematics & Computer Science,

University Mohammed V Rabat, Morocco, email: bouhdadi@ fsr.ac.ma).).
El maati Chabbar University Mohammed V Rabat, Morocco

chabbar@fsr.ac.ma
Youssef Balouki, Department of Mathematics & Computer Science,

University Mohammed V Morocco, email: balouki@cmr.gov.ma

for the specification of ODP concepts. However, no formal
method is likely to be suitable for specifying every aspect of
an ODP system.

Elsewhere, there had been an amount of research for
applying the Unified Modelling Languages UML [6] as a
notation for the definition of syntax of UML itself [7-9]. This
is defined in terms of three views: the abstract syntax,
well-formedness rules, and modeling elements semantics.
The abstract syntax is expressed using a subset of UML static
modelling notations. The well-formedness rules are
expressed in Object Constrains Language OCL [10]. A part
of UML meta-model has a precise semantics [11, 12] defined
using denotational meta-modelling semantics approach. A
denotational approach [13] is realized by a definition of the
form of an instance of every language element and a set of
rules which determine which instances are and are not
denoted by a particular language element.

Furthermore, for testing ODP systems [2-3], the current
testing techniques [14], [15] are not widely accepted and
specially for the enterprise viewpoint specifications. A new
approach for testing, namely agile programming [16], [17] or
test first approach [18] is being increasingly adopted. The
principle is the integration of the system model and the
testing model using UML meta-modelling approach [19-20].
This approach is based on the executable UML [21]. In this
context OCL can be used to specify the invariants [12] and
the properties to be tested [17].

In this context we used the meta-modelling syntax and
semantics approaches in the context of ODP systems. We
used the meta-modelling approach to define syntax of a
sub-language for the ODP QoS-aware enterprise viewpoint
specifications [22]. We also defined a UML/OCL
meta-model semantics for structural concepts in ODP
computational language [23]. In this paper we use the same
approach for behavioral concepts in the foundations part and
in the enterprise language.

The paper is organized as follows. In Section 2, we define
core behavior concepts (time, action, behavior, role, process).
Section 3 describes behaviour concepts defined RM-ODP
foundations part namely, time, and behavioural constrains.
We focus on sequentiality, non determinism and concurrency
constraints. In Section 4 we introduce the behaviour
concepts defined in the enterprise language. We focus on
behavioural policies. A conclusion ends the paper.

II. CORE BEHAVIOR CONCEPTS IN RM-ODP FOUNDATION
PART

We consider the minimum set of modeling concepts
necessary for behavior specification. There are a number of

A Semantics of Action Related Concepts in ODP
Enterprise Language

Mohamed Bouhdadi, El Maati Chabbar, Youssef Balouki

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

approaches for specifying the behavior of distributed systems
coming from people with different background and
considering different aspects of behavior. We represent a
concurrent system as a triple consisting of a set of states, a set
of action and a set of behavior. Each behavior is modeled as a
finite or infinite sequence of interchangeable states and
actions. To describe this sequence there are mainly two
approaches [24].

 1. “Modeling systems by describing their set of actions
and their behaviors”.

 2. “Modeling systems by describing their state spaces and
their possible sequences of state changes”.

These views are dual in the sense that an action can be
understood to define state changes, and state occurring in
state sequences can be understood as abstract representations
of actions. We consider both of these approaches as
abstraction of the more general approach based on RMODP.
We provide the formal definition of this approach that
expresses the duality of the two mentioned approaches.

We use the formalism of the RM-ODP model, written in

UML/OCL. We mainly use concepts taken from the clause 8
“Basic modelling concepts” of the RM-ODP part 2. These
concepts are: behavior, action, time, constraints and state (see
figure 1). the latter are essentially the first-order propositions
about model elements. We define concepts (type, instance,
pre-condition, post-condition) from the clause 9
“Specification concepts”. Specification concepts are the
higher-order propositions applied to the first-order
propositions about the model elements. Although basic
modelling concepts and generic specification concepts are
defined by RMODP as two independent conceptual
categories [25].The behavior definition uses two RM-ODP
modeling concepts: action and constraints. Behavior (of an
object): “A collection of actions with a set of constraints on
when they may occur”. That is, a behavior consists of a set of
actions, a set of constraints. An action is something which
happens. RM-ODP does not give the precise definition of
behavioral constraints. These are part of the system behavior
and are associated with actions. This can be formally defined
as follows:
Context c : constraint inv:
c.constrained_act -> size > 1

Context m :modelbehavior inv :
m.behavior->includesAll(m.Actions
->union(m.constraints))

For any element b from Behavior, b is an Action and b has

a at least one constraint and this constraint is a Behavior
element or b is a Constraint and b has a at least one action
and this action is a Behavior element.

