

 Abstract―In this paper, a new approach for designing and

implementing lifting-based VLSI architectures for two-

dimensional discrete wavelet transform (2-D DWT) is

introduced. As a result, two high performance VLSI

architectures that perform 2-D DWT for lossless 5/3 and lossy 9/7

filters are proposed. In addition, the architectures implement

symmetric extension for boundary treatment. First, two

pipelined architectures consisting of two stages, the row and

column processors stages, were developed for 5/3 and 9/7 filters.

The internal memory between the row and the column

processors is reduced to a few registers. Second, in order to

speedup the computation, fully pipelined datapath architectures

for row and column processors were separately developed for

each 5/3 and 9/7 filters that can be incorporated into the two

architectures developed in the first part. Finally, 100% hardware

utilization is achieved.

 Index Terms―VLSI architecture, discrete wavelets transform

(DWT), JPEG2000, lifting scheme, and scan methods.

 I. INTRODUCTION

The two-dimensional discrete wavelet transform (2-D DWT)

has been applied as an effective and powerful tool in many

applications including image processing and compression [8],

[9]. The 2-D DWT considered in this paper is part of a

compression system based on wavelet such as JPEG2000.

 The function of the forward discrete wavelet transform

(FDWT) in a compression system is to decorrelate the image

pixels prior to the compression step [7]. Since the original

image pixels are highly correlated, then directly applying

compression algorithm to the original image pixels will not

yield an efficient compression ratio. Thus, the power of DWT

is to decorrelate the image pixels for effective compression.

 After transmitting to a remote site, the original image must

be reconstructed from the decorrelated image. The tasks for

reconstructing and completely recovering the original image

are performed by the inverse discrete wavelet transform

(IDWT).

 The amount of data needs to be processed in both

decorrelation and reconstruction steps is enormous that it

requires very high processing power that can not be achieved

by general-purpose processors, especially when real-time

processing is required. Therefore, high speed and low

power hardware for 2-D DWT is needed.

 In this paper, two efficient and high performance VLSI

 The authors are with the Electrical and Electronic Engineering

Department, Universiti Teknologi PETRONAS, Perak, Tronoh, Malaysia
(email: kokois12@hotmail.com).

architectures for 2-D DWT for 5/3 and 9/7 are presented. The

two architectures are based on lifting scheme, which facilitates

high speed and efficient implementation of wavelet transforms

[1], [2]. Beside, it is also attractive for both high throughput

and low-power applications. Therefore, the lifting-based DWT

becomes the preferred scheme for VLSI implementation, and

it has been selected as the transform coder for image

compression in the released JPEG2000 standard. In addition,

symmetric extension algorithm recommended by JPEG2000

for boundary treatment is incorporated and implemented by

the two architectures.

 This paper is organized as follows. In section II, the lossless

5/3 and lossy 9/7 algorithms are stated, and the data

dependency graphs (DDGs) for both algorithms are

established. Section III illustrates the overlapped and

nonoverlapped scan methods. The two proposed architectures

are presented in section IV. The performance evaluations and

comparisons are discussed in sections V and VI, respectively.

Conclusions are given in section VII.

II. LIFTING-BASED 5/3 AND 9/7 ALGORITHMS

 The lossless 5/3 and lossy 9/7 wavelet transforms

algorithms are defined by the JPEG2000 image compression

standard as follow [5], [6]:

5/3 analysis algorithm






 +++−
+=






 ++
−+=+

4

2)12()12(
)2()2(:2

2

)22()2(
)12()12(:1

jYjY
jXjYstep

jXjX
jXjYstep (1)

9/7 analysis algorithm
() () () ()()
() () () ()()
() () () ()()
() () () ()()

()
)2()2(:6

121)12(:5

121222:4

2221212:3

121222:2

2221212:1

nYknYstep

nYknYstep

nYnYnYnYstep

nYnYnYnYstep

nYnYnXnYstep

nXnXnXnYstep

′=

+′=+

+′+−′+′′=′

+′′+′′++′′=+′

+′′+−′′+=′′

++++=+′′

δ
γ

β
α

 (2)

 The DDGs for 5/3 and 9/7 derived from the algorithms are

shown in Figs 1 and 2, respectively. These graphs are very

useful tools in providing guidance for architecture

development and enhancement. The symmetric extension

algorithm is incorporated into the DDGs to handle the

boundary problems. The boundary treatment is necessary to

keep the number of wavelets coefficients the same as that of

the original. As shown in Figs 1 and 2, the boundary treatment

is only applied at the beginning and the ending of the process

[7]. That means in the 2-D images, it will be applied at the

beginning and the ending of each row or column.

Lifting-based VLSI Architectures for Two-

Dimensional Discrete Wavelet Transform for

Effective Image Compression
 Ibrahim Saeed and Herman Agustiawan

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

III. OVERLAPPED AND NONOVERLAPPED

SCANNING METHODS

 We believe that minimization of the internal memory, and

hence the hardware complexity in general for 2-D DWT

architectures, depends on the proper scan method adopted for

scanning the external frame memory. Therefore, two scan

methods, overlapped and nonoverlapped, are illustrated in Fig.

