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Abstract. This paper reports a study of numerical 
computation problems from a theoretical viewpoint.  It 
shows that computer systems are not capable of 
computing of real numbers correctly due to the 
differences between the algebraic structures of real 
numbers and model numbers. These two classes of 
numbers are not isomorphic.  From this study, we have 
learned that there are no machine errors or 
computation errors.  If fact, one can view it is a human 
mistake by putting real valued problem onto a model 
number platform for computation.  This paper proposes 
use of the concept of computer model numbers to 
approximate rough numbers for computation.  
Moreover, we revise an arbitrary initial compact interval 
to a shortest initial closed-open model interval for 
ordinary interval computation.  This way, we can assure 
that the final resulting interval will be the shortest 
interval and that the computation will result in the 
greatest precision. 

Index terms:  Interval Arithmetic, Algebraic Structures, 
Isomorphic, Model Numbers, Dyadic Numbers 

 
I.  INTRODUCTION 

In 1982, Pawlak proposed a concept called rough sets, 
used in the theory of knowledge for the classification of 
features of objects [Pawlak1982].  He considered X to be a 
set and R to be a relation over X.  The pair (X, R) is called a 
rough space, and R is called the rough relation.  If xRy, then 
one could say that x is too close to y, x and y are 
indiscernible, and x and y belong to the same elementary set.  
The concept of rough sets is usually used in knowledge 
representation.  Later, Wu [1994, 1998] defined a new class 
of real numbers called rough numbers, the definition is 
given in Section 4, which is a one-dimensional rough set in 
rough set theory. 

Most computer users are not aware the computation of 
real numbers and rough numbers are not the same.  Some 
programming languages, such as FORTRAN, COBOL, 
Pascal, etc., create more confusion by allowing 
programmers to declare variables with type real in their 
programs for computations.  To fully understand the 
problems of real number computation with computers, we 
must study the algebraic structures for the set of all real 
numbers and the set of all rough numbers over computer 
systems.  This not only provides the theoretical foundation 
for computer arithmetic, but also interprets rounding errors, 
machine errors, and computation errors from algebraic 
structure viewpoint.  In this paper, we revise ordinary 
interval computation, given by Moore [1966] from a short 

compact interval [a, b] of real numbers a and b for a given 
real number r, where a = r − δ, b = r + δ, and δ is an 
arbitrary small number, to the shortest closed-open interval 
[a, b) with exactly represented by computer numbers, a and 
b for all initial intervals in computation.  To implement this, 
we consider for each real number x within the computer 
range; let a be the downward rounding value of x, let s be 
the smallest positive number, with respect to x, such that a 
+ s > a, and let b = a + s.  Thus [a, b) is the shortest closed-
open interval for x on the given computer system, where a 
and b are the numbers that the computer system can 
represent them exactly.  This new method will provide the 
shortest resulting interval.  To study the computation of real 
numbers, it is important to begin by studying the structure 
of rough numbers with respect to a given computer system.  

The difficulty of numerical computation [Aberth 1988, 
Wu 1993] within computer systems is that one must work 
with two distinct number systems.  Specially, solving any 
numerical computation problem consists of the following 
three parts.   

(1)  The problem is given in the real number system.  
(2)  The computation is done in the model number (an 

Ada language terminology, see Section 4 for 
definition) system of the given machine, M. 

(3)   The results must be converted from model 
numbers into real numbers. 

These two number systems have different algebraic 
structures, and they are not isomorphic.  Therefore, a 
problem moving from platform (1) to platform (2) for 
computation can induce incorrect results and so can moving 
from platform (2) to platform (3).  The platform (2) can only 
provide an approximated result for platform (1); these 
incorrect results do not contain machine errors and 
computation errors because the computer system 
performances exactly work as requested.  Therefore, it has 
no rounding errors.  In fact, one can view this a human 
mistake by putting a real valued problem onto a model 
number platform for computation.  Since the difference 
between correct results and incorrect results are not known, 
thus applying the results of a computation to a science or 
engineering application is an un-decidable problem.  For this 
reason, an interval computation is applied so that it will 
make this un-decidable problem becomes a decidable 
problem [Moore 1966].  Moreover, this paper will show that 
revised interval computation can assure that the final 
resulting interval will represent a shortest interval.   