Context b :behavior inv :
m.behavior->forall(b |(m.actions->includes(m.b)
and b.constraints->notempty) or
(m.constraints->includes(m.b) and b.actions
->notempty)

To formalize the definition, we have to consider two other

modeling concepts: time and state. We can see how these
concepts are related with the concept of action by looking at
their definitions. Time is introduced in the following way
(RM-ODP, part 2, clause 8.10):

Location in time: An interval of arbitrary size in time at
which action can occur.”

instant_begin : each action has one time point when it
starts instant_end : each action has one time point when it
finishes

State (of an object) (RM-ODP, part 2, clause 8.7): At a
given instant in time, the condition of an object that
determines the set of all sequences of actions in which the
object can take part. Hence, the concept of state is dual with
the concept of action and these modeling concepts cannot be
considered separately: This definition shows that state
depends on time and is defined for an object for which it is
specified.

Context t :time inv :
b.actions->exists (t1,t2| t1 =action.instant_beging
->notempty and
t2 =action.instant_end ->notempty and t1<> t2)

Figure 1. Core Behavior Concepts

III. META-MODELLING TIME AND BEHAVIORAL
CONSTRAINTS

“Behavioral constraints may include sequentiality,

non-determinism, concurrency, real time” (RM-ODP, part 2,
clause 8.6). In this work we consider constraints of
sequentiality, non-determinism and concurrency. The
concept of constraints of sequentiality is related with the
concept of time.

A. Time
Time has two important roles:
•It serves for the purpose of synchronization of actions

inside and between processes, the synchronization of a
system with system users, the synchronization of user
requirements with an actual performance of a system.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

•It defines sequences of events (action sequences)
To fulfill the first goal, we have to be able to measure time

intervals. However, a precise clock that can be used for time
measurement does not exist in practice but only in theory [26].
So the measurement of the time is always approximate. In
this case we should not choose the most precise clocks, but
ones that explain the investigated phenomena in the best way.
Simultaneity of two events or their sequentiality, equality of
two durations should be defined in the way that the
formulation of the physical laws is the easiest” [26]. For
example, for the actions synchronization, internal computer
clocks can be used and, for the synchronization of user
requirements, common clocks can be used that measure time
in seconds, minutes and hours.

We consider the second role of time. According to [26] we
can build some special kind of clock that can be used for
specifying sequences of actions. RM-ODP confirms this idea
by saying that “a location in space or time is defined relative
to some suitable coordinate system” (RM_ODP, part 2,
clause 8.10). The time coordinate system defines a clock used
for system modelling. We define a time coordinate system as
a set of time events. Each event can be used to specify the
beginning or end of an action. A time coordinate system must
have the following fundamental properties:

•Time is always increasing. This means that time cannot
have cycles.

•Time is always relative. Any time moment is defined in
relation to other time moments (next, previous or not related).
This corresponds to the partial order defined for the set of
time events.

We use the UML (fig1) and OCL to define time: Time is
defined as a set of time events.

nextTE: defines the closest following time events for any

time event
We use the followingTE relation to define the set of the

following time events or transitive closure for the time event t
over the nextTE relation:

followingTE: defines all possible following time events
Using followingTE we can define the following invariant
that defines the transitive closure and guarantees that time
event sequences do not have loops:

Context t :time inv :
Time->forAll(t:Time | (t.nextTE->isempty implies

t.follwingTE->isempty) and (t.nextTE->notempty and
t.follwingTE->isempty implies t.follwingTE =t.nextTE) and
(t.nextTE->notempty and t.follwingTE->notempty implies
t.follwingTE->
includes(t.nextTE.follwingTE->union(t.nextTE)) and t.
follwingTE->exludes(t)).

This definition of time is used in the next section to define

sequential constraints.

