
 

 

 

 

 

         

 

 

 

 

 

                                                       
                         
    Abstract―In this paper, a new approach for designing and 

implementing lifting-based VLSI architectures for two-

dimensional discrete wavelet transform (2-D DWT) is 

introduced. As a result, two high performance VLSI 

architectures that perform 2-D DWT for lossless 5/3 and lossy 9/7 

filters are proposed.  In addition, the architectures implement 

symmetric extension for boundary treatment. First, two 

pipelined architectures consisting of two stages, the row and 

column processors stages, were developed for 5/3 and 9/7 filters. 

The internal memory between the row and the column 

processors is reduced to a few registers.  Second, in order to 

speedup the computation, fully pipelined datapath architectures 

for row and column processors were  separately  developed for 

each 5/3 and 9/7 filters that can be incorporated into the two 

architectures developed in the first part. Finally, 100% hardware 

utilization is achieved.    

      

    Index Terms―VLSI architecture, discrete wavelets transform 

(DWT), JPEG2000, lifting scheme, and scan methods. 

 

     I.  INTRODUCTION 

 

The two-dimensional discrete wavelet transform (2-D DWT)                 

has been applied as an effective and powerful tool in many 

applications including image processing and compression [8], 

[9]. The 2-D DWT considered in this paper is part of a 

compression system based on wavelet such as JPEG2000. 

    The function of the forward discrete wavelet transform 

(FDWT) in a compression system is to decorrelate the image 

pixels prior to the compression step [7]. Since the original 

image pixels are highly correlated, then directly applying 

compression algorithm to the original image pixels will not 

yield an efficient compression ratio. Thus, the power of DWT 

is to decorrelate the image pixels for effective compression. 

   After transmitting to a remote site, the original image must 

be reconstructed from the decorrelated image. The tasks for 

reconstructing and completely recovering the original image 

are performed by the inverse discrete wavelet transform 

(IDWT). 

    The amount of data needs to be processed in both 

decorrelation and reconstruction steps is enormous that it 

requires very high processing power that can not be achieved 

by general-purpose processors, especially when real-time 

processing is required.  Therefore, high speed and   low   

power   hardware for 2-D DWT is needed. 

    In this paper, two efficient and high performance VLSI 
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architectures for 2-D DWT for 5/3 and 9/7 are presented. The 

two architectures are based on lifting scheme, which facilitates 

high speed and efficient implementation of wavelet transforms 

[1], [2]. Beside, it is also attractive for both high throughput 

and low-power applications. Therefore, the lifting-based DWT 

becomes the preferred scheme for VLSI implementation, and 

it has been selected as the transform coder for image 

compression in the released JPEG2000 standard. In addition, 

symmetric extension algorithm recommended by JPEG2000 

for boundary treatment is incorporated and implemented by 

the two architectures.  

   This paper is organized as follows. In section II, the lossless 

5/3 and lossy 9/7 algorithms are stated, and the data 

dependency graphs (DDGs) for both algorithms are 

established. Section III illustrates the overlapped and 

nonoverlapped scan methods. The two proposed architectures 

are presented in section IV. The performance evaluations and 

comparisons are discussed in sections V and VI, respectively. 

Conclusions are given in section VII.  

 

II.  LIFTING-BASED 5/3 AND 9/7 ALGORITHMS 

 

    The lossless 5/3 and lossy 9/7 wavelet transforms 

algorithms are defined by the JPEG2000 image compression 

standard as follow [5], [6]: 
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    The DDGs for 5/3 and 9/7 derived from the algorithms are 

shown in Figs 1 and 2, respectively. These graphs are very 

useful tools in providing guidance for architecture 

development and enhancement. The symmetric extension 

algorithm is incorporated into the DDGs to handle the 

boundary problems. The boundary treatment is necessary to 

keep the number of wavelets coefficients the same as that of 

the original. As shown in Figs 1 and 2, the boundary treatment 

is only applied at the beginning and the ending of the process 

[7]. That means in the 2-D images, it will be applied at the 

beginning and the ending of each row or column.                  
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III.  OVERLAPPED AND NONOVERLAPPED 

SCANNING METHODS 

 

    We believe that minimization of the internal memory, and 

hence the hardware complexity in general for 2-D DWT 

architectures, depends on the proper scan method adopted for 

scanning the external frame memory. Therefore, two scan 

methods, overlapped and nonoverlapped, are illustrated in Fig. 

