
Foundations of Interval Computation
Trong Wu

Abstract. This paper reports a study of numerical
computation problems from a theoretical viewpoint. It
shows that computer systems are not capable of
computing of real numbers correctly due to the
differences between the algebraic structures of real
numbers and model numbers. These two classes of
numbers are not isomorphic. From this study, we have
learned that there are no machine errors or
computation errors. If fact, one can view it is a human
mistake by putting real valued problem onto a model
number platform for computation. This paper proposes
use of the concept of computer model numbers to
approximate rough numbers for computation.
Moreover, we revise an arbitrary initial compact interval
to a shortest initial closed-open model interval for
ordinary interval computation. This way, we can assure
that the final resulting interval will be the shortest
interval and that the computation will result in the
greatest precision.

Index terms: Interval Arithmetic, Algebraic Structures,
Isomorphic, Model Numbers, Dyadic Numbers

I. INTRODUCTION

In 1982, Pawlak proposed a concept called rough sets,
used in the theory of knowledge for the classification of
features of objects [Pawlak1982]. He considered X to be a
set and R to be a relation over X. The pair (X, R) is called a
rough space, and R is called the rough relation. If xRy, then
one could say that x is too close to y, x and y are
indiscernible, and x and y belong to the same elementary set.
The concept of rough sets is usually used in knowledge
representation. Later, Wu [1994, 1998] defined a new class
of real numbers called rough numbers, the definition is
given in Section 4, which is a one-dimensional rough set in
rough set theory.

Most computer users are not aware the computation of
real numbers and rough numbers are not the same. Some
programming languages, such as FORTRAN, COBOL,
Pascal, etc., create more confusion by allowing
programmers to declare variables with type real in their
programs for computations. To fully understand the
problems of real number computation with computers, we
must study the algebraic structures for the set of all real
numbers and the set of all rough numbers over computer
systems. This not only provides the theoretical foundation
for computer arithmetic, but also interprets rounding errors,
machine errors, and computation errors from algebraic
structure viewpoint. In this paper, we revise ordinary
interval computation, given by Moore [1966] from a short

compact interval [a, b] of real numbers a and b for a given
real number r, where a = r − δ, b = r + δ, and δ is an
arbitrary small number, to the shortest closed-open interval
[a, b) with exactly represented by computer numbers, a and
b for all initial intervals in computation. To implement this,
we consider for each real number x within the computer
range; let a be the downward rounding value of x, let s be
the smallest positive number, with respect to x, such that a
+ s > a, and let b = a + s. Thus [a, b) is the shortest closed-
open interval for x on the given computer system, where a
and b are the numbers that the computer system can
represent them exactly. This new method will provide the
shortest resulting interval. To study the computation of real
numbers, it is important to begin by studying the structure
of rough numbers with respect to a given computer system.

The difficulty of numerical computation [Aberth 1988,
Wu 1993] within computer systems is that one must work
with two distinct number systems. Specially, solving any
numerical computation problem consists of the following
three parts.

(1) The problem is given in the real number system.
(2) The computation is done in the model number (an

Ada language terminology, see Section 4 for
definition) system of the given machine, M.

(3) The results must be converted from model
numbers into real numbers.

These two number systems have different algebraic
structures, and they are not isomorphic. Therefore, a
problem moving from platform (1) to platform (2) for
computation can induce incorrect results and so can moving
from platform (2) to platform (3). The platform (2) can only
provide an approximated result for platform (1); these
incorrect results do not contain machine errors and
computation errors because the computer system
performances exactly work as requested. Therefore, it has
no rounding errors. In fact, one can view this a human
mistake by putting a real valued problem onto a model
number platform for computation. Since the difference
between correct results and incorrect results are not known,
thus applying the results of a computation to a science or
engineering application is an un-decidable problem. For this
reason, an interval computation is applied so that it will
make this un-decidable problem becomes a decidable
problem [Moore 1966]. Moreover, this paper will show that
revised interval computation can assure that the final
resulting interval will represent a shortest interval.