B. Behavioral constraints
We define the behavior like a finite state automaton (FSA).

For example, figure 2 shows a specification that has
constraints of sequentiality and non determinism. We can

infer that the system is specified using constraints of
non-determinism by looking at state S1 that has a
non-deterministic choice between two actions a and b.

Based on RM-ODP, the definition of behavior must link a
set of actions with the corresponding constraints. In the
following we give definition of constraints of sequentiality,
of concurrency and of non-determinism.

 (a) (b)
Figure 2. a - Sequential deterministic constraints;
 b - Sequential nondeterministic constraints.

1) Constraints of sequentiality

Each constraint of sequentiality should have the following
properties [28]:

•It is defined between two or more actions.
•Sequentiality has to guarantee that one action is finished

before the next one starts. Since RM-ODP uses the notion of
time intervals it means that we have to guarantee that one
time interval follows the other one:

Context sc :constraintseq inv :
Behavior.actions-> forAll(a1,a2 | a1<> a2 and

a1.constraints->includes(sc)
and a2.constraints->includes(sc) and
((a1.instant_end.followingTE->includes(a2.instant_begin

)

or(a2.instant_end.followingTE->includes(a1.instant_begin)
)

For all SeqConstraints sc, there are two different actions a1,

a2, sc is defined between a1 and a2 and a1 is before a2 or a2
is before a1.

2) Constraints of concurrency

 Figure 3 shows a specification that has constraints of
concurrency

We can infer that the system is specified using constraints
of concurrency by looking at state S1 that has a simultaneous
choice of two actions a2 and a3.

a1

a3

a2

cc

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Figure 3. RM-ODP diagram: Example constraints of
concurrency

For all concuConstraints cc there is a action a1, there are

two different internal actions a2, a3, cc is defined between a1
and a2 and a3, a1 is before a2 and a1 is before a3

Context cc :constraintconc inv :
Behavior.actions-> forAll(a1 :Action ,a2 ,a3 :

internalaction | (a1 <> a2) and (a2 <> a3) and (a3 <> a1) and
a1.constraints->includes(cc) and a2.constraints

->includes(cc) and a3.constraints->includes(cc) and
a1.instant_end.followingTE-> a2.instant_begin and
a1.instant_end.followingTE-> a3.instant_begin

3) Constraints of non-determinism

In order to define constraints of non-determinism we
consider the following definition given in [24]: “A system is
called non-deterministic if it is likely to have shown number
of different behavior, where the choice of the behavior
cannot be influenced by its environment”. This means that
constraints of non-determinism should be defined between a
minimum of three actions. The first action should precede the
two following actions and these actions should be internal
(see figure 4).

Figure 4. RM-ODP diagram: Example constraints
 of non-determinism

 Context ndc: NonDetermConstraints inv :
Behavior.actions-> forAll(a1 :Action ,a2 ,a3 :

internalaction | (a1 <> a2) and (a2 <> a3) and (a3 <> a1) and
a1.constraints->includes(ndc) and a2.constraints

->includes(ndc) and a3.constraints->includes(ndc)
and a1.instant_end.followingTE-> a2.instant_begin or
a1.instant_end.followingTE-> a3.instant_begin)) .

We note that, since the choice of the behavior should not

be influenced by environment, actions a2 and a3 have to be
internal actions (not interactions). Otherwise the choice
between actions would be the choice of environment.

IV. BEHAVIORAL POLICIES IN RM-ODP ENTERPRISE
LANGUAGE

The enterprise specification is composed of specifications

of the following elements : the system’s communities (sets of
enterprise objects), roles (identifiers of behavior), processes
(sets of actions leading to an objective), policies (rules that
govern the behavior and membership of communities to
achieve an objective), and their relationships

The behavior of an ODP system is determined by the
collection of all the possible actions in which the system

(acting as an object), or any of its constituent objects, might
take part, together with a set of constraints on when these
actions can occur. In the enterprise language this is can be
expressed in terms of roles or processes or both, policies, and
the relationships between these. That is, behavior of an ODP
system consists of a set of roles or a set of processes and a set
of their policies. Constraints are defined for actions. Several
authors have proposed different proprietary languages for
expressing ODP policies, usually with formal support (e.g.
Object-Z) but with no graphical syntax—hence losing one of
the advantages of using UML. We propose modeling the
enterprise viewpoint behavioral concepts using the standard
UML diagrams and mechanisms for modeling behavior,
since policies constrain the behavior of roles.