According to the author’s best knowledge there is 
lacking of the study of number structures for numerical 
computation in the record of literatures.  It took author more 
then ten years to develop the foundation of this paper since 
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last two papers [Wu, 1994 and 1998] were presented at 
conferences.  Now, we can introduce some basic algebraic 
structures, the structures of dyadic numbers and rough 
numbers.  Then we will consider rough numbers for interval 
computation.  

 
II.   SOME BASIC ALGEBRAIC STRUCTURES OF 

NUMBERS 
For solving a numerical computation problem, there 

exists a fundamental crisis in the algebraic structure of 
numbers.  Different classes of numbers have different 
algebraic structures.  Therefore, we must study some basic 
algebraic structures of numbers.  In fact, the algebraic 
structures of real numbers, dyadic numbers, and rough 
numbers are all different.  We will begin with the definition 
of an abelian group, then extend it to include a ring and a 
field [Waerden 1948, Herstein 1971]: 

Definition 2.1 An abelian group (G; +) is a set G 
together with a binary operation namely, addition, 
“+”,which satisfies the following conditions [Waerden 
1948, Herstein 1971]: 

(1) For all a, b ∈ G, such that a + b ∈ G. 
(2) For all a, b, c ∈ G, then  

(a + b) + c = a + (b + c). 
(3)There is an identity element, e in G such that  

a + e = e + a, for all a ∈ G. 
(4) For all a ∈ G, there exists an inverse, (−a), such 

that  
(−a) + a = a + (−a) = e. 

(5) For all a, b ∈ G, such that a + b = b + a. 

Example 2.1 The set of all integers, I, with usual 
addition, +, (I, +), is an abelian group.  

A ring structure is a special case of an abelian group.  
By adding two additional conditions to an abelian group, it 
forms a ring [Waerden 1948, Herstein 1971]: 

Definition 2.2 We say that (S; +, ×) is a ring, if (S; +) 
is an abelian group, defining × as a mapping from S × S → 
S, which satisfying the following conditions: 
 (1)  For all a, b, c ∈ S, then (a × b) × c = a × (b × c). 

(2)  Multiplication is distributed over addition: that is 
for all a, b, c ∈ S, the left and right distributive 
laws hold:   
a × (b + c) = a × b + a × c,  and  
(b + c) × a = b × a + b × c. 

 Example 2.2 The set of all integers I with usual 
addition, +, and multiplication, × , then (I, +, ×) is a ring.  
This ring has no zero-divisor. 

A field is a commutative ring accompanied by unity 
with respect to multiplication and every non-zero element 
has a multiplicative inverse [Waerden 1948, Herstein 1971]. 

Definition 2.3  A Field (F; +, ×) is a ring with 
commutative law and multiplicative unity such that each 

non-zero element has a multiplicative inverse that satisfies 
the following conditions:    

(1)  For all a, b ∈ F such that a  ×  b = b × a.        
(2) There exists 1 such that a  ×  1 = 1  ×  a = a.  
(3) For each non-zero element a in F there is an 

inverse (1/a) such that a ×  (1/a) = (1/a) × a = 1. 
Example 2.3  The set of all rational numbers, real 

numbers, and complex numbers with usual addition, +, and 
multiplication, ×, are fields.  

Let F be a field, the set of all polynomials in the 
indeterminate, x, with coefficients in F and written as F[x], 
then following theorem (without proof) determines a ring of 
polynomials [Waerden 1948, Herstein 1971]: 

Theorem 2.1 Let F be a field, the set of all 
polynomials a0 + a1x + a2x2 + …+ anxn, written as F[x], 
where n can be any non-negative integer and ai (i = 0, 1, …, 
n) are all in F.  Then F[x] is a ring under the operation 
induced by the operations in F. 

