
Enhanced N+1 Parity Scheme combined with

Message Logging

Ch.D.V. Subba Rao and M.M. Naidu

Abstract Checkpointing schemes facilitate fault recovery in

distributed systems. The present work extends James S Plank’s

Diskless checkpointing scheme (N+1 Parity) by introducing

‘Timeout’ to checkpoint programs with high locality of
1reference. This mechanism enables applications with high

locality of reference to take checkpoints periodically. The

limitation of N+1 Parity scheme is that all the processes freeze

their respective computation, while taking synchronous

checkpoints. The Enhanced N+1 Parity Scheme solves this

problem by introducing a new message logging technique

namely partial message logging which allows asynchronous

checkpointing at both sender and receiver. This paper includes

the performance evaluation of proposed scheme by making use

of distributed simulator test-bed. The results indicate that

proposed scheme outperforms N+1 Parity Scheme.

Index TermsCheckpointing, Fault tolerance, Message

Logging, Performance Analysis

I. INTRODUCTION

 Distributed systems are increasingly gaining importance
in the present world with the advances in network
technology. They provide opportunities for developing high
performance parallel and distributed applications. The vast
computing potential of these systems is often hampered by
their susceptibility to failures. In case of a failure the
distributed applications have to be restarted resulting in loss
of several hours/ days of computation. Therefore, providing
fault tolerance is an important issue in distributed
computing. One effective way to recover distributed system
failures is to use checkpointing and rollback recovery [5,6].
Checkpointing refers to saving the address space and state of
processes periodically to stable storage. On detection of
failures, each process rolls back to its latest checkpoint and
resumes the execution from that point [1]. Checkpointing
schemes are classified into two categories based on the
‘storage medium’ used for storing the checkpoints. They are
i) Disk-based checkpointing ii) Diskless checkpointing.

 In diskless checkpointing scheme, each checkpoint is
saved to stable storage that is implemented on disk. Though
the disk-based checkpointing is most widely used approach,
the applications that need most frequent checkpointing lead
to several disk accesses which results a performance
bottleneck. In diskless checkpointing the stable storage is
replaced with main memory and processor redundancy
i.e. the checkpoints are taken in the main memory. By

Mr. Ch.D.V. Subba Rao and Dr. M.M. Naidu are with Dept.
of Computer Science and Engineering, S. V. University
College of Engineering, Tirupati – 517 502, India.
E-mail:subbarao_chdv@hotmail.com

eliminating stable storage, diskless checkpointing removes
the main source of overhead in checkpointing[3,8,10]. The
failure coverage of diskless checkpointing is less than disk-
based checkpointing. Moreover, the diskless checkpointing
includes the memory, processor and network overheads that
are absent in disk-based schemes.

II. DESIGN OF ENHANCED N+1 PARITY SCHEME

 In this paper, we present Enhanced N+1 Parity scheme
and demonstrate that it can perform better than the N+1
Parity scheme proposed by N. H. Vaidya [12].

 In Diskless checkpointing scheme there exist a collection
of processors with disjoint memories that coordinates to take
a checkpoint of the global system state. A consistent global
state consists of checkpoints of each processor in the system
plus a log of messages in transit at the time of
checkpointing. In the proposed scheme the messages are
logged using partial massage logging scheme (discussed in
detail in Section III). The message log is part of the
checkpoint information of individual processors. The
checkpointing and rollback recovery procedures in case of
diskless checkpointing are as described:

 Let’s consider a multicomputer/ distributed system which
consists of n+2 processors/ nodes: P1, P2, ……..Pn, Pc and
Pb. Each node contains its own physical memory and
communication devices. Processors Pi, 1 ≤ i ≤ n are called
application processors and the processors Pc and Pb are
called the ‘checkpoint processor’ and ‘backup processor’
respectively. A computing task is partitioned into ‘n’
subtasks, such that each subtask is executed on a distinct
application processor Pi in an asynchronous manner. These
subtasks communicate with each other by passing messages
via the underlying interconnection network.