According to the author’s best knowledge there is
lacking of the study of number structures for numerical
computation in the record of literatures. It took author more
then ten years to develop the foundation of this paper since

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

last two papers [Wu, 1994 and 1998] were presented at
conferences. Now, we can introduce some basic algebraic
structures, the structures of dyadic numbers and rough
numbers. Then we will consider rough numbers for interval
computation.

II. SOME BASIC ALGEBRAIC STRUCTURES OF

NUMBERS
For solving a numerical computation problem, there

exists a fundamental crisis in the algebraic structure of
numbers. Different classes of numbers have different
algebraic structures. Therefore, we must study some basic
algebraic structures of numbers. In fact, the algebraic
structures of real numbers, dyadic numbers, and rough
numbers are all different. We will begin with the definition
of an abelian group, then extend it to include a ring and a
field [Waerden 1948, Herstein 1971]:

Definition 2.1 An abelian group (G; +) is a set G
together with a binary operation namely, addition,
“+”,which satisfies the following conditions [Waerden
1948, Herstein 1971]:

(1) For all a, b ∈ G, such that a + b ∈ G.
(2) For all a, b, c ∈ G, then

(a + b) + c = a + (b + c).
(3)There is an identity element, e in G such that

a + e = e + a, for all a ∈ G.
(4) For all a ∈ G, there exists an inverse, (−a), such

that
(−a) + a = a + (−a) = e.

(5) For all a, b ∈ G, such that a + b = b + a.

Example 2.1 The set of all integers, I, with usual
addition, +, (I, +), is an abelian group.

A ring structure is a special case of an abelian group.
By adding two additional conditions to an abelian group, it
forms a ring [Waerden 1948, Herstein 1971]:

Definition 2.2 We say that (S; +, ×) is a ring, if (S; +)
is an abelian group, defining × as a mapping from S × S →
S, which satisfying the following conditions:
 (1) For all a, b, c ∈ S, then (a × b) × c = a × (b × c).

(2) Multiplication is distributed over addition: that is
for all a, b, c ∈ S, the left and right distributive
laws hold:
a × (b + c) = a × b + a × c, and
(b + c) × a = b × a + b × c.

 Example 2.2 The set of all integers I with usual
addition, +, and multiplication, × , then (I, +, ×) is a ring.
This ring has no zero-divisor.

A field is a commutative ring accompanied by unity
with respect to multiplication and every non-zero element
has a multiplicative inverse [Waerden 1948, Herstein 1971].

Definition 2.3 A Field (F; +, ×) is a ring with
commutative law and multiplicative unity such that each

non-zero element has a multiplicative inverse that satisfies
the following conditions:

(1) For all a, b ∈ F such that a × b = b × a.
(2) There exists 1 such that a × 1 = 1 × a = a.
(3) For each non-zero element a in F there is an

inverse (1/a) such that a × (1/a) = (1/a) × a = 1.
Example 2.3 The set of all rational numbers, real

numbers, and complex numbers with usual addition, +, and
multiplication, ×, are fields.

Let F be a field, the set of all polynomials in the
indeterminate, x, with coefficients in F and written as F[x],
then following theorem (without proof) determines a ring of
polynomials [Waerden 1948, Herstein 1971]:

Theorem 2.1 Let F be a field, the set of all
polynomials a0 + a1x + a2x2 + …+ anxn, written as F[x],
where n can be any non-negative integer and ai (i = 0, 1, …,
n) are all in F. Then F[x] is a ring under the operation
induced by the operations in F.