It is known that the set of all real numbers, denoted E, 
together with arithmetic, addition, + and multiplication, × 
forms a field.  Human arithmetic, such as + and ×, always 
returns exact results.  On the other hand, most computer 
systems can store only certain real numbers exactly in the 
memory.  Some of these real numbers are 100.5, 70.875, 
12.375, 0.5, 87.125, etc.  Some other real numbers such as 
0.1, 0.2, 0.3, 0.4, 0.6, etc. have a binary representation with 
infinitely many digits; they cannot be stored in the memory 
exactly.  This tells us that a computer system cannot 
represent these real numbers.  Therefore, the set of all 
numbers represented by the computer for computation with 
the usual addition, +, and multiplication, ×, operations are 
not the same as the set of all real numbers.  Even if we 
allow a computer system to have as many bits as required to 
store a floating-point number, it still is not able to contain 
the multiplicative inverse for all numbers in the computer 
system.  This is because these computer numbers do not 
form a field.  It is a subset of a ring with ring operations.  
The structures of the set of all real numbers and the set of 
all the numbers in the computer system are quite different.  
No one-to-one correspondence onto function f from the set 
of real numbers to the set of all computer numbers exists.  
The set of all computer numbers is known as model 
numbers in the Ada programming language [Barnes 1989, 
1992, 1995, Watt et al. 1987].  Moreover, f does not 
preserve the algebraic structure of real numbers and f 
cannot be a local homomorphism between the set of real 
numbers within a given range of machine M and the set of 
all computer numbers; they are not isomorphic.  This leads 
to a computation of + and × over the set of all model 
numbers represented by a computer system that produce an 
incorrect result for the given problem.  Therefore, computer 
users should know that the current Von Neumann 
architecture computer systems could only provide some 
approximations for numerical computation.  Next, we will 
need to find out the actual structure of computer-
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represented numbers.  In other words, what kind of 
arithmetic can computer systems do?  So, we turn to study 
the set of dyadic numbers [Kelley 1955].  

III. THE STRUCTURE OF DYADIC NUMBERS 

We require that for each non-negative real number x 
can have its b-adic expansion, where b is an integer greater 
than 1.  Actually, we want to write a real number x as the 
sum of multiples of powers of b, where the multiples are 
non-negative integers less than b.  Clearly, the b-adic 
expansion of the number may fail to be unique in a decimal 
expansion, .9999. . . (all nines) and 1.0000 . . . (all zeros) 
are to be expansions of the same real number.  When b = 2, 
the b-adic expansions are then called dyadic expansions and 
numbers written as dyadic expansions are called dyadic 
numbers [Kelley 1955].   

Theorem 3.1 For each real number x and B ={0, 1}, 
we have its dyadic expansion over a finite field (B; +, ×):  

x = sign ai
i

i

2
=−∞

∞

∑ , where ai ∈ B and sign ∈{ }+ −, .   (3.1)    

 A computer system is a finite state machine; therefore, 
it is capable of representing only a finite set of numbers 
internally.  Thus, any attempt to use a digital computer to 
do arithmetic in the set of all real numbers is doomed to 
failure. The set of all real numbers is an infinite set and 
most of the elements in the set cannot be represented by a 
computer system.  Therefore, for theoretical reasons, we 
may assume that a computer system can have any finite 
number of bits to store its numbers, integers and floating-
point numbers.   