 The consistent global state is maintained cooperatively by
the application processors P1, P2, ……..Pn, checkpoint
processor Pc, and backup processor Pb using N+1 parity
[4,7]. Specifically, each application processor will have a
copy of its own local checkpoint in physical memory. The
checkpoint processor will have a copy of the ‘parity
checkpoint’, which is constructed as follows: Let Si denote
the size of main memory containing local checkpoint at
processor Pi, 1 ≤ i ≤ n . The checkpoint processor Pc reserves
a bank of memory Mc of size Sc which is equal to the
maximum of Si’s, i.e. Sc = max {S1, S2 ,……., Sn}. Let bi,j be
the jth byte of Pi’s checkpoint if j ≤ Si , and 0 otherwise. The
jth byte bc,j of checkpoint processor holds the parity as a
result of exclusive-oring all of the jth bytes of the n
application processors, that is,

 bc,j = b1,j⊕ b2,j⊕ ………. ⊕ bn,j for 1 ≤ j ≤ Sc .

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

One copy of the above parity checkpoint which is the
exclusive-or of checkpoints of all application processors is
stored on backup processor and this backup is useful when
the checkpoint processor wants to update its contents.

 When any application processor, say Pf fails, each non-
failed processor restores its state to its local checkpoint. The
failed processor’s checkpoint can be obtained by exclusive-
oring the checkpoints of non-failed application processors
with parity checkpoint present in the checkpoint processor
as shown:

bi,j = b1,j ⊕ b2,j ⊕⊕ bi-1,j⊕ bi+1,j⊕…..⊕ bn,j⊕ bc,j,

for ≤≤ j1 Si.

If the checkpoint processor fails, then it restores its state
from the backup processor, or by recalculating the parity
checkpoint from scratch. The backup processor may be
restored similarly. The above scheme tolerates a single a
failure with two additional processors (i.e. Pc and Pb). This
idea can be extended to simultaneous failure of ‘n’ nodes,
where the system needs ‘2*n’ additional/ replacement
processors.

 Initially, each application processor Pi, 1 ≤ i ≤ n, takes a
checkpoint 0 by simply setting the access modes of all of the
memory pages to read-only state. The content of the
memory is then sent to checkpoint processor Pc. Pc
calculates parities of the pages byte-by-byte, and stores the
parity data in the corresponding location of Mc. In addition,
each application processor clears its extra memory. This
space is split in half, and each half is used as a
checkpointing buffer. We will call them the primary and
secondary checkpointing buffers as shown in Figure 1.

Fig. 1. Address space of the Application processor

 Application processors start executing their programs
after their initialization phase is completed. Read operations
proceed as usual. However, a page fault is generated when a
processor attempts to write to a read-only page. Once a page
fault occurs, the content of the accessed page is copied to its
primary checkpointing buffer, and the page’s access mode is
set to read-write so that it can be written. If any application
processor fails during this time, the system can be restored
to the most recent checkpoint by copying the pages back
from the buffer, reprotecting them as read only, and then
restarting. Obviously, if the checkpoint processor fails
during this time, it can be restored from the backup
processor, and vice-versa.

Timeout Mechanism

 Whenever, the space of a processor’s primary
checkpointing buffer is used up or when it is time to take a
new checkpoint, which we simply call Timeout, then it must

start a new checkpoint. In other words, if the last completed
checkpoint was checkpoint number c, then it starts
checkpoint c+1. The processor requests the checkpoint
processor for authorization to take the checkpoint. The
checkpoint processor in turn checks the global checkpoint
number; if the difference is not greater than one, it will grant
permission; otherwise it holds the request until the global
checkpoint number is incremented.

 The significance of Timeout is that, if a user is executing
a program with high locality of reference, the chance of
primary buffer getting filled is low or the buffer gets filled
after consuming significant amount of computational time.
If the processor fails during the execution of the programs
with high locality of reference, the lost work will be more as
the checkpoint is taken after a longer interval of time and
sometimes the application even cannot take checkpoint.
Because of Timeout mechanism that is added to N+1 parity,
the application can take checkpoints periodically, thus
reducing maximum work lost is equal to the checkpoint
interval.