3(a) and (b), respectively. The pixels in the overlapped areas,

indicated by the dark lines in Fig. 3a, are scanned twice. For

an MN × image, this scan method requires

 ()21−+ MNNM clock cycles to scan the whole

image, whereas in the nonoverlapped method, the overlapped

areas are eliminated to reduce the external memory access

cycles to NM clock cycles only. The external memory access

usually consumes the most power [4].

 To ease the development of the architectures, the strategy

adopted is to divide the details of the development into two

steps each having small information to handle. In the first

step, the DDGs are looked at from outside, which is specified

by the dotted boxes, in terms of input and output

requirements. We have observed that the DDGs for 5/3 and

9/7 are identical when they are looked at from outside, taking

into consideration only the input and output requirements; but

differ in the internal details. Based on this observation, the

first level of the architecture, call it, the external architecture,

is developed. In the second step, the internal details of the

DDGs are considered for the development of the processor’s

datapath architectures, since DDGs internally define and

specify the structure of the processors.

IV. PROPOSED ARCHITECTURES

 A. External Architectures Development

 Based on the two scan methods shown in Fig. 3, and the

DDGs for 5/3 and 9/7 when they are looked at from outside,

the architectures shown in Figs 4 and 5 are proposed for

overlapped and nonoverlapped scan methods, respectively.

The architectures operate in a pipeline fashion, consisting of

two stages, row-processor (RP) stage and column-processor

(CP) stage. The two architectures are basically identical. The

main difference is that the nonoverlapped architecture

contains a line buffer (LB) of size N. In order to reduce the

external memory access and hence the power consumption,

the LB is added to hold N pixels that lay in each overlapped

areas in Fig. 3(a). Pixels in an overlapped area such as column

2 are also required in the next N operations. According to the

DDGs, each operation that performed by either RP or CP

would require three inputs. For example, the input labeled 0,

1 2 5

3 1 1 3 5 7 5

2 0 4 6 62

1 1 3 5 7

0 2 4 6

1Y0Y 2Y 3Y 4Y 5Y 6Y 7Y

k k k k1−k 1−k 1−k 1−k

0 11 2 323 44 5 6 7 46 5

3 1 1 3 5 7 7 5

2 0 4 6 82 6

1 1 3 5 7 7

0 2 4 6 8

1Y0Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y

k k k k k
1−

k
1−

k
1−

k
1−

k

)(nX

()12 +′′ nY

()nY 2′′

()12 +′ nY

()nY 2′

()12,)2(+nYnY

0 11 2 323 44 5 6 7 8 47 6 5

)(a)(b

Fig. 1. 5/3 algorithm’s DDGs for (a) odd and (b) even length signals

Fig. 2. 9/7 algorithm’s DDG for odd (a) and even (b) length signals

0Y 1Y 2Y 3Y 4Y 5Y 6Y 7Y

11 3 5 7

7

0

02

2

11 2

4

43 5 6

6

6

0Y 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y

11 3 5 7 7

77

0

0

2

1

4

43 6

6

8 6

8

)12(+jY

)2(jY

nscomputatio

redundant

)(jX

nscomputatio

redundant

)(a)(b

2

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

1, and 2 in Fig.1 initiate the first operation to yield the

coefficients labeled Y0 and Y1, whereas inputs 2, 3, and 4

initiate the second operation which yields Y2 and Y3 and so

on. Fig.5 shows the nonoverlapped architecture from the RP

side only, since its remaining parts are the same as in Fig.4.

 Fig.3. Overlapped (a) and nonoverlapped (b) scan methods

 In the following, the dataflow for the two architectures will

be described. In the first clock cycle, the external memory’s

location X(0,0) is read and is placed in register Rd0, as shown

in table I. The second clock cycle reads location X(0,1) and

places its contents in register Rd1 by the pulse ending the

cycle. In the third clock cycle, location X(0,2) is read and is

placed in the path leading to muxreo. Then by the pulse

ending the cycle, contents of registers Rd1 and Rd0 including

contents of location X(0,2) are transferred to the row-

processor’s latches Rt1, Rt0, and Rt2, respectively. Another

event also occurs during the third cycle in the nonoverlapped

architecture, which is the transfer of location X(0,2) to Rd.

Then, in the next cycle Rd is stored in the first location of the

memory labeled LB, since it is needed in the next

computation. While, in the overlapped architecture, location X

(0, 2) is scanned again from the external memory. Now

having the pipeline registers Rt2, Rt1, and Rt2 loaded with the

required data, the RP can immediately be started to compute

its first computation by the pulse ending the third cycle, which

is also the beginning of the fourth cycle. This computation

will last for three clock cycles, from cycle 4 to cycle 6, as

indicted in Table I. The pulse ending cycle 6 transfers the

results of the first operation, i.e., the first outputs of the RP,

H(0,0) and L(0,0), to registers Rd4 and Rd2, respectively. In

the fourth cycle, the scan moves to the second row of the

external memory and repeats the process, as shown in Table I.

The scanning process proceeds until it reaches the last row of

the image, to complete, say, the first run. Then, returns to the

first row to start the second run. This process is repeated until

the whole pixels of an image are scanned, according to the

scan method shown in Fig. 3.