For any non-negative integer n, we consider the set of 
all numbers with the representation: 

y = sign ai
i

i n

n

2
=−
∑ ,   where ai ∈ B and sign ∈{ }+ −, .  (3.2) 

This representation contains two parts, one is with index 0 
≤ i ≤ n and the other is with an index −1 ≤ i ≤ −n.  The 
former is the integer part of y and the latter is the fraction 
part of y, respectively.  In this paper, we will define a 
structure for the set of all numbers with this representation 
and it is called the set of all finite (term) dyadic numbers, 
FD, and the term finite means any finite value:  

FD ={ y | y = sign ai
i

i n

n

2
=−
∑ , ai ∈ B, sign ∈{ }+ −,  

           and n is a non-negative integer } .            (3.3)                                 

From Definitions 2.2, 2.3, and 2.4, we see that all finite 
(term) dyadic numbers comprise neither a ring nor a field.    
Moreover, it is a subset of ring of polynomials of 2 over a 
finite field B = ({0, 1}; +, ×). 

In fact, each computer system can have only a fixed 
number of bits of memory space to store a number of its 
type such as integer, float, double, . . ., etc.  An integer 

within the computer-predefined range often can be 
represented exactly.  However, a real number within the 
range usually cannot be represented correctly.  Today, most 
computer systems implement the IEEE 754 floating-point 
number format [IEEE1985] for storing real numbers.  For 
example, a 32-bit floating-point number format is divided 
into four areas: a sign bit sign, an 8-bit exponent Exp, a 
hidden bit, and a 23-bit mantissa M: 

sign × (1.M) × 2Exp-127,                           (3.4) 

where sign = ‘0’ indicates a positive value, sign = ‘1’ 
indicates a negative value. The 1 in (1.M) is the hidden bit, 
the M is a 23-bit mantissa, and the exponent Exp is an 
unsigned integer in {0, 1, 2, … 255}.  It is clear that a 
floating-point number represented in (3.4) is a special case 
of a limited dyadic number with limited number of n which 
is a finite (term) dyadic number given in the set of FD in 
(3.3).  Again, computer systems can only use a limited 
number of bits to represent a floating-number.  Therefore, 
ring computation, such as + and ×, can cause an overflow 
or underflow.  Most computer systems use floating-point 
number arithmetic for numerical computation, and most 
computer users are not aware that floating-point number 
arithmetic often produces a different result from the truly 
correct result in real numbers.  This is not avoidable.  In 
general, the output of a numerical computation program 
from one machine can be different from the output from 
another machine. 

IV. THE STRUCTURE OF ROUGH NUMBERS 

The Ada programming language [Watt 1987] calls a 
real number a model number, if the real number can be 
stored exactly in a computer system with a radix of power 
of 2.  Therefore, the set of all model numbers is a subset of 
dyadic numbers and we call it the set of limited dyadic 
numbers with respect to a given computer system.  The 
term limited reflects the given computer system’s word size 
for floating-point numbers.  For those real numbers that 
cannot be stored exactly in a given computer system, we 
call them rough numbers with respect to the given 
computer system.  In order to study this large class of 
numbers, it is necessary to define rough numbers precisely 
and mathematically.   

Definition 4.1 Let E be the set of all real numbers 
within the range of a given computer system M, and let R 
be a relation on E.  The pair (E, R) is called rough space 
and R is called the rough relation, if x, y ∈ E and (x, y) ∈ R, 
we say that x and y are indistinctive in the rough space (E, 
R) with respect to the given computer system M.  We call x 
and y rough numbers and they are approximated to the 
same model number. If a real number is a model number 
with respect to a given machine M, then it is a special case 
rough number.  Most computer systems use a downward 
rounding policy to approximate a rough number with a 
model number.  Thus, there are infinitely many rough 
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numbers approximated by the same model number, such 
that all rough numbers z∈[x, y) are approximated by the 
same value of the model number x for computation [Wu 
1994, 1998].  

Throughout this paper, we will also use a downward 
rounding policy to handle the approximation of rough 
numbers.  