III. PARTIAL MESSAGE LOGGING SCHEME

 Message handling got a significant role in checkpoint and
recovery of the distributed system [9]. We can’t assume
consistent state of the system without proper message
handling. The major concern is for the messages that are in
transit at the time of checkpointing. The N+1 parity scheme
(i.e. diskless checkpointing scheme) proposed by J. S. Plank
is based on the assumption of zero message state, where all
processors halt/ freeze their computation until the in transit
messages are delivered to the destination process. Our
scheme proposes partial message logging technique which
allows asynchronous checkpointing at both sender and
receiver, which won’t results into any blocking/ halting
overhead. Since, the in-transit message data is saved in the
in-memory checkpoint, the proposed message logging
technique does not result into any additional overhead.
Further, the proposed scheme partially logs the messages by
always ensuring the difference among the checkpoint states
of individual application processors should never be greater
than 1. Therefore, at any time, the message log of each
process contains messages that are sent/ received during
present and previous checkpoint intervals.

 The following example in Figure 2 will show the
occurrence of orphan and lost messages when message
logging is not done. A system is strongly consistent if and
only if there are no orphan and lost messages [15].

Fig. 2. Lost and Orphan messages

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

 Process P1 and process P2 both take in-memory
checkpoint ‘c’ asynchronously. Now when the failure occurs
they will rollback to checkpoint c. Process P1 resends
message m1 to process P2 which is an orphan message.
Process P2 won’t replay the message m2 resulting in a lost
message. Logging of messages introduces memory and
computational overhead. Therefore, the proposed scheme
partially logs the messages by always ensuring the
difference among the checkpoint states of individual
application processors should never be greater than 1. At
any time, the message log of each process contains
messages that are sent/ received during present and previous
checkpoint intervals. Each application processor possesses
one or more process/es running in its address space.

 A. Log Structure

 Every process maintains two message log tables that are
sent table and receipt table in the address space of an
application processor in which it is present.

Sent Table: The sent table looks like the one shown in
Table1. Each entry in the sent table is a quadruple where

• Seq number : The process sequentially numbers the
sent messages.

• Destination is the process to which the message is
sent.

• Message slot holds the message data.

• The messages can have the following acknowledge
states.

 0 - Message is sent
 1- Acknowledgement for the sent-message is

received
 2 - The Messages sent during previous checkpoint
 interval. (Archived messages)

 The message logging mechanism will modify all the
message slots with ack status 1 to 2, at the time of taking in-
memory checkpoint. When, the application processor rolls
back to the previous checkpoint at the time of failure
recovery, all processes will resend the messages in the sent
table with ack.2, thus eliminating the lost-messages.

TABLE 1
Sent Table

Ack
Status

Seq
Number

Destination Message slot

Receipt Table: The information of the received messages is
logged in this table. The table looks like the one shown in
Table 2 where Seq. number is the sequence number
contained by the received message. Source is the process id
from where the message is received.

The messages can have two Ack States:
 1 - Message is received and acknowledgement is sent
 2 - The messages received during previous checkpoint
 interval.

 The message logging mechanism will make entry for all
received messages and mark them with ack. 1. At the time
of taking in memory checkpoint all processes (of that
particular processor) modifies their ack. status 1 to 2 in
receipt table. Whenever a process receives any message it
checks for its presence in the receipt table. If the entry for
that message is already present, the process simply ignores
the message, thus avoiding the orphan-messages.

TABLE 2

Receipt Table

Ack
Status

Seq
Number

Source

 At the time of taking a checkpoint, the entries in the
receipt table and sent table with ack. 2 are removed. This
ensures that at any point of time the message log will have
information about messages of present and previous
checkpoint interval thus reducing the memory and lookup
overhead. As the processes maintain the message log
information in the address space of the application processes
this partial message logging scheme will work for both for
the diskless and disk-based checkpointing schemes.

 B. An Example of Partial Messaging Logging

Fig. 3. Message exchanges between processes P1 and P2

 The Figure 3 shows the message exchange between two
processes. For ease of understanding we consider that the
two processes P1 and P2 are running on separate application
processors. First, both the application processors take in-
memory checkpoint almost concurrently at time t1 and the
sent table of the process P2 is as given in Table 3. At time t2
process P1 had taken in-memory checkpoint c+1. At this
moment the status of sent and receipt tables of the process
P1 are as shown in Tables 4 and 5 respectively.