 Looking at the DDGs from outside, it can be observed that

in the last high and low coefficients calculations, where the

row length of an image is even, only the last two pixels in a

row, r, at locations X(r, M-2) and X(r, M-1) are read from

external memory. In addition, the DDGs for even length,

implementing the extension part, require the pixel located at

X(r, M-2) to be considered as the first and the third inputs.

And it must be passed to the RP with the second input pixel

from location X(r, M-1), to compute the last high and low

coefficients in row r. Thus, the function of the multiplexer

labeled muxre0 is to pass pixel of location X(r, M-2), after it

has been transferred to register Rd0, to the row-processor’s

latch, Rt2, as the third input. Register Rd1 holds the second

input, the pixel of location X(r, M-1). Similarly, the

multiplexer labeled muxce0 performs the same function, when

the column-processor applies DWT to columns. In other

words, muxre0 and muxce0, which are extension multiplexers,

are used only in the calculation of the last coefficient in even

row or even column images.

 On the other hand, when the row length of an image is odd,

according to the DDG for the odd length, to calculate the last

low coefficient, only one pixel, the last one at location X(r, M-

1), should be passed to the row-processor. This pixel is loaded

into Rd0 and then passed to RP where it is used in the

computation of the last low coefficient.

 In the architecture based on the nonoverlapped scan

method, starting from the second run, the dataflow or

scheduling of pixels to RP and LB should be as follows.

Assume the cycle where the last three pixels that are scanned

from the last row in the first run are loaded into the RP’s

latches by the pulse ending, say, cycle n. Cycle n also transfers

the pixel from location X(N-1,2) into Rd. In cycle n+1, the

second run begins and the first pixel for the first operation is

read from location X(0,3) and is loaded into Rd1 by the pulse

ending the cycle. Also during cycle n +1, contents of register

Rd are written into the last location of the LB. In cycle n+2,

the first location of the LB is loaded into Rd0 by the pulse

ending the cycle and it is the only event that takes place during

the cycle. Cycle n+3 transfers the second pixel from location

X(0,4) to both Rd and Rt2 and contents of Rd0 and Rd1 to Rt0

and Rt1 by the pulse ending the cycle, respectively. In cycle

n+4, Rd’s contents are written in the first location of the LB.

In addition, the first pixel of the second operation which is in

location X(1,3) is loaded into Rd1 by the pulse ending the

cycle. This pattern of scheduling is repeated until the whole

image is scanned. This description completes the dataflow for

the two architectures from the RP’s side.

 Now, let’s take a closer look at the functions performed by

the registers Rd2, Rd3, Rd4, Rd5 and Rd6 and see how data

are moved through them to the column-processor’s pipeline

registers. These registers function as data registers as well as

pipeline registers. The three multiplexers labeled mux1 select,

through the control signal s1, between the high coefficients

that are in registers Rd4, Rd5, and Rd6 and the low

coefficients that are in registers Rd2, Rd3 plus the coefficient

in the path connecting the L output to the middle mux1 and

pass the selected coefficients to the CP’s pipeline latches Rt3,

Rt4, and Rt5. As shown in table 1, at the clock cycle number

6, the RP produces its first high, H(0,0), and low, L(0,0),

coefficients and by the pulse ending the cycle these

coefficients are stored in registers Rd4, and Rd2, respectively.

M

N

0

0

1 2

1

2

3

3

4

4

65

)a

N

0

0

1 2

1

2

3

3

4

4

5 6

M

)b

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

In clock cycle 9, the second computation results, H(1,0) and

L(1,0), are transferred to Rd5 and Rd3 by the pulse ending the

cycle. To this point, two high coefficients, H (0, 0) and H (1,

0), are in registers Rd4 and Rd5 and two low coefficients, L

(0, 0) and L (1, 0), are in Rd2 and Rd3, respectively. The third

computation results, H (2, 0) and L (2, 0), are produced in

cycle 12. H (2, 0) is stored in the Rd6 whereas L (2, 0) is

stored in both Rd2 and Rt4 by the pulse ending cycle 12. The

same pulse also transfers contents of registers Rd2 and Rd3 to

the CP’s latches Rt3 and Rt5, respectively. Now the CP’s

latches hold the three data required to start its first

computation. This computation takes 3 consecutive clock

cycles. It begins at cycle 13 and ends by the pulse ending

cycle 15, to yield LH(0,0) and LL(0,0) as outputs, which are

then transferred to Rt6 and Rt7 by the pulse ending cycle 15,

respectively. The pulse ending cycle 15 also transfers contents

of Rd4, Rd6, and Rd5 to the CP’s latches Rt3, Rt4, and Rt5. In

addition, Rd6 is transferred to Rd4, which is needed in the

next computation. Furthermore, the same pulse transfers the

outputs, L (3, 0) and H (3, 0), produced by the RP to Rd3 and

Rd5, respectively. The sequences of events that complete by

the pulse ending cycle 15 are shown in row 15 of Table I.

 The clock periodτ and hence frequency f of the proposed

architectures can be determined by the following algorithm. fm

is the external memory frequency of operation, fp is the

processor frequency and I is the number of input pixels that

are required for an operation. I = 3 for 5/3 and 9/7.