3(a) and (b), respectively. The pixels in the overlapped areas, 

indicated by the dark lines in Fig. 3a, are scanned twice.  For 

an MN ×  image, this scan method requires 

 ( )21−+ MNNM  clock cycles to scan the whole 

image, whereas in the nonoverlapped method, the overlapped 

areas are eliminated to reduce the external memory access 

cycles to NM clock cycles only. The external memory access 

usually consumes the most power [4]. 

     To ease the development of the architectures, the strategy 

adopted is to divide the details of the development into two 

steps each having small information to handle. In the first 

step, the DDGs are looked at from outside, which is specified 

by the dotted boxes, in terms of input and output 

requirements. We have observed that the DDGs for 5/3 and 

9/7 are identical when they are looked at from outside, taking 

into consideration only the input and output requirements; but 

differ in the internal details. Based on this observation, the 

first level of the architecture, call it, the external architecture, 

is developed. In the second step, the internal details of the 

DDGs are considered for the development of the processor’s 

datapath architectures, since DDGs internally define and 

specify the structure of the processors. 

 

IV.   PROPOSED ARCHITECTURES 

 

    A.  External Architectures Development 

 

    Based on the two scan methods shown in Fig. 3, and the 

DDGs for 5/3 and 9/7 when they are looked at from outside, 

the architectures shown in Figs 4 and 5 are proposed for 

overlapped and nonoverlapped scan methods, respectively. 

The architectures operate in a pipeline fashion, consisting of 

two stages, row-processor (RP) stage and column-processor 

(CP) stage. The two architectures are basically identical. The 

main difference is that the nonoverlapped architecture 

contains a line buffer (LB) of size N. In order to reduce the 

external memory access and hence the power consumption, 

the LB is added to hold N pixels that lay in each overlapped 

areas in Fig. 3(a). Pixels in an overlapped area such as column 

2 are also required in the next N operations. According to the 

DDGs, each operation that performed by either RP or CP 

would require three inputs. For example, the input labeled 0, 
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1, and 2 in Fig.1 initiate the first operation to yield the 

coefficients labeled Y0 and Y1, whereas inputs 2, 3, and 4 

initiate the second operation which yields Y2 and Y3 and so 

on. Fig.5 shows the nonoverlapped architecture from the RP 

side only, since its remaining parts are the same as in Fig.4. 

 

 
   Fig.3. Overlapped (a) and nonoverlapped (b) scan methods 

 

    In the following, the dataflow for the two architectures will 

be described. In the first clock cycle, the external memory’s 

location X(0,0) is read and is placed in register Rd0, as shown 

in table I. The second clock cycle reads location X(0,1) and 

places its contents in register Rd1 by the pulse ending the 

cycle. In the third clock cycle, location X(0,2) is read and is 

placed in the path leading to muxreo. Then by the pulse 

ending the cycle, contents of registers Rd1 and Rd0 including 

contents of location X(0,2) are transferred to the row-

processor’s latches Rt1, Rt0, and Rt2, respectively. Another 

event also occurs during the third cycle in the nonoverlapped 

architecture, which is the transfer of location X(0,2) to Rd. 

Then, in the next cycle Rd is stored in the first location of the 

memory labeled LB, since it is needed in the next 

computation. While, in the overlapped architecture, location X 

(0, 2) is scanned again from the external memory.  Now 

having the pipeline registers Rt2, Rt1, and Rt2 loaded with the 

required data, the RP can immediately be started to compute 

its first computation by the pulse ending the third cycle, which 

is also the beginning of the fourth cycle. This computation 

will last for three clock cycles, from cycle 4 to cycle 6, as 

indicted in Table I. The pulse ending cycle 6 transfers the 

results of the first operation, i.e., the first outputs of the RP, 

H(0,0) and L(0,0), to registers Rd4 and Rd2, respectively. In 

the fourth cycle, the scan moves to the second row of the 

external memory and repeats the process, as shown in Table I. 

The scanning process proceeds until it reaches the last row of 

the image, to complete, say, the first run. Then, returns to the 

first row to start the second run. This process is repeated until 

the whole pixels of an image are scanned, according to the 

scan method shown in Fig. 3. 