TABLE 3
Sent-table of process P2 after checkpoint c

Ack
Status

Seq
Number

Destination Message slot

2

m0

p1

Mq34#$62^#

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

TABLE 4
Sent-table of P1 after checkpoint c+1

Ack
Status

Seq
Number

Destination Message slot

2

m1

p2

Mt*hjkvd#$62^#

TABLE 5
Receipt-table of P1 after checkpoint c+1

Ack

Status
Seq

Number
Source

2

m2

p2

 After taking the checkpoint c+1 the process P1 will send
message m3 to process P2 and receive message m4 from
process P2. At time t3 the process P2 takes the checkpoint.
After taking the checkpoint c+1 the status of sent and receipt
tables of process P2 are given in Tables 6 and 7 respectively.
At time t4 the sent-table and receipt-table of process P1 is as
given in Table 8 and Table 9.

TABLE 6

Sent-table of P2 after checkpoint c+1

Ack
Status

Seq
Number

Destination Message slot

2

2

m2

m4

p1

p1

Mtlw*(0kvd#$62^#

Mtlw(dju)62^#

 TABLE 7
Receipt –table of P2 after Checkpoint c+1

Ack

Status
Seq

Number
Source

2

2

m1

m3

p1

p1

TABLE 8
Sent-table of P1 at time t4

Ack
Status

Seq
Number

Destination Message slot

2

1

m1

m3

p2

p2

Mt*hjkvd#$82^#

Mtl@sv!54ju)62^#

TABLE 9
Receipt-table of P1 at time t4

Ack
Status

Seq
Number

Source

2

1

m2

m4

p2

p2

 After time t4 a fault occurs in the application processor
containing process P1. Now process P2 rolls back to its local
checkpoint c+1. Process P1 is recovered by first-level
recovery scheme. After rollback the status of sent-table and
receipt-table of process P2 will be same as that of Table 6
and Table 7 respectively. After rollback the sent-table and
receipt-table of process P1 will be equal to that of Table 4
and Table 5 respectively. Now when the process P1 sends
message m3 to process P2, it makes a lookup into Table 7
and it founds a match. Therefore process P2 discards the
message as a redundant message, thereby eliminating the
orphan message problem. Process P2 replays the message
m4, as there is a mismatch of ack. status bits of sent-table 6
and receipt-table 9 with respect to message m4. Thus the lost
message problem is also eliminated. Hence proposed partial
message logging scheme handles the messages effectively
and with utmost reliability.

IV. PERFORMANCE EVALUATION

 In order to assess the performance of Enhanced N+1
Parity Scheme, we have used distributed simulator testbed.

 A. Distributed Simulator Testbed

 The Distributed Simulator testbed facilitates to
demonstrate how system reliability can be enhanced as a
result of using a particular checkpointing and recovery
scheme. The simulator functions by taking a system
specification, a task set to be run, and injecting faults to see
the performance of the system in the presence of faults. The
two important components of Distributed Simulator testbed
are
 1. Checkpoint simulator
 2. Distributed Virtual Machine

The functionality of Checkpoint Simulator is similar to that
of Rapids Simulator [14].

 Distributed Virtual Machine

 DVM (Distributed Virtual Machine) is an integrated set
of software tools and libraries that emulates a general-
purpose, flexible, computing framework on interconnected
computers. The overall objective of the DVM system is to
enable such a collection of computers to be used
cooperatively for concurrent or parallel computation.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

 The DVM system is composed of two parts. The first part
is a daemon that resides on all the computers making up the
virtual machine. The second part of the system is a library of
DVM interface routines. It contains a functionally complete
repertoire of primitives that are needed for cooperation
between tasks of an application. This library contains user-
callable routines for message passing, spawning processes,
coordinating tasks. The DVM computing model is based on
the notion that an application consists of several tasks. Each
task is responsible for a part of the application's
computational workload.

 Distributed Virtual Machine will take care of fault
detection, installation and management, reconfiguration
mechanism when a new node is added or when already
existing node is removed. Distributed Virtual Machine
automatically takes decision regarding the recovery using
the information of control file and available backup
processors.

 B. Applications considered for Evaluation

 In order to assess the performance of proposed scheme
and other checkpointing and recovery schemes, the
following applications [15] are run on the distributed
simulator test-bed.