 TABLE I DATAFLOW FOR FIGURES 4 AND 5

Ck Rd0 Rd1 Rd LB Rt0 Rt2 Rt1 Rd2 Rd3 Rd4 Rd6 Rd5 Rt3 Rt4 Rt5 Rt6 Rt7

1 x0,0 - - - - - - - - - - - - - - - -

2 x0,0 x0,1 - - - - - - - - - - - - - - -
3 - - x0,2 - x0,0 x0,2 x0,1 - - - - - - - - - -

4 x1,0 - x0,2 - - - - - - - - - -

5 x1,0 x1,1 - - - - - - - - - -
6 - - x1,2 x1,0 x1,2 x1,1 L0,0 - H0,0 - - - - - - -

7 x2,0 - x1,2 - - - - - - - -

8 x2,0 x2,1 - - - - - - - -
9 - - x2,2 x2,0 x2,2 x2,1 L0,0 L1,0 H0,0 - H1,0 - - - - -

10 x3,0 - x2,2 - - - - - -

11 x3,0 x3,1 - - - - - -
12 - - x3,2 x3,0 x3,2 x3,1 L2,0 - H0,0 H2,0 H1,0 L0,0 L2,0 L1,0 - -

13 x4,0 - x3,2 - -

14 x4,0 x4,1 - -
15 - - x4,2 x4,0 x4,2 x4,1 L2,0 L3,0 H2,0 - H3,0 H0,0 H2,0 H1,0 LH0,0 LL0,0

16 x5,0 - x4,2

17 x5,0 x5,1
18 - - x5,2 x5,0 x5,2 x5,1 L4,0 - H2,0 H4,0 H3,0 L2,0 L4,0 L3,0 HH0,0 HL0,0

19 x6,0 - x5,2

20 x6,0 x6,1
21 - - x6,2 x6,0 x6,2 x6,1 L4,0 L5,0 H4,0 - H5,0 H2,0 H4,0 H3,0 LH1,0 LL1,0

Fig. 4. Overlapped scan architecture

3

f

),(jiX LL

6Rd

4Ed

0s

4Rd

6Ed

5Rd

5Ed

2Rd

3Rd

3Ed

2Ed

 R
o
w
-p
ro
ce
ss
o
r

1Ir

2Ir

0Ir

1Rt

2Rt

0Rt

H

L

1Ed

1Rd

0Rd

f

1s

C
o
lu
m
n
-p
ro
ce
ss
o
r

4Rt

3Rt

5Rt
6Rt

7Rt

H

L

2Ic

0Ic

1Ic
LHHH ,

HL

2mux

1mux

1mux

1mux

0mux

22

MN

RAM

×

m
u
x
ce
0

m
u
x
re
0

2s

0sre

0Ed

0sce

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

 Fig. 5. Nonoverlapped scan architecture

m

p

mp

m

pm

telse

It

thentItifelseCase

t

thenttIfCase

=

=

≥

=

≥

τ

τ

τ

:2

:1

 (3)

To this point the processor critical path delay (tp = 1/fp) is

expected to be much larger than that of the external frame

memory scan delay, tm = 1/fm. Therefore, the processor delay

tp would be the determining factor of the frequency f. In other

words, case2 will be always true. The situation would change

when the processor is pipelined later.

 B. Processors Architectures Development

 To complete the architectures for 2-D DWT, the last phase

is to design the row and column processors datapath

architectures for 5/3 and 9/7 algorithms separately that can fit

into the two architectures shown in Figs 4 and 5. The two

architectures are valid architectures for both 5/3 and 9/7

algorithms. Since they were developed based on the

observation that the DDGs for 5/3 and 9/7 are identical, when

they are looked at from outside, taking into consideration only

the input and output requirements.

 1) 5/3 Processor’s Architecture Development

 Based on the algorithm (1) and the DDGs shown in Fig. 1,

the 5/3 processor datapath architecture is shown in Fig. 6. The

multiplexers labeled m1, m2, and m3 implement the

symmetric extension. This 3-stage pipelined processor is

formed by mapping the two lifting steps of the 5/3 algorithm

into two pipeline stages. Stage 3 is added to reduce the critical

path delay of stage 2; specifically the path connecting the

adders in stage2 to the RP’s output L, to muxce0 through

mux1, and end at Rt4. Suppose ta and tx denote adder and

multiplexer delays, respectively. Then, the critical path of

stage 2 becomes large, 3ta + 3tx, when the processor datapath

 Fig. 6. 5/3 processor's datapath architecture

 TABLE II EXTENSION’S CONTROL SIGNALS

 a) Even length signals b) Odd length signals

is incorporated into the architecture. The addition of stage 3,

which is obtained by splitting stage 2, reduces the critical path

of stage 2 to 2ta + tx and that of stage 3 to ta + 2tx.