Context s :System inv :
s.behavior->(includesAll(s.Roles) or

includesAll(s.Process)) ->union(s.Roles.policy))

Context o :object inv :
s.behavior-> includes(o.behavior.roles)
->-union(o.behavior.roles.policy)

We formalize in the following the concepts of policy.

Policy is defined as a set of establishing , terminating and
executing actions. figure 5 presents the UML meta-model
for behavior and policy concepts. Establishing actions have
to be defined by actions causing communications or process :

Establishing_act : set of actions which initialize a
behavior

Terminating_act : set of actions which break some
process

Executing_act : set of actions which execute a behavior
or process

Context P : Policy inv :
P.specified_by -> size > 1

A. Obligation
To model obligations, we need to specify the actions that

the system is forced to undertake as part of its intended
behavior. In fact, an obligation is a prescription that a
particular behaviour is required. It is fulfilled by the
occurrence of the prescribed behaviour (clause :1 1 . 2 . 4).
The actions must initiate by Establishing action, and to
complete by the Terminating action .

Context po :policyobligation inv :
b.policy->includes(po) implies (Behavior.actions
-> (includes(self.Establishing_act) and
(Behavior.actions-> includes(self.Terminating_act)
and (Behavior.actions-> includes(self.Executin_act)

B. Permission

Permission is a prescription that a particular behavior is

allowed to occur. A permission is equivalent to there being
no obligation for the behavior not to occur (clause 1 1 . 2 . 5).

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Permissions allow state transitions. Therefore, permission is
expressed by a action Establishing_act which determine the
scenario of the permitted action(s) and their participants,
while its Terminating_act diagram describes the effects of
such action(s).

Context pp :policypermission inv :
b.policy->includes(pp) implies (Behavior.actions)
-> (includes(self.Establishing_act) or (Behavior.actions
-> includes(self.Terminating_act)

C. Prohibition
A prohibition is prescription that a particular behaviour

must not occur. A prohibition is equivalent to there being an
obligation for the behaviour not to occur (clause1 1 . 2 . 6.)
Prohibitions can be treated in two different ways, depending
on their natures. The first way is to express them as
conditional statements, explicitly banning action
Establishing_act. In this way, the system will automatically
prevent the prohibited action to happen. The second way to
deal with prohibitions is by using watchdog rules again,
which detect the occurrence of the prohibited action and
execute the action Terminating_act , if possible.

 Context ppr :policy Prohibition inv :
b.policy->includes(ppr) implies (Behavior.actions)
-> (excludes(self.Establishing_act)
and (Behavior.actions->excludes(self.Executing_act)
and includes(self.Terminating_act))

Figure 5. A meta-model for behavior and policy concepts

V. CONCLUSION

We address in this paper the need of formal ODP

viewpoint languages. Using the meta-modeling semantics,
we define a UML/OCL based semantics for a fragment of
behavior concepts defined in the foundations part (time,
sequentiality, non determinism and concurrency) and in the
enterprise viewpoint language (behavioral policies). These
concepts are suitable for describing and constraining the
behavior of open distributed processing enterprise
specifications. We are applying the same approach for other
ODP enterprise behavior concepts (real time) and for

behavior concepts in the computational language.

REFERENCES
[1] ISO/IEC, ‘’Basic Reference Model of Open Distributed

Processing-Part1: Overview and Guide to Use, ‘’ISO/IEC CD 10746-1,
1994

[2] ISO/IEC, ‘’RM-ODP-Part2: Descriptive Model, ‘’ ISO/IEC DIS
10746-2, 1994.

[3] ISO/IEC, ‘’RM-ODP-Part3: Prescriptive Model, ‘’ ISO/IEC DIS
10746-3, 1994.

[4] ISO/IEC, ‘’RM-ODP-Part4: Architectural Semantics, ‘’ ISO/IEC DIS
10746-4, July 1994.

[5] M. Bouhdadi et al., ‘’An Informational Object Model for ODP
Applications, ‘ Malaysian Journal of Computer Science, Vol. 13, N 2, (
2000) 21-32.