• Merge Sort

• Matrix Multiplication

• All Pair Shortest Path Problem

Merge Sort:
 The given data/ elements to be sorted are distributed to all
the application processors in the system by the coordinator
using divide-and-conquer approach. The application
processors sort the elements and return the result to the
coordinator. If 10,00,000 records need to be sorted, the
coordinator which acts as dispatcher distribute these records
to application processor in chunks of 1,00,000 records.
Each application processor after completion of sorting sends
back the data to coordinator which will merge the incoming
data in ascending order of their values. This is a
computational intensive problem.

Matrix Multiplication:
 The matrix multiplication of two square matrices is
carried out using cannon’s algorithm where elements are
floating point numbers. Matrix size of the order 2629 x 2629
is considered.

All Pairs Shortest Path Problem:
 The all pairs shortest path problem computes the shortest
distance from each vertex to all other vertices. Here we have
considered 15 x 15 connected graph. Each application
processor is assumed to be a vertex, and shortest path from
it to all other application processors is calculated. This
problem is communication intensive.

 C. Performance Metrics

 Apart from the correctness, the performance is the most
important aspect of a checkpointer. N.H. Vaidya derived
equations 1 to 3 for assessing the performance of an
application in the presence of checkpointing and recovery.

These equations will take the checkpoint overhead,
checkpoint latency, and recovery time as input and are as
described below:

() 0T 1T-1
)0(

≠=
+

optopt
optT

fore λ
λ

 .. ……(1)

() ()






 −=Γ

++−− 1
0) 1 optTROL

ee
λλλ ……..(2)

1−
Γ

=
optT

r ..…..(3)

where

λ = the rate of failures (1/MTBF)
Topt = the optimal checkpoint interval
O = the average overhead per checkpoint
L = the average latency per checkpoint
R = the average recovery time from a checkpoint
r = the overhead ratio

Γ = optimal checkpoint interval in the presence of
failures, checkpointing and recovery.

From (1), it can be seen that Topt decreases when overhead

O decreases.

D. Performance Measurements

 Before running different applications on distributed
simulator testbed, initially consider the basic definitions of
various overheads.

Checkpoint overhead: Checkpoint overhead is the time
added to the running time of the target program as a result of
checkpointing.

Checkpoint latency: Checkpoint latency is the time that it
takes for the checkpointer to complete a checkpoint, from
start to finish. Checkpoint latency is the duration of time
required to save the checkpoint. In many implementations,
checkpoint latency is larger than the checkpoint overhead.

Recovery overhead/time: This is the time that it takes the
system to restore a checkpointed state following the
detection of a failure.

 To calculate the above overheads we have considered 4
checkpoint processors and 4 backup processors both incase
of N+1 parity and proposed scheme. In this scenario, N+1
Parity supports simultaneous failure of at most four
application processors. In order to evaluate the performance
of the proposed protocol, the overhead ratio of different
checkpointing schemes and proposed scheme is calculated
by using the equations 1, 2 and 3 and the results are
summarized in Tables 10, 11 and 12 for merge sort, matrix
multiplication and all pairs shortest path problem
respectively. λ value is assumed as 6.301* 10-6

TABLE 10
The results of different checkpointing schemes in case of
Merge sort

 O L R r

N+1 Parity 420 43.34 140.2 0.07482

Proposed
Scheme

209 32.15 142.5 0.05277

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

TABLE 11
The results of different checkpointing schemes in case of
Matrix multiplication.

 O L R r

N+1 Parity 391 90 190.2 0.07286

Proposed
Scheme

183 52 190.2 0.049993

TABLE 12
The results of different checkpointing schemes in case of all
pairs shortest path problem

 O L R r

N+1 Parity 391 90 190.2 0.07286

Proposed
Scheme

183 52 190.2 0.049993

The above results indicate that Enhanced N+1 Parity
Scheme results into minimal overhead ratio ‘r’. Therefore,
we can conclude that the proposed scheme outperforms the
N+1 Parity checkpointing scheme.