 Stage 1 computes the high coefficients (step1) and sends

results to the output labeled H, whereas stages 2 and 3

compute the low coefficients (step2) and send results to the

output labeled L. According to the DDGs in Fig 1, each high

coefficient calculated in stage 1 enters not only in the

calculation of the current low coefficient in stage 2 but also in

the next low coefficient calculation. Therefore, register Rd is

added in order to store the high coefficient for the next low

coefficient calculation. Stage 2 of the pipeline is a little bit

complicated because it implements part of the extension. So in

the following, the dataflow of stage 2 is explained. First, based

on the DDGs for 5/3 in figure 3 (a) and (b), in the calculation

of the first low coefficient Y0, the high coefficient value Y1,

calculated in stage1, must be allowed to pass through the

multiplexers, labeled m2 and m3, to the adder in stage 2.

Second, in the calculation of the last coefficient, for example,

Y8 in Fig. 3(b) for odd length signals, the high coefficient

(Y7) in register Rd, from the previous operation, must be

allowed to pass through both m2 and m3 to the adder. During

normal computations that occur between the first and last

coefficients calculations, the current high coefficient

calculated in stage 1 and the previous high coefficient in

register Rd are allowed to pass through m2 and m3 to the

adder, respectively. Note, in even length signals, the last high

and low coefficients calculations occur normally. Table II (a)

and (b) show the values of the control signals that have to be

issued by the control unit so that the extension multiplexers

perform the required functions. Note also, the shift operations

that are indicated on the figure by the symbol >> are

implemented in hardwire.

 se0 se1 se2

First 0 0 0

Normal 0 0 1
Last 1 0 1

 se0 se1 se2

First 0 0 0

Normal 0 0 1

Last 0 1 1

LB

WR Elb
lines

address

),(jiX
0sre

1Rt

2Rt

1Ed

1Rd

0Ed

0Rd

f

slb

 R
o
w
-p
ro
ce
ss
o
r

1Ir

2Ir

0Ir

H

L

LL

0Rt
2mux

mux

m
x
re
0

f
Ed

Rd

2s

3

f

2

H

L

0Rt Rt

+

+

2Rt

1Rt Rt

Rd

+

+

Rt

+
Rt

Rt

0se

1se

2se

Ed

()12 +jX

()12 +jX

()jX 2

1m

2m

3m

1stage 2stage 3stage

2>>

1>>

0muxe
−

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

 2) 9/7 Processor’s Architecture Development

 A 6-stage pipelined datapath architecture for 9/7 processor

is shown in Fig. 7. It is formed using both the 9/7 algorithm

stated in (2) and its DDGs shown in figure 2. In this

architecture the pipeline stages 1, 2, 4, and 5 represent the first

4 steps in the 9/7 algorithm. The implementation of step5 and

step6 are incorporated in stage 6 to allow the two steps to

operate in parallel. Stage 3, which connects stage 2 with stage

4, is added to prevent data conflict. That occurs because stage

4 requires two successive low coefficients that must be

produced by stage 2 in order to perform its task. The first

coefficient produced by stage 2 takes the path labeled ()nY ′′ ,

the delay path, whereas the second coefficient takes the path

labeled ()22 +′′ nY , the forward path. Then, by the pulse

ending the cycle, in which the second coefficient is produced,

the data in the forward, delay1, and delay2 paths are

simultaneously loaded into the pipeline latches of stage 4. The

9/7 processor shown in Fig 7, can be thought of as if it was

formed by connecting together two 5/3 processors through

stage 3, assuming the 5/3 is a 2-stage pipelined processor.

 The multiplexers in stages 2, 4 and 5 including the one

labeled muxe0 implement the symmetric extension algorithm

that is part of the DDGs in figure 2. Table III (a) and (b) show

the appropriate values of the control signals that must be

issued by the control unit to the extension multiplexers so that

they perform the required functions. The extension

multiplexers in stage2 and 5, function exactly the same way as

that of the 5/3, described earlier. The normal function of the

extension multiplexer labeled muxe0 is to pass the input

signal X(2n + 2) to the latch, whereas function of the

extension multiplexer labeled muxe3 in stage 4, is to pass the

forward signal, ()22 +′′ nY , to the adder. Only in the even

length signals and in the calculation of the last coefficient,

muxe0 passes the input signal X(2n) to the latch and muxe3

passes the delay signal ()nY 2′′ to the adder instead of the

forward signal ()22 +′′ nY . Note that multiplication

operations in Fig. 7 can be implemented by adders only [3].

 C. Row and Column Processors for 5/3 and 9/7

 The 5/3 and 9/7 processor datapath architectures shown in

Figs 6 and 7 were developed assuming the external memory is

scanned either row-by-row or column-by-column. The CPs

in both architectures shown in Figs 4 and 5 scan the high and

the low coefficients generated by RP column-by-column. But,

since the CPs alternate between the high and the low

coefficients calculations as indicated in Table I, two registers

must be placed in each stage, stage 2 of 5/3 and stages 2 and 5

of 9/7 instead of the one labeled Rd. The two new registers are

labeled RdH and RdL. Thus, the final column-processor

datapath architecture that can fit into the two proposed

architectures is obtained when stage 2 of 5/3 and stages 2 and

5 of 9/7 are modified as shown in Fig. 8.