[6] J. Rumbaugh et al., The Unified Modeling Language, Addison Wesley,
1999.

[7] B. Rumpe, ‘’A Note on Semantics with an Emphasis on UML, ‘’
Second ECOOP Workshop on Precise Behavioral Semantics, LNCS
1543, Springer, (1998) 167-188.

[8] A. Evans et al., ‘’Making UML precise, ‘’ Object Oriented
Programming, Systems languages and Applications, (OOPSLA'98),
Vancouver, Canada, ACM Press (1998)

[9] A. Evans et al. The UML as a Formal Modeling Notation, ‘’ UML,
LNCS 1618, Springer, (1999) 349-274

[10] J. Warmer and A. Kleppe, The Object Constraint Language: Precise
Modeling with UML, Addison Wesley, (1998).

[11] S. Kent, et al. ‘’A meta-model semantics for structural constraints in
UML,, In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral
specifications for businesses and systems, Kluwer , (1999). chapter 9

[12] E. Evans et al., Meta-Modeling Semantics of UML, In H. Kilov, B.
Rumpe, and I. Simmonds, eds, Behavioral specifications for businesses
and systems, Kluwer , (1999). ch. 4.

[13] D.A. Schmidt, ‘’Denotational semantics: A Methodology for anguage
Development, ‘’ Allyn and Bacon, Massachusetts, (1986)

[14] G. Myers, ‘’The art of Software Testing, ‘’, John Wiley &Sons, (1979)
[15] Binder, R. ‘’ Testing Object Oriented Systems. Models. Patterns, and

Tools, ‘’ Addison-Wesley, (1999)
[16] A. Cockburn, ‘’Agile Software Development. ‘’Addison-Wesley,

(2002).
[17] B. Rumpe, ‘’ Agile Modeling with UML, ‘’ LNCS vol. 2941, Springer,

(2004) 297-309.
[18] Beck K. Column on Test-First Approach. IEEE Software, Vol. 18, No.

5, (2001) 87-89
[19] L. Briand , ‘’A UML-based Approach to System testing, ‘’ LNCS

Vol. 2185. Springer, (2001) 194-208,
[20] B. Rumpe, ‘’ Model-Based Testing of Object-Oriented Systems; ‘’

LNCS Vol.. 2852, Springer; (2003) 380-402.
[21] B. Rumpe, Executable Modeling UML. A Vision or a Nightmare?, In:

Issues and Trends of Information technology management in
Contemporary Associations, Seattle, Idea Group, London, (2002) pp.
697-701.

[22] M. Bouhdadi et al, ‘’ An UML-based Meta-language for the
QoS-aware Enterprise Specification of Open Distributed Systems, ‘’
Collaborative Business EcoSystems and Virtual Enterprises, IFIP
Series, vol. 85, Springer , (2002) pp. 255-264

[23] M. Bouhdadi, Y. Balouki, E. Chabbar. ‘’ Meta-Modeling Syntax and
Semantics of Structural Concepts for Open Networked Enterprises”,
ICCSA 2007, Kuala Lumpor, 26-29 August, LNCS Vol. 4707 45-54
2007.

[24] Broy, M., “Formal treatment of concurrency and time,‘’ in Software
Engineer's Reference Book,J. McDermid, Editor, Oxford:
Butterworth-Heinemann, (1991),

[25] Wegmann, A. et al. ‘’ Conceptual Modeling of Complex Systems
Using RMODP Based Ontology‘’ . in 5th IEEE International
Enterprise Distributed Object Computing Conference -EDOC (2001).
September 4-7 USA. IEEE Computer Society pp. 200-211

[26] Henri Poincaré, The value of science, Moscow «Science», 1983
[27] Harel, D. and E. Gery, “Executable object modeling with statecharts“,

IEEE Computer.30(7) pp. 31-42 (1997)
[28] P. Balabko, A. Wegmann, “From RM-ODP to the formal behavior

representation” Proceedings of Tenth OOPSLA Workshop on
Behavioral Semantics ¨Back to Basics¨, Tampa, Florida, USA , pp.
11-23 (2001).W.-K. Chen, Linear Networks and Systems (Book style).
 Belmont, CA: Wadsworth, 1993, pp. 123–135

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