V. CONCLUSIONS

 The N+1 Parity Scheme proposed by James S Plank fails
to checkpoint applications with high locality of reference.
Our proposed scheme introduced the Timeout mechanism to
handle this problem efficiently. The proposed message
logging technique i.e. partial message logging allows
asynchronous checkpointing at both sender and receiver and
does not freeze/ halt the state of process. Partial message
logging technique provides a better performance even if the
communication channels are non-reliable. The garbage
collection is made simple and reliable, as deletion of old
messages are handled implicitly at the time of checkpointing
itself.

 Using distributed simulator testbed, we have evaluated
and compared the performance of the proposed scheme with
N+1 Parity Scheme. Few application programs have been
developed and executed in this virtual environment. The
overhead ratio is computed for both of these schemes and it
is found to be small in case of the proposed scheme. Hence
it has been concluded that the Enhanced N+1 Parity scheme
combined with message logging outperforms N+1 Parity
scheme.

REFERENCES

[1] A. Ralston and E.D. Reily, Encyclopedia of Computer Science, Third
Edition, IEEE Press, 1993.

[2] S. Kamal, “An Approach to the Diagnosis of Intermittent Faults,”
IEEE Transactions on Computers, 24, pp. 461-467, 1975.

[3] James S Plank, Kai Li and Michael A. Puening, “Diskless
Checkpointing,” IEEE Trans. on Parallel and Distributed Systems,
Vol. 9, No. 10, pp. 972-986 October 1998.

[4] J.S. Plank and K. Li, “Faster Checkpointing with N + 1 Parity,” Proc.
24th Int’l Symp. Fault-Tolerant Computing, pp. 288-297, Austin,Tex.,
June 1994.

[5] E.N. Elnozahy, D.B. Johnson, and Y.Wang “A Survey of Rollback
Recovery Protocols in Message Passing Systems,” Technical Report
CMU-CS-99-148, Carnegie Mellon Univ., June 1999.

[6] Ch D V Subba Rao and M M Naidu, “A Survey of Error Recovery
Techniques in Distributed Systems,” Proc. 28th Annual Convention
and Exhibition of IEEE India Council, pp. 284-289, December 2002.

[7] J.S. Plank and K. Li, “Ickp – A Consistent Checkpointer for
Multicomputers,” IEEE Parallel & Distributed Technology, vol. 2, no.
2, pp. 62-67, 1994.

[8] J.S. Plank, Efficient Checkpointing on MIMD Architectures, Ph.D.
Thesis, Department of Computer Science, Princeton University, 1993.

[9] E.N. Elanozahy and W.N. Zwaenepol “On the Use and
Implementation of Message Logging,” Proc. IEEE International
Symposium on Fault Tolerance Computing Systems, pp. 298-307,
1994.

[10] L.M. Silva and J.G. Silva, “An Experimental Study about Diskless
Checkpointing,” Proc. 24th Euromicro Conference, vol. 1, pp. 395-
402, Aug 1998.

[11] L.M. Silva and J.G. Silva, “Using Two-level Stable Storage for
Efficient Checkpointing,” IEE Proceedings-Software, vol. 145, issue
6, pp. 198-202, Dec. 1998.

[12] Nitin H. Vaidya, “A Case for N+1 Parity Schemes,” IEEE Trans.
Computers, vol. 47, no. 6, June 1998.

[13] T. Chiueh and P. Deng, “Evaluation of Checkpoint Mechanisms for
Massively Parallel Machines,” Proc 26th Int’l Symp. Fault-Tolerant
Computing, pp. 370-379, Sendai, June 1996.

[14] Rapids-simulator. -
www.ecs.umass.edu/ece/realtime/publications/rapids_paper.pdf

[15] Jean_Michel Helary, A. Mostefaoui, R.H.B. Netzer, and M. Raynal,
“Preventing Useless Checkpoints in Distributed Computation,” Proc.
Symp. on Reliable Distributed Systems, pp. 183-190, Oct. 1997.

[16] N. H. Vaidya, “Impact of Checkpoint Latency on Overhead Ratio of a
Checkpointing Scheme,” IEEE Trans. Computers, Vol. 46, No. 8, pp.
942-947, August 1997.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

http://www.ecs.umass.edu/ece/realtime/publications/rapids_paper.pdf

	I. INTRODUCTION