Theorem 4.1 Let E be the set of all real numbers 
within the range of a given computer system M, and let R 
be a relation on E.  If x, y ∈ E and (x, y) ∈ R in the rough 
space (E, R) then R is an equivalence relation on E.  
(Readers may verify this theorem) 

Equivalence classes of the relation R are called basic 
model intervals [Watt et al. 1987, Ada 9X 
Mapping/Revision Team 1993], the smallest interval with 
model number endpoints.  The set of all basic model 
intervals in (E, R) is denoted by E/R.  The definition of a 
rough number is a special case of the one-dimensional 
rough sets given by Pawlak [Pawlak 1982].  In reality, for 
any rough number z whose value is within the range of a 
given computer system M, there exists a smallest closed-
open interval, such that 

z∈ i k i k
n n+
−

+⎡
⎣⎢

⎞
⎠⎟

1
2 2

, ,         (4.1) 

for some positive integers n and k. where the lower bound 
is the approximation of z, i is the integer part of z, k is an 
integer with 0 ≤ k ≤ 2n − 1, and n = n(be,  bm), a function of 
the number of bits in the field of exponential be and the 
number of bits in the field of mantissa bm.   

The difference between the rough number z, and its 
approximation given in (4.1) is given by (4.2): 

 z − i
k

n+
−⎛

⎝⎜
⎞
⎠⎟

1
2

.               (4.2)             

This is also called rounding-error.  Usually, a programmer 
is either unaware of the existence of rounding-errors or 
unable to reduce or control them in the course of a 
computation.  In fact, every real number is a rough number 
from computer system viewpoint.  We will see that the set 
of all rough numbers over the set of all computer systems 
has the dyadic number structure. 

V.  HIERARCHICAL CLASSES AND COMPUTATION 

In mathematics, we have learned the properties of 
several classes of numbers such as integers, rational 
numbers, irrational numbers, and real numbers.  However, 
a computer system can have only a limited word size; 
therefore, only some integers and some rational numbers 
can be computed correctly in a computer system.  Other 
numbers cannot even be represented exactly in a computer 
system.   

Computer systems handle real numbers in a binary 
fashion.  For each real number x, we have its dyadic 
expansion over the finite field (B; +, ×).  Among all the 
dyadic numbers, only a limited number of dyadic numbers 
can be computed in a computer system.  The relationship of 
the set of real numbers and the hierarchical structures of 
dyadic numbers is shown in Figure 5.1. 

The set of real numbers has a field structure, while the 
set of finite dyadic numbers is not a field; it is a subset of 
ring.  f is not a one-to-one and onto function, f does not 
preserve the field structure, and cannot even be a local 
homomorphism between the set of real numbers within a 
given range of machine M and the set of limited dyadic 
numbers.  The addition ‘+’ on the left hand side of the 
inequality (5.1) is a field addition and the addition ‘⊕’ on 
the right hand side is a ring addition over dyadic numbers.   

f(a + b) ≠ f(a) ⊕ f(b)                 (5.1) 
 They are two different additions.  In the inequality (5.1), 
computations occur over two different number systems; we 
need to adjust by adding an error term, Err, to form the 
equality: 

f(a + b) = f(a) ⊕ f(b) + Err.       (5.2) 
This error term, Err, commonly is called rounding-error. 

 
Figure. 5.1 Hierarchical structures of dyadic numbers 

 Unfortunately, most programming textbooks do not 
teach students the addition ‘+’ in a program is not real 
number addition, but a dyadic number addition instead.  
Many computer users are misled and disappointed that 
computer systems cannot provide accurate results for 
computations.   

From the theoretical viewpoint, a computer system 
cannot compute real numbers correctly.  Therefore, 
applying the results of computation to a real world problem 
is an un-decidable problem.  We introduce a different 
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method of computation called interval computation [Moore 
1966, 1979, Alefeld et al. 1983] that will provide a shortest 
interval for the result; it gives the result in an interval, the 
length of the interval provides the maximum error for 
computation, this way it will turn the problem into a 
decidable problem. 