    Looking at the DDGs from outside, it can be observed that 

in the last high and low coefficients calculations, where the 

row length of an image is even, only the last two pixels in a 

row, r, at locations X(r, M-2) and X(r, M-1) are read from 

external memory. In addition, the DDGs for even length, 

implementing the extension part, require the pixel located at 

X(r, M-2) to be considered as the first and the third inputs. 

And it must be passed to the RP with the second input pixel 

from location X(r, M-1), to compute the last high and low 

coefficients in row r. Thus, the function of the multiplexer 

labeled muxre0 is to pass pixel of location X(r, M-2), after it 

has been transferred to register Rd0, to the row-processor’s 

latch, Rt2, as the third input. Register Rd1 holds the second 

input, the pixel of location X(r, M-1). Similarly, the 

multiplexer labeled muxce0 performs the same function, when 

the column-processor applies DWT to columns. In other 

words, muxre0 and muxce0, which are extension multiplexers, 

are used only in the calculation of the last coefficient in even 

row or even column images. 

   On the other hand, when the row length of an image is odd, 

according to the DDG for the odd length, to calculate the last 

low coefficient, only one pixel, the last one at location X(r, M-

1), should be passed to the row-processor. This pixel is loaded 

into Rd0 and then passed to RP where it is used in the 

computation of the last low coefficient. 

    In the architecture based on the nonoverlapped scan 

method, starting from the second run, the dataflow or 

scheduling of pixels to RP and LB should be as follows. 

Assume the cycle where  the last three pixels that are scanned 

from the last row in the first run are loaded into the RP’s 

latches by the pulse ending, say, cycle n. Cycle n also transfers 

the  pixel from location X(N-1,2) into Rd. In cycle n+1, the 

second run begins and the first pixel for the first operation is 

read from location X(0,3) and is loaded into Rd1 by the pulse 

ending the cycle. Also during cycle n +1, contents of register 

Rd are written into the last location of the LB. In cycle n+2, 

the first location of the LB is loaded into Rd0 by the pulse 

ending the cycle and it is the only event that takes place during 

the cycle. Cycle n+3 transfers the second pixel from location 

X(0,4) to both Rd and Rt2 and contents of Rd0 and Rd1 to Rt0 

and Rt1 by the pulse ending the cycle, respectively. In cycle 

n+4, Rd’s contents are written in the first location of the LB. 

In addition, the first pixel of the second operation which is in 

location X(1,3) is loaded into Rd1 by the pulse ending the 

cycle. This pattern of scheduling is repeated until the whole 

image is scanned. This description completes the dataflow for 

the two architectures from the RP’s side. 

    Now, let’s take a closer look at the functions performed by 

the registers Rd2, Rd3, Rd4, Rd5  and  Rd6  and see how  data 

are moved through  them  to the  column-processor’s  pipeline  

registers.  These registers function as data registers as well as 

pipeline registers. The three multiplexers labeled mux1 select, 

through the control signal s1, between the high coefficients 

that are in registers Rd4, Rd5, and Rd6 and the low 

coefficients that are in registers Rd2, Rd3 plus the coefficient 

in the path connecting the L output to the middle mux1 and 

pass the selected coefficients to the CP’s pipeline latches Rt3, 

Rt4, and Rt5. As shown in table 1, at the clock cycle number 

6, the RP produces its first high, H(0,0), and low, L(0,0), 

coefficients and by the pulse ending the cycle these 

coefficients are stored in registers Rd4, and Rd2, respectively. 
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In clock cycle 9, the second computation results, H(1,0) and 