It is known that the set of all real numbers, denoted E,
together with arithmetic, addition, + and multiplication, ×
forms a field. Human arithmetic, such as + and ×, always
returns exact results. On the other hand, most computer
systems can store only certain real numbers exactly in the
memory. Some of these real numbers are 100.5, 70.875,
12.375, 0.5, 87.125, etc. Some other real numbers such as
0.1, 0.2, 0.3, 0.4, 0.6, etc. have a binary representation with
infinitely many digits; they cannot be stored in the memory
exactly. This tells us that a computer system cannot
represent these real numbers. Therefore, the set of all
numbers represented by the computer for computation with
the usual addition, +, and multiplication, ×, operations are
not the same as the set of all real numbers. Even if we
allow a computer system to have as many bits as required to
store a floating-point number, it still is not able to contain
the multiplicative inverse for all numbers in the computer
system. This is because these computer numbers do not
form a field. It is a subset of a ring with ring operations.
The structures of the set of all real numbers and the set of
all the numbers in the computer system are quite different.
No one-to-one correspondence onto function f from the set
of real numbers to the set of all computer numbers exists.
The set of all computer numbers is known as model
numbers in the Ada programming language [Barnes 1989,
1992, 1995, Watt et al. 1987]. Moreover, f does not
preserve the algebraic structure of real numbers and f
cannot be a local homomorphism between the set of real
numbers within a given range of machine M and the set of
all computer numbers; they are not isomorphic. This leads
to a computation of + and × over the set of all model
numbers represented by a computer system that produce an
incorrect result for the given problem. Therefore, computer
users should know that the current Von Neumann
architecture computer systems could only provide some
approximations for numerical computation. Next, we will
need to find out the actual structure of computer-

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

represented numbers. In other words, what kind of
arithmetic can computer systems do? So, we turn to study
the set of dyadic numbers [Kelley 1955].

III. THE STRUCTURE OF DYADIC NUMBERS

We require that for each non-negative real number x
can have its b-adic expansion, where b is an integer greater
than 1. Actually, we want to write a real number x as the
sum of multiples of powers of b, where the multiples are
non-negative integers less than b. Clearly, the b-adic
expansion of the number may fail to be unique in a decimal
expansion, .9999. . . (all nines) and 1.0000 . . . (all zeros)
are to be expansions of the same real number. When b = 2,
the b-adic expansions are then called dyadic expansions and
numbers written as dyadic expansions are called dyadic
numbers [Kelley 1955].

Theorem 3.1 For each real number x and B ={0, 1},
we have its dyadic expansion over a finite field (B; +, ×):

x = sign ai
i

i

2
=−∞

∞

∑ , where ai ∈ B and sign ∈{ }+ −, . (3.1)

 A computer system is a finite state machine; therefore,
it is capable of representing only a finite set of numbers
internally. Thus, any attempt to use a digital computer to
do arithmetic in the set of all real numbers is doomed to
failure. The set of all real numbers is an infinite set and
most of the elements in the set cannot be represented by a
computer system. Therefore, for theoretical reasons, we
may assume that a computer system can have any finite
number of bits to store its numbers, integers and floating-
point numbers.

For any non-negative integer n, we consider the set of
all numbers with the representation:

y = sign ai
i

i n

n

2
=−
∑ , where ai ∈ B and sign ∈{ }+ −, . (3.2)

This representation contains two parts, one is with index 0
≤ i ≤ n and the other is with an index −1 ≤ i ≤ −n. The
former is the integer part of y and the latter is the fraction
part of y, respectively. In this paper, we will define a
structure for the set of all numbers with this representation
and it is called the set of all finite (term) dyadic numbers,
FD, and the term finite means any finite value:

FD ={ y | y = sign ai
i

i n

n

2
=−
∑ , ai ∈ B, sign ∈{ }+ −,

 and n is a non-negative integer } . (3.3)

From Definitions 2.2, 2.3, and 2.4, we see that all finite
(term) dyadic numbers comprise neither a ring nor a field.
Moreover, it is a subset of ring of polynomials of 2 over a
finite field B = ({0, 1}; +, ×).

In fact, each computer system can have only a fixed
number of bits of memory space to store a number of its
type such as integer, float, double, . . ., etc. An integer

within the computer-predefined range often can be
represented exactly. However, a real number within the
range usually cannot be represented correctly. Today, most
computer systems implement the IEEE 754 floating-point
number format [IEEE1985] for storing real numbers. For
example, a 32-bit floating-point number format is divided
into four areas: a sign bit sign, an 8-bit exponent Exp, a
hidden bit, and a 23-bit mantissa M:

sign × (1.M) × 2Exp-127, (3.4)