To implement interval computation we will need a 
special programming language.  Among all commonly used 
programming languages, the Ada programming language is 
a unique language that allows the user to define a specific 
model number for their rough numbers for dealing with 
computation.  In the next section, we will suggest a new 
computational method for the set of all rough numbers 
called model interval computation that can provide 
verification of the magnitude of the absolute error.  

 

VI.  A MODEL INTERVAL COMPUTATION 

For any real numbers x and y, there exist basic model 
intervals X = [a1, b1] and Y= [a2, b2] such that x∈ [a1, b1) 
and y∈[a2, b2) where a1, b1, a2, and b2 are model numbers.  
For a real number z that is a model number, we consider a 
special case Z = [z, z1], where z1 is the smallest model 
number greater than z.  Then, the usual computer scalar 
arithmetic operations, addition +, subtraction −, 
multiplication ×, and division /, are defined for interval 
computation.  Therefore, the sum, difference, product, and 
quotient of two real numbers are all within a given interval 
respectively.  We use revised closed-open intervals to 
exclude the upper endpoint for interval computation.  The 
results are shown here: 
Addition  

x + y ∈ [[a1, b1] + [a2, b2] ) = [a1 + a2,,  b1 + b2).   (6.1)   
Subtraction                                                                                                                                   
 x − y ∈ [[a1, b1] − [a2, b2] ) = [a1 − b2,,  b1− a2).     (6.2)        

Multiplication   
x × y ∈[ min(a1a2, a1b2, b1a2, b1b2),  

max(a1a2, a1b2, b1a2,  b1b2)).                       (6.3) 
Division 

1/y ∈  [1/b2, 1/a2), if 0 ∉ B, then we define 
x/y ∈ [min(a1/b2, a1/a2,  b1/b2, b1/a2),  

max(a1/b2, a1/a2,  b1/b2, b1/a2))           (6.4)    

The deficiency of interval arithmetic is the use of real 
numbers for the lower bound and upper bound for the 
interval.  In general, a real number cannot be represented 
exactly by the floating-point number format.  A better way 
to perform interval computation and reduce rounding-error 
is (1) to create the smallest closed interval, containing the 
given real number, with model numbers for the lower and 
upper bounds, and (2) to develop bit-to-bit computation 
over the mantissa, the internal representation of model 
numbers.   

 Since the product of two model numbers or the inverse 
of a model number might not be a model number, we round 
the result outward to the nearest model numbers.  Let m(x) 
be the greatest model number less than x for the lower 
bound and m(y) be the smallest model number greater than 
y for the upper bound.  Therefore, we redefine 
multiplication and division as follows: 
Multiplication  
       x × y ∈[m(min(a1a2, a1b2, b1a2, b1b2)),  

m(max(a1a2, a1b2, b1a2,  b1b2))).           (6.3)’  
Division 

1/y ∈  [1/b2, 1/a2), if 0 ∉ B, then we define 
 x/y ∈ [m(min(a1/b2, a1/a2, b1/b2, b1/a2)),  

m(max(a1/b2, a1/a2, b1/b2, b1/a2))).    (6.4)’  
Moore [1966] proved an important theorem that 

supports interval computation and since then interval 
computation has become a new and growing branch of 
applied mathematics.  We call this theorem the fundamental 
theorem of interval computation.  It is necessary to quote 
the theorem here to support our work. 

Theorem 6.1 The Fundamental Theorem of Interval 
Computation: Let f(x1, x2, . . . , xn) be a rational 
function of n variables.  Consider any sequence of 
arithmetic steps which serve to evaluate f with 
given arguments x1, x2, . . . , xn.  Suppose we replace 
the arguments xi by the corresponding closed 
interval Xi (i = 1, 2,  . . . , n) and replace the 
arithmetic steps in the sequence used to evaluate f 
by the corresponding interval arithmetic steps.  The 
result will be an interval f(X1, X2, . . . , Xn).  This 
interval contains the value of f(x1, x2, . . . , xn), for all 
xi ∈ Xi (i= 1, 2, . . . , n). 
Later, Moore [1979] and Alefeld and Herzberger 