L(1,0), are transferred to Rd5 and Rd3 by the pulse ending the 

cycle. To this point, two high coefficients, H (0, 0) and H (1, 

0), are in registers Rd4 and Rd5 and two low coefficients, L 

(0, 0) and L (1, 0), are in Rd2 and Rd3, respectively. The third 

computation results, H (2, 0) and L (2, 0), are produced in 

cycle 12. H (2, 0) is stored in the Rd6 whereas L (2, 0) is 

stored in both Rd2 and Rt4 by the pulse ending cycle 12. The 

same pulse also transfers contents of registers Rd2 and Rd3 to 

the CP’s latches Rt3 and Rt5, respectively. Now the CP’s 

latches hold the three data required to start its first 

computation. This computation takes 3 consecutive clock 

cycles. It begins at cycle 13 and ends by the pulse ending 

cycle 15, to yield LH(0,0) and LL(0,0) as outputs, which are 

then transferred to Rt6 and Rt7 by the pulse ending cycle 15, 

respectively. The pulse ending cycle 15 also transfers contents 

of Rd4, Rd6, and Rd5 to the CP’s latches Rt3, Rt4, and Rt5. In 

addition, Rd6 is transferred to Rd4, which is needed in the 

next computation. Furthermore, the same pulse transfers the 

outputs, L (3, 0) and H (3, 0), produced by the RP to Rd3 and 

Rd5, respectively. The sequences of events that complete by 

the pulse ending cycle 15 are shown in row 15 of Table I.  

     The clock periodτ  and hence frequency f of the proposed 

architectures can be determined by the following algorithm. fm 

is the external memory frequency of operation, fp is the 

processor frequency and I is the number of input pixels that 

are required for an operation. I = 3 for 5/3 and 9/7.

 

  
                                                        TABLE I    DATAFLOW FOR FIGURES 4 AND 5   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                          

Ck  Rd0  Rd1   Rd   LB      Rt0  Rt2  Rt1    Rd2  Rd3      Rd4  Rd6  Rd5       Rt3   Rt4   Rt5           Rt6        Rt7 

1    x0,0    -        -       -         -         -       -       -        -            -        -      -            -       -        -               -            - 

2    x0,0  x0,1    -        -         -        -        -       -        -            -        -       -           -       -        -               -            - 
3       -       -      x0,2    -       x0,0 x0,2 x0,1     -        -             -        -       -           -       -        -               -            - 

4    x1,0     -              x0,2                               -        -              -        -       -            -       -       -               -           - 

5    x1,0  x1,1                                                  -        -              -        -       -           -        -       -               -           -  
6      -         -     x1,2             x1,0 x1,2 x1,1   L0,0    -          H0,0    -       -            -       -       -                -           - 

7    x2,0     -              x1,2                                          -                      -       -            -       -       -               -           - 

8    x2,0  x2,1                                                             -                     -        -            -       -       -               -           - 
9       -        -     x2,2             x2,0 x2,2 x2,1   L0,0  L1,0      H0,0     -     H1,0       -       -        -               -           - 

10  x3,0     -              x2,2                                                                   -                   -       -        -               -           - 

11  x3,0  x3,1                                                                                     -                    -       -        -              -           - 
12     -        -     x3,2             x3,0 x3,2 x3,1   L2,0     -         H0,0  H2,0  H1,0     L0,0  L2,0  L1,0         -           -  

13  x4,0     -              x3,2                                                                                                                          -          - 

14  x4,0  x4,1                                                                                                                                             -          - 
15    -        -       x4,2            x4,0 x4,2 x4,1   L2,0  L3,0      H2,0     -      H3,0     H0,0  H2,0 H1,0     LH0,0  LL0,0  

16  x5,0    -               x4,2 

17  x5,0  x5,1 
18    -        -       x5,2            x5,0 x5,2 x5,1   L4,0      -        H2,0   H4,0 H3,0     L2,0   L4,0  L3,0     HH0,0  HL0,0 

19  x6,0    -               x5,2 

20  x6,0  x6,1 
21     -       -       x6,2            x6,0 x6,2 x6,1   L4,0   L5,0     H4,0     -      H5,0     H2,0  H4,0  H3,0     LH1,0  LL1,0   

 

Fig. 4.   Overlapped scan architecture 
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       Fig. 5.   Nonoverlapped scan architecture 
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To this point the processor critical path delay (tp = 1/fp) is 

expected to be much larger than that of the external frame 

memory scan delay, tm = 1/fm. Therefore, the processor delay 

tp would be the determining factor of the frequency f.  In other 

words, case2 will be always true. The situation would change 

when the processor is pipelined later.   

 

    B.   Processors Architectures Development 

 

     To complete the architectures for 2-D DWT,  the last phase 

is to design the row and column processors datapath 

architectures for 5/3 and 9/7 algorithms separately that can  fit 

into the two architectures shown in Figs 4 and 5. The two 

architectures are valid architectures for both 5/3 and 9/7 

algorithms. Since they were developed based on the 

observation that the DDGs for 5/3 and 9/7 are identical, when 

they are looked at from outside, taking into consideration only 

the input and output requirements. 