where sign = ‘0’ indicates a positive value, sign = ‘1’
indicates a negative value. The 1 in (1.M) is the hidden bit,
the M is a 23-bit mantissa, and the exponent Exp is an
unsigned integer in {0, 1, 2, … 255}. It is clear that a
floating-point number represented in (3.4) is a special case
of a limited dyadic number with limited number of n which
is a finite (term) dyadic number given in the set of FD in
(3.3). Again, computer systems can only use a limited
number of bits to represent a floating-number. Therefore,
ring computation, such as + and ×, can cause an overflow
or underflow. Most computer systems use floating-point
number arithmetic for numerical computation, and most
computer users are not aware that floating-point number
arithmetic often produces a different result from the truly
correct result in real numbers. This is not avoidable. In
general, the output of a numerical computation program
from one machine can be different from the output from
another machine.

IV. THE STRUCTURE OF ROUGH NUMBERS

The Ada programming language [Watt 1987] calls a
real number a model number, if the real number can be
stored exactly in a computer system with a radix of power
of 2. Therefore, the set of all model numbers is a subset of
dyadic numbers and we call it the set of limited dyadic
numbers with respect to a given computer system. The
term limited reflects the given computer system’s word size
for floating-point numbers. For those real numbers that
cannot be stored exactly in a given computer system, we
call them rough numbers with respect to the given
computer system. In order to study this large class of
numbers, it is necessary to define rough numbers precisely
and mathematically.

Definition 4.1 Let E be the set of all real numbers
within the range of a given computer system M, and let R
be a relation on E. The pair (E, R) is called rough space
and R is called the rough relation, if x, y ∈ E and (x, y) ∈ R,
we say that x and y are indistinctive in the rough space (E,
R) with respect to the given computer system M. We call x
and y rough numbers and they are approximated to the
same model number. If a real number is a model number
with respect to a given machine M, then it is a special case
rough number. Most computer systems use a downward
rounding policy to approximate a rough number with a
model number. Thus, there are infinitely many rough

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

numbers approximated by the same model number, such
that all rough numbers z∈[x, y) are approximated by the
same value of the model number x for computation [Wu
1994, 1998].

Throughout this paper, we will also use a downward
rounding policy to handle the approximation of rough
numbers.

Theorem 4.1 Let E be the set of all real numbers
within the range of a given computer system M, and let R
be a relation on E. If x, y ∈ E and (x, y) ∈ R in the rough
space (E, R) then R is an equivalence relation on E.
(Readers may verify this theorem)

Equivalence classes of the relation R are called basic
model intervals [Watt et al. 1987, Ada 9X
Mapping/Revision Team 1993], the smallest interval with
model number endpoints. The set of all basic model
intervals in (E, R) is denoted by E/R. The definition of a
rough number is a special case of the one-dimensional
rough sets given by Pawlak [Pawlak 1982]. In reality, for
any rough number z whose value is within the range of a
given computer system M, there exists a smallest closed-
open interval, such that

z∈ i k i k
n n+
−

+⎡
⎣⎢

⎞
⎠⎟

1
2 2

, , (4.1)

for some positive integers n and k. where the lower bound
is the approximation of z, i is the integer part of z, k is an
integer with 0 ≤ k ≤ 2n − 1, and n = n(be, bm), a function of
the number of bits in the field of exponential be and the
number of bits in the field of mantissa bm.

The difference between the rough number z, and its
approximation given in (4.1) is given by (4.2):

 z − i
k

n+
−⎛

⎝⎜
⎞
⎠⎟

1
2

. (4.2)

This is also called rounding-error. Usually, a programmer
is either unaware of the existence of rounding-errors or
unable to reduce or control them in the course of a
computation. In fact, every real number is a rough number
from computer system viewpoint. We will see that the set
of all rough numbers over the set of all computer systems
has the dyadic number structure.

V. HIERARCHICAL CLASSES AND COMPUTATION

In mathematics, we have learned the properties of
several classes of numbers such as integers, rational
numbers, irrational numbers, and real numbers. However,
a computer system can have only a limited word size;
therefore, only some integers and some rational numbers
can be computed correctly in a computer system. Other
numbers cannot even be represented exactly in a computer
system.