[1983] gave some algebraic properties of interval 
arithmetic.  From Figure 5.1, let RD be the set of all rough 
numbers or dyadic numbers, FD be the set of all finite 
dyadic numbers, and LD be the set of all limited dyadic 
numbers or model numbers with respect to a given machine 
M, then we have the following set hierarchical structures: 

LD ⊂ FD ⊂ RD.      (6.5)  
By definition, we see that every real number is a rough 
number from computer system viewpoint.  In fact, the 
computation is done in the set of LD, and computation of 
any rough numbers outside the set LD and within the   
range of a given machines M would round down to a model 
number in the set of LD for computation.  This would 
generate a rounding-error.  In the model interval 
computation, any rough numbers outside the set LD and 
within the range of a given machines, M would round down 
to a shortest model interval in the set of LD for 
computation.  This would minimize the resulting interval 
for the computation. 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



VII. CONCLUSION 

In this paper, we have reviewed some basic algebraic 
structures such as abelian groups, rings, and fields.  We 
defined sets of rough numbers, dyadic numbers, finite 
dyadic numbers, limited dyadic numbers, and model 
numbers; from these definitions, we have learned that the 
difficulty of numerical computation is that one must 
actually work with two distinct number systems.  Solving 
any numerical computation problem consists of the 
following three parts:  (1) the problem is given in the real 
number system, (2) the computation is done in the model 
number system for the given machine, and (3) the results 
must be converted from model numbers into real numbers.  
Real numbers and model numbers have two different 
algebraic structures, and they are not isomorphic.  In 
general, starting from the problem to computation on a 
machine often generates incorrect results and going from 
the machine computation to reporting results in real 
numbers can have incorrect results too.  This paper has 
reported that a computer system is not capable of 
computing real numbers accurately within its constraints 
from algebraic structure viewpoint. 

Computation over the set of real numbers requires 
performing a field computation.  However, when a real 
number within the given range is stored or read into a 
computer system, it is converted into a dyadic number.  
Computation over the set of limited dyadic numbers is 
dyadic number computation.  If f be a mapping that takes 
each real number into its dyadic number representation; it 
is not a one-to-one and onto function.  If a and b are two 
real numbers within a given range and they map into their 
dyadic representations f(a) and f(b), respectively, then in 
general, we should have f(a + b) ≠ f(a) + f(b).  The addition, 
+, is the addition of real numbers.  The mapping f does not 
preserve the algebraic structure, so the set of real numbers 
and the set of dyadic numbers are not isomorphic.  To avoid 
overloading and possible confusion, we will introduce a 
new addition ‘⊕’ for the dyadic number addition.  To adjust 
the inequality, we will add in an error term, Err.  
Therefore, we have f(a + b) = f(a) ⊕ f(b) + Err.   

In addition, we have revised interval arithmetic from 
real number ending points to model numbers and from a 
closed interval to a closed-open interval.  This will 
eliminate possible rounding errors, perform a bit-to-bit 
computation, create the shortest initial intervals for each 
initial real number, and ensure the resulting interval is the 
shortest one in the given machine.  In this paper, we have 
successfully redefined overloading for +, −, ×, and / on 
internal binary representations so that we can create the 
lower bound and the upper bound in model numbers for a 
given real number.  Also, we have carefully developed bit-
to-bit model interval computation [DEC 1985, IBM 1992].  
For each initial real number, we have created the shortest 
model interval to include the real number for computation 
with the required precision. This is a very important step 

because only with the shortest initial intervals can one 
obtain the maximum precision form the given machine.  

This model interval computation not only provides an 
approximation for the solution but also gives the length of 
the resulting interval that is the maximum possible of error 
due to human mistake.  Therefore, it can be used for any 
numerical computation problem, in particular, for any 
accuracy critical problems. 
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