 On the other hand, the row-processors in the two proposed

architectures scan the external frame memory according to one

of the two scan methods illustrated in Fig.3. A careful

examination of the scan methods and the DDGs shows that the

N high coefficients that were calculated during a run must be

kept, in order to be used in the N operations of the next run.

This requires the addition of a temporary line buffer (TLB) of

size N in stage 2 of the 5/3 and stages 2 and 5 of the 9/7. Thus,

the final RP’s datapath architecture that can fit into the two

proposed architectures is obtained when a TLB is incorporated

into stage 2 of the 5/3 and stages 2 and 5 of the 9/7 as shown

in figure 9.The inclusion of the TLB may decrease the speed of

the architectures. To maintain the speed, the TLB can be

placed in a separate pipeline stage as shown in Fig. 10. In

addition, inclusion of a TLB causes a problem because the

same TLB’s location must be read and written in the same

clock cycle. To solve this problem, the signal labeled WR /

in Fig. 9 is connected to the clock f/3 so that the TLB can be

read in the first half cycle and written in the second half. The

register labeled TLBAR (TLB address register) generates

addresses for the TLB. Initially, TLBAR is cleared to zero by

asserting signal INCAR low to point at the first location. Then

to address the next location, after each read and write, register

TLBAR is incremented by one by asserting INCAR high.

V. EVALUATION OF ARCHITECTURES

 In the previous section, it is mentioned that algorithm (3)

can be used to determine the frequency f of the architectures.

Pipelining the processors to k stages changes the frequency f,

which can be determined by the following algorithm which is

a slight modification of (3).

m

p

mp

m

pm

telse

kIt

thentkItifElsecase

t

thenkttIfcase

=

⋅=

≥⋅

=

≥

τ

τ

τ

:2

:1

 (4)

Where f1=τ , mm ft 1= and pp ft 1= are the clock

period, the critical path delays of the external frame memory

and the processors, respectively.

 In the algorithm stated above either case 1 or case 2 can be

true. Case 2 implies the availability of a very high speed scan

that can scan the three pixels required for an operation during

the specified time limit given by tp/k. If that is the case-the

architectures shown in Figs 4 and 5 with their processors

pipelined-the hardware utilization is 100% and the

architectures are complete. Now, suppose 1τ and 2τ denote the

clock periods of the architectures before and after pipelining,

respectively. Then from (3), case2

 It p=1τ .

 And from (4), case2

 .112 kkIIkIt p τττ =⋅⋅=⋅=

The speedup factor S is then given by

 () kkS === 1121 ττττ (5)

The efficiency E of k-stage pipeline is defined in [10] as

 1=== kkkSE (6)

Thus, the architectures with pipelined processors are k times

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

faster than the architectures with nonpipelined processors with

efficiency 1.

 On the other hand, case 1 implies low scanning frequency.

That means the time required to scan the three pixels for an

operation will take 3tp/k seconds or three clock cycles, where

tp/k is the stage critical path delay of the pipelined processor.

In that case, the architectures with pipelined processors will be

under utilized 2/3 of the time, since every three clock cycles

yield one output. In addition, the speedup due to pipelining is

proportional to k. To determine that consider the following.

From algorithm (3), case2,

 It p=1τ

And from algorithm (4), case1,

kIkt p 13 ττ ⋅==

The speedup factor (S) is then given by

 () IkkIS =⋅== 1131 ττττ (7)

 Fig. 7. The 9/7 processor’s datapath architecture with extension

 TABLE III SYMMETRIC EXTENSION’S CONTROL SIGNALS

 a) Even length signals b) Odd length signals

 Fig. 8. Modified circuit for CP Fig. 9. Incorporation of TLB in RP

 step1 step2 step3 step4

 se0 se1 se2 se3 se4 se5

First 0 0 0 0 0 0

Normal 0 0 1 0 0 1

Last 0 1 1 0 1 1

 step1 step2 step3 step4

 se0 se1 se2 se3 se4 se5

First 0 0 0 0 0 0

Normal 0 0 1 0 0 1

Last 1 0 1 1 0 1

fo
rw

ar
d

Rt

Rd

Rt

Rt Rt

2se

α

β

1Rt

2Rt

0Rt

Rt

Rd

Rt

Rt Rt

γ

δ

Rt

Rt

1se

0se 3se

4se

5se

Rt

k

1−k

H

L

()12 +nX

()22 +nX

)2(nX

)2(nX
)2(nY ′′

)2(nY ′′
)2(nY ′′

)12(+′′ nY)12(+′′ nY

)2(nY ′

)12(+′ nY)12(+′ nY

)2(nY

)12(+nY

1stage 2stage 3stage 4stage 5stage 6stage

1delay

2delay

()22 +′′ nY

0muxe
3muxe

+

1se

2se

3s

Rt Rt

RdL

EdL

RdH

EdH

m
u
x
e2

M
u
x
e1

RtRt

M
u
x
3

Rt Rt

Rt Rt

linesaddress+

1se

2se

2stage

N WR

TLB

Etlb
Rd

Ed

M
u
x
e1

M
u
x
e2

3/fclock

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

 Fig. 10. TLB in a separate pipeline stage

The efficiency () IkIkkSE 1=== (8)

Thus, in 9/7 architectures, a gain in speedup factor of 2 can be

achieved since k = 6 and I = 3 but no gain in speedup can be

achieved in the case of 5/3 architectures, since k = 3, by

pipelining the processors and the efficiency is very low, 1/3.