Computer systems handle real numbers in a binary
fashion. For each real number x, we have its dyadic
expansion over the finite field (B; +, ×). Among all the
dyadic numbers, only a limited number of dyadic numbers
can be computed in a computer system. The relationship of
the set of real numbers and the hierarchical structures of
dyadic numbers is shown in Figure 5.1.

The set of real numbers has a field structure, while the
set of finite dyadic numbers is not a field; it is a subset of
ring. f is not a one-to-one and onto function, f does not
preserve the field structure, and cannot even be a local
homomorphism between the set of real numbers within a
given range of machine M and the set of limited dyadic
numbers. The addition ‘+’ on the left hand side of the
inequality (5.1) is a field addition and the addition ‘⊕’ on
the right hand side is a ring addition over dyadic numbers.

f(a + b) ≠ f(a) ⊕ f(b) (5.1)
 They are two different additions. In the inequality (5.1),
computations occur over two different number systems; we
need to adjust by adding an error term, Err, to form the
equality:

f(a + b) = f(a) ⊕ f(b) + Err. (5.2)
This error term, Err, commonly is called rounding-error.

Figure. 5.1 Hierarchical structures of dyadic numbers

 Unfortunately, most programming textbooks do not
teach students the addition ‘+’ in a program is not real
number addition, but a dyadic number addition instead.
Many computer users are misled and disappointed that
computer systems cannot provide accurate results for
computations.

From the theoretical viewpoint, a computer system
cannot compute real numbers correctly. Therefore,
applying the results of computation to a real world problem
is an un-decidable problem. We introduce a different

Finite dyadic numbers

Limited dyadic numbers (model numbers)
(A subset of a polynomial ring)

)()(
)(

bfaf
baf
⊕
+⎯→⎯f

ba
ba
+

Real numbers
(A field) Dyadic numbers

Rough numbers

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

method of computation called interval computation [Moore
1966, 1979, Alefeld et al. 1983] that will provide a shortest
interval for the result; it gives the result in an interval, the
length of the interval provides the maximum error for
computation, this way it will turn the problem into a
decidable problem.

To implement interval computation we will need a
special programming language. Among all commonly used
programming languages, the Ada programming language is
a unique language that allows the user to define a specific
model number for their rough numbers for dealing with
computation. In the next section, we will suggest a new
computational method for the set of all rough numbers
called model interval computation that can provide
verification of the magnitude of the absolute error.

VI. A MODEL INTERVAL COMPUTATION

For any real numbers x and y, there exist basic model
intervals X = [a1, b1] and Y= [a2, b2] such that x∈ [a1, b1)
and y∈[a2, b2) where a1, b1, a2, and b2 are model numbers.
For a real number z that is a model number, we consider a
special case Z = [z, z1], where z1 is the smallest model
number greater than z. Then, the usual computer scalar
arithmetic operations, addition +, subtraction −,
multiplication ×, and division /, are defined for interval
computation. Therefore, the sum, difference, product, and
quotient of two real numbers are all within a given interval
respectively. We use revised closed-open intervals to
exclude the upper endpoint for interval computation. The
results are shown here:
Addition

x + y ∈ [[a1, b1] + [a2, b2]) = [a1 + a2,, b1 + b2). (6.1)
Subtraction
 x − y ∈ [[a1, b1] − [a2, b2]) = [a1 − b2,, b1− a2). (6.2)

Multiplication
x × y ∈[min(a1a2, a1b2, b1a2, b1b2),

max(a1a2, a1b2, b1a2, b1b2)). (6.3)
Division

1/y ∈ [1/b2, 1/a2), if 0 ∉ B, then we define
x/y ∈ [min(a1/b2, a1/a2, b1/b2, b1/a2),

max(a1/b2, a1/a2, b1/b2, b1/a2)) (6.4)

The deficiency of interval arithmetic is the use of real
numbers for the lower bound and upper bound for the
interval. In general, a real number cannot be represented
exactly by the floating-point number format. A better way
to perform interval computation and reduce rounding-error
is (1) to create the smallest closed interval, containing the
given real number, with model numbers for the lower and
upper bounds, and (2) to develop bit-to-bit computation
over the mantissa, the internal representation of model
numbers.