 The under utilization and speedup problems can be

alleviated, and the entire architecture can be made to operate

with frequency f = tp/k and fully utilized, producing outputs

every cycle. If the architecture is allowed to read from the

external memory the required three pixels for an operation in

parallel every clock cycle instead of one pixel at time. Of

course, that will require three buses instead of one to scan the

external frame memory. The parallel scan architectures can be

obtained by slight modifications of the architectures shown in

Figs. 4 and 5 from RP side only and will not be shown here

because of the space limitation.

 To compare the performances of the pipelined parallel scan

architectures with the nonpipelined sequential scan

architectures both of Figs 4 and 5, consider the following. In

the architectures shown in Figs 4 and 5, 151 =ρ clock

cycles (Table I) are needed to complete the execution of the

first operation. The remaining (n–1) operations require I(n-1)

cycles, where I = 3 for 5/3 and 9/7. Thus, the total time

required to perform (n) operations or tasks is

 () ()[] 11 1 τρ −⋅+= nInonT seq (9)

where 1`1 1 f=τ is the clock period. On the other hand, the

parallel scan architectures would require 103 =ρ cycles for

5/3 or 153 =ρ cycles for 9/7 to complete the execution of

the first task. The remaining (n–1) tasks require (n–1) cycles.

The total time required to execute n tasks is given by

 () ()[] 33 1 τρ −+= npipeT par (10)

The speedup factor is then given by

()
()

()[]
()[] 33

11

1

1

τρ
τρ

−+
−⋅+

==
n

nI

pipeT

nonT
S

par

seq

For large n, the above equation reduces to

()()
()

k
kI

II
n

In
S =

⋅
=≅

−

⋅−
=

1

1

3

1

3

1

1

1

τ
τ

τ
τ

τ
τ

 (11)

The efficiency 1=== kkkSE (12)

That is the parallel scan architectures are k times faster than

the sequential scan architectures with efficiency 1.

 The throughput, H, which is defined as the number of tasks

(operations) performed per unit time, can be written as

 ()
()[] ()11 1

1

11 −⋅+
=

−⋅+
=

nI

nf

nI

n
nonH seq ρτρ

()
()[]

()1

)]1([1

2

1

1222

−⋅+
=

−⋅+
=

−⋅+
=

nI

nkf

nI

nk

nI

n
pipeH

seq

ρ

τρτρ

()

)1(

/)]1([)]1([

3

1

1333

−+
=

⋅−+
=

−+
=

n

Inkf

kIn

n

n

n
pipeH

par

ρ

τρτρ

The maximum throughput, H
max

, occur when n is very large

()∞→n and in these architectures the maximum throughput

is attainable, since n is expected to be very large. Thus,

 () IfnonH seq 1

max =

and () () IkfpipeHpipeH parseq 1

maxmax == (13)

The pipelined parallel and sequential scan architectures’

throughputs have increased by a factor of k as compared with

the nonpipelined architectures.

 Based on the above evaluations, we can conclude that both

pipelined sequential and parallel scan architectures achieve the

same performance in terms of speedup, efficiency, throughput,

and hardware utilization. In addition, it can be shown that they

also consume the same power.

VI. COMPARISONS

 Table IV provides a comparison of the proposed

architectures with most recent architectures in the literature.

The generic RAM-based architecture [11] requires a line

buffer of size 4N implemented with two-port RAM. Beside, its

critical path delay is large, 4Tm + 8Ta. Whereas the proposed

architectures use single-port RAMs of sizes N and 2N for

overlapped and nonoverlapped architectures, respectively.

M
u
x

M
u
x

Rt Rt Rt

Rd
N

WR

TLB

Etlb

Rt

+
2se

1se

3/fclock

TLBARINCAR

3/f
RtRt Rt

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

 TABLE IV
 COMPARISONS OF SEVERAL 1-LEVEL (9/7) ARCHITECTURES FOR 2-D DWT

 Tm: The delay time of a multiplier Ta: The delay time of an adder

 Flipping structure [12] provides a new method to shorten

the critical path of the lifting-based architecture to one

multiplier delay but requires line buffer of size 11N [9]. On

the other hand, in [9], by reordering the lifting-based DWT of

the 9/7 filter; the critical path of the pipelined architecture has

been reduced to one multiplier delay. However, this

architecture requires line buffer of size 4N, two row-

processors, and a programmable multiplier. The

programmable multiplier implies the use of a real multiplier

with long delay that can not be implemented using the

arithmetic shift method [3]. Moreover, the architecture

proposed in [5], achieves critical path of one multiplier delay

using very large number of pipeline registers, 52 registers, in

addition to line buffer of size 6N. The architecture proposed in

[8], achieves a speedup factor of 2 by employing 2 row-

processors and 2 column-processors with line buffer of size

5.5N. However, the same performance can be achieved and

with less line buffer if 4 of the proposed processors are used.

In addition, note that the architectures proposed in this paper

are complete and more precise than other architectures.