 Since the product of two model numbers or the inverse
of a model number might not be a model number, we round
the result outward to the nearest model numbers. Let m(x)
be the greatest model number less than x for the lower
bound and m(y) be the smallest model number greater than
y for the upper bound. Therefore, we redefine
multiplication and division as follows:
Multiplication
 x × y ∈[m(min(a1a2, a1b2, b1a2, b1b2)),

m(max(a1a2, a1b2, b1a2, b1b2))). (6.3)’
Division

1/y ∈ [1/b2, 1/a2), if 0 ∉ B, then we define
 x/y ∈ [m(min(a1/b2, a1/a2, b1/b2, b1/a2)),

m(max(a1/b2, a1/a2, b1/b2, b1/a2))). (6.4)’
Moore [1966] proved an important theorem that

supports interval computation and since then interval
computation has become a new and growing branch of
applied mathematics. We call this theorem the fundamental
theorem of interval computation. It is necessary to quote
the theorem here to support our work.

Theorem 6.1 The Fundamental Theorem of Interval
Computation: Let f(x1, x2, . . . , xn) be a rational
function of n variables. Consider any sequence of
arithmetic steps which serve to evaluate f with
given arguments x1, x2, . . . , xn. Suppose we replace
the arguments xi by the corresponding closed
interval Xi (i = 1, 2, . . . , n) and replace the
arithmetic steps in the sequence used to evaluate f
by the corresponding interval arithmetic steps. The
result will be an interval f(X1, X2, . . . , Xn). This
interval contains the value of f(x1, x2, . . . , xn), for all
xi ∈ Xi (i= 1, 2, . . . , n).
Later, Moore [1979] and Alefeld and Herzberger

[1983] gave some algebraic properties of interval
arithmetic. From Figure 5.1, let RD be the set of all rough
numbers or dyadic numbers, FD be the set of all finite
dyadic numbers, and LD be the set of all limited dyadic
numbers or model numbers with respect to a given machine
M, then we have the following set hierarchical structures:

LD ⊂ FD ⊂ RD. (6.5)
By definition, we see that every real number is a rough
number from computer system viewpoint. In fact, the
computation is done in the set of LD, and computation of
any rough numbers outside the set LD and within the
range of a given machines M would round down to a model
number in the set of LD for computation. This would
generate a rounding-error. In the model interval
computation, any rough numbers outside the set LD and
within the range of a given machines, M would round down
to a shortest model interval in the set of LD for
computation. This would minimize the resulting interval
for the computation.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

VII. CONCLUSION

In this paper, we have reviewed some basic algebraic
structures such as abelian groups, rings, and fields. We
defined sets of rough numbers, dyadic numbers, finite
dyadic numbers, limited dyadic numbers, and model
numbers; from these definitions, we have learned that the
difficulty of numerical computation is that one must
actually work with two distinct number systems. Solving
any numerical computation problem consists of the
following three parts: (1) the problem is given in the real
number system, (2) the computation is done in the model
number system for the given machine, and (3) the results
must be converted from model numbers into real numbers.
Real numbers and model numbers have two different
algebraic structures, and they are not isomorphic. In
general, starting from the problem to computation on a
machine often generates incorrect results and going from
the machine computation to reporting results in real
numbers can have incorrect results too. This paper has
reported that a computer system is not capable of
computing real numbers accurately within its constraints
from algebraic structure viewpoint.

Computation over the set of real numbers requires
performing a field computation. However, when a real
number within the given range is stored or read into a
computer system, it is converted into a dyadic number.
Computation over the set of limited dyadic numbers is
dyadic number computation. If f be a mapping that takes
each real number into its dyadic number representation; it
is not a one-to-one and onto function. If a and b are two
real numbers within a given range and they map into their
dyadic representations f(a) and f(b), respectively, then in
general, we should have f(a + b) ≠ f(a) + f(b). The addition,
+, is the addition of real numbers. The mapping f does not
preserve the algebraic structure, so the set of real numbers
and the set of dyadic numbers are not isomorphic. To avoid
overloading and possible confusion, we will introduce a
new addition ‘⊕’ for the dyadic number addition. To adjust
the inequality, we will add in an error term, Err.
Therefore, we have f(a + b) = f(a) ⊕ f(b) + Err.