VII. CONCLUSIONS

 In this paper, two highly efficient and novel architectures

for 2-D DWT are proposed that meet the high speed, low

power, and memory requirements for real-time applications.

The most noticeable accomplishment is the elimination of the

internal memories, between row and column processors,

which dominates the hardware cost. In addition, the control

logic can be derived easily. In the proposed pipelined

architecture based on the nonoverlapped scan method, the

power consumption due to the external frame memory access

is reduced to minimum and it could be a very efficient

alternative in applications where the power consumption is a

serious issue. In the development of the architectures, two

cases were identified based on the scanning frequencies;

case1, low scan frequency and case2, high scan frequency. In

case1, the optimal performances of the pipelined architectures

in terms of speedup, efficiency, and hardware utilization are

achieved by scanning 3 pixels in parallel each cycle. This

requires slight modifications of the architectures developed in

the first part that scan the external memory pixel-by-pixel. In

case2, the optimal performances of the architectures are

immediately obtained by pipelining the processors with no

further modifications of the architectures developed in the first

part. Furthermore, the critical path delay of the proposed

pipelined architectures can be reduced to four adders delays

when multiplications operations in the 9/7 processors are

implemented by adders only. The advantage of the approach

adopted in the development of the two proposed architectures

is that it can be used in developing architecture for any 2-D

DWT algorithm and it is certain to yield very efficient

architectures in terms of hardware complexity, speedup, and

power consumption with manageable control complexity.

Furthermore, the evaluation formulas established in section V

including algorithms (3) and (4) are general and can be

applied to all 2-D DWT algorithms.

REFRENCES
[1] Daubechies and Sweldens, “Factoring wavelet transforms

 into lifting schemes,” J.Fourier Analysis and Application,

 1998.

[2] Sweldens, “The lifting scheme: A new philosophy in biorthogonal

 wavelet constructions," in proc. SPIE, 1995.

[3] Qing-ming Yi and Sheng-Li Xie,”Arithmetic shift method suitable for

 VLSI implementation to CDF 9/7 discrete wavelet transform based on

 lifting scheme,” Proceedings of the Fourth Int. Conf. on Machine

 Learning and Cybernetics, Guangzhou, August 2005.

[4] Chao-Tsung Huang, Po-Chih Tseng, and Liang-Gee Chen, “Analysis

 and VLSI Architecture for 1-D and 2-D Discrete Wavelet Transform”

 IEEE Trans. on Signal Processing, April 2005.

[5] Xuguang Lan, Nanning Zheng,”Low-Power and High-Speed VLSI

 Architecture for Lifting-Based Forward and Inverse Wavelet

 Transform” 2005 IEEE.

[6] Srikar Movva and Srinivasan S.,”A novel architecture for lifting-based

 discrete wavelet transform for JPEG2000 standard suitable for VLSI

 implementation,” Proceedings of the 16th International Conf. on VLSI

 Design, 2003 IEEE.

[7] Gregory Dillin, Benoit Georis, Jean-Didier Legant, and Olivier

 Cantineau,”Combined Line-based Architecture for the 5-3 and 9-7

 Wavelet Transfprm of JPEG2000,” IEEE Trans. on circuits and

 Systems, Sep. 2003.

[8] Cheng-Yi Xiong, Jim-Wen Tian, and Jian Liu, “Efficient high-

 speed/low-power line-based architecture for two-dimensional discrete

 wavelet transform using lifting scheme”, IEEE Trans. on Circuits & sys.

 For Video Tech. February 2006.

[9] Bing-Fei Wu, & Chung-Fu Lin, “ A high-Performance and Memory-

 Efficient Pipeline architecture for the 5/3 and 9/7 Discrete Wavelet

 Transform of JPEG2000 Codec”, IEEE Trans. on Circuits & Sys. for

 Video Technology, December 2005.

[10] Kai Hwang, “Advanced Computer Architecture: Parallelism, Scalability,

 Programmability,” McGraw-Hill 1993.

[11] P. C. Tseng, C. T. Huang, and L. G. Chen, “Generic RAM-baesd archit-

 ecture for 2-D discrete wavelet transform transform with line –based

 method,” IEEE Trans. on circuits and systems, July 2005.

[12] “Flipping structure: An efficient architectures for 1-D and 2-D lifting-

 Based wavelet transform,” IEEE Tran. Signal Process., April 2004.

Architecture Multipliers Adders Line RAM Computing Critical

 Buffer Time Path

Generic RAM-based [11] 10 16 4N N2/4 4(1-4-j)N2/3 4Tm + 8Ta

Flipping (5 stages) [12] 10 16 11N N2/4 N/A Tm

Bing [9] 6 8 4N N2/4 4(1-4-j)N2/3 Tm

Lan [5] 12 12 6N N2/4 4(1-4-j)N2/3 Tm

Cheng [8] 18 32 5.5N N2/4 2(1-4-j)N2/3 N/A

Proposed (overlapped) 12 16 N N2/4 2(1-4-j)N2 Tm + 2Ta

Proposed (nonoverlapped) 12 16 2N N2/4 4(1-4-j)N2/3 Tm + 2Ta

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