In addition, we have revised interval arithmetic from
real number ending points to model numbers and from a
closed interval to a closed-open interval. This will
eliminate possible rounding errors, perform a bit-to-bit
computation, create the shortest initial intervals for each
initial real number, and ensure the resulting interval is the
shortest one in the given machine. In this paper, we have
successfully redefined overloading for +, −, ×, and / on
internal binary representations so that we can create the
lower bound and the upper bound in model numbers for a
given real number. Also, we have carefully developed bit-
to-bit model interval computation [DEC 1985, IBM 1992].
For each initial real number, we have created the shortest
model interval to include the real number for computation
with the required precision. This is a very important step

because only with the shortest initial intervals can one
obtain the maximum precision form the given machine.

This model interval computation not only provides an
approximation for the solution but also gives the length of
the resulting interval that is the maximum possible of error
due to human mistake. Therefore, it can be used for any
numerical computation problem, in particular, for any
accuracy critical problems.
__
The Author: Trong Wu is a Professor in the Department of
Computer Science, at Southern Illinois University
Edwardsville, Edwardsville, Illinois 62026 U.S.A. e-mail:
twu@siue.edu; Phone: 618-650-2393.

REFERENCES

Aberth, O., 1988. Precise Numerical Analysis, Dubuque: Wm C
Brown Publishers.

Ada 9X Mapping/Revision Team, 1993. .Ada 9X Rationale,
Intermetrics Inc. Cambridge, Mass.

Alefeld, G. and Herzberger, J., 1983. Introduction to Interval
Computations, New York: Academic Press,

Barnes, J. G. P., 1989. Programming in Ada, 3rd Ed., Addison-
Wesley Publishing, Reading Massachusetts.

Barnes, J. G. P., 1992. Programming Language in Ada, 4th Ed.
Addison-Wesley Publishing Company.

Barnes, J., 1995. Programming in Ada 95, Addison-Wesley
Publishing, Reading Massachusetts.

DEC, 1985. Vax Ada Language Reference Manual, Digital
Equipment Corporation, Maynard, Mass.

Herstein, I. N., 1971. Topics in Algebra, University of Chicago.
IBM (AIX), 1992. Ada/6000 User's Guide, IBM Canada Ltd.

Laboratory, North York, Ontario, Canada, M3C 1W3.
IEEE Inc., 1985. IEEE Standard for Binary Floating-point

Arithmetic (ANSI/IEEE std 754-1985), New York
Kelley, J. L., 1955. General Topology, D. Van Nostrand

Company, Inc.
Moore, R. E., 1966. Interval Analysis, Prentice-Hall, Englewood

Cliffs, New Jersey.
Moore, R. E., 1979. Methods and Applications of Interval

Analysis: SIAM Studies in Applied Mathematics, 2,
Philadephia: Society for Industrial and Applied Mathematics.

Pawlak, Z., 1982. Rough Sets, International Journal of
Computer and Information Sciences, V. 11, No. 5, 341-356.

Waerden, V. D., 1948. Modern Algebra, English edition, Julius
Springer, Berlin.

Watt, D. A., 1987. Wichmann, B. A., and Findlay, W., Ada
Language and Methodology, Prentice-Hall, Englewood
Cliffs, New Jersey.

Wu, T., 1993.An Accurate Computation of the Hypergeometric
Distribution Function, ACM Transactions on Mathematical
Software, V.19, No. 1, 33-43.

Wu, T., 1994. Rough Number Structure and Computation,
Proceedings of the Third International Workshop on Rough
Sets and Soft Computing, 360-367.

Wu, T., 1998. Rough Numbers and Computations, 1998
IEEE World Congress on Computational Intelligence
Proceedings Fuzz-IEEE’98, 845-890.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