 

     1)     5/3 Processor’s Architecture Development 

 

      Based on the algorithm (1) and the DDGs shown in Fig. 1, 

the 5/3 processor datapath architecture is shown in Fig. 6. The 

multiplexers labeled m1, m2, and m3 implement the 

symmetric extension. This 3-stage pipelined processor is 

formed by mapping the two lifting steps of the 5/3 algorithm 

into two pipeline stages. Stage 3 is added to reduce the critical 

path delay of stage 2; specifically the path connecting the 

adders in stage2 to the RP’s output L, to muxce0 through 

mux1, and end at Rt4. Suppose ta and tx denote adder and 

multiplexer delays, respectively. Then, the critical path of 

stage 2 becomes large, 3ta + 3tx, when the processor datapath  

 

     Fig. 6.  5/3 processor's datapath architecture  

 
          TABLE II    EXTENSION’S CONTROL SIGNALS 

 

 

 

 

 

       a) Even length signals     b) Odd length signals 

  

is incorporated into the architecture. The addition of stage 3, 

which is obtained by splitting stage 2, reduces the critical path 

of stage 2 to 2ta + tx and that of stage 3 to ta + 2tx.              

     Stage 1 computes the high coefficients (step1) and sends 

results to the output labeled H, whereas stages 2 and 3 

compute the low coefficients (step2) and send results to the 

output labeled L. According to the DDGs in Fig 1, each high 

coefficient calculated in stage 1 enters not only in the 

calculation of the current low coefficient in stage 2 but also in 

the next low coefficient calculation. Therefore, register Rd is 

added in order to store the high coefficient for the next low 

coefficient calculation. Stage 2 of the pipeline is a little bit 

complicated because it implements part of the extension. So in 

the following, the dataflow of stage 2 is explained. First, based 

on the DDGs for 5/3 in figure 3 (a) and (b), in the calculation 

of the first low coefficient Y0, the high coefficient value Y1, 

calculated in stage1, must be allowed to pass through the 

multiplexers, labeled m2 and m3, to the adder in stage 2. 

Second, in the calculation of the last coefficient, for example, 

Y8 in Fig. 3(b) for odd length signals, the high coefficient 

(Y7) in register Rd, from the previous operation, must be 

allowed to pass through both m2 and m3 to the adder. During 

normal computations that occur between the first and last 

coefficients calculations, the current high coefficient 

calculated in stage 1 and the previous high coefficient in 

register Rd are allowed to pass through m2 and m3 to the 

adder, respectively. Note, in even length signals, the last high 

and low coefficients calculations occur normally. Table II (a) 

and (b) show the values of the control signals that have to be 

issued by the control unit so that the extension multiplexers 

perform the required functions. Note also, the shift operations 

that are indicated on the figure by the symbol >> are 

implemented in hardwire. 
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        2)   9/7 Processor’s Architecture Development 

 

      A 6-stage pipelined datapath architecture for 9/7 processor 

is shown in Fig. 7. It is formed using both the 9/7 algorithm 

stated in (2) and its DDGs shown in figure 2. In this 

architecture the pipeline stages 1, 2, 4, and 5 represent the first 

4 steps in the 9/7 algorithm. The implementation of step5 and 

step6 are incorporated in stage 6 to allow the two steps to 

operate in parallel. Stage 3, which connects stage 2 with stage 

4, is added to prevent data conflict. That occurs because stage 

4 requires two successive low coefficients that must be 

produced by stage 2 in order to perform its task. The first 

coefficient produced by stage 2 takes the path labeled ( )nY ′′ , 

the delay path, whereas the second coefficient takes the path 

labeled ( )22 +′′ nY , the forward path. Then, by the pulse 

ending the cycle, in which the second coefficient is produced, 

the data in the forward, delay1, and delay2 paths are 

simultaneously loaded into the pipeline latches of stage 4. The 

9/7 processor shown in Fig 7, can be thought of as if it was 

formed by connecting together two 5/3 processors through 

stage 3, assuming the 5/3 is a 2-stage pipelined processor.    

     The multiplexers in stages 2, 4 and 5 including the one 

labeled muxe0 implement the symmetric extension algorithm 

that is part of the DDGs in figure 2. Table III (a) and (b) show 

the appropriate values of the control signals that must be 

issued by the control unit to the extension multiplexers so that 

they perform the required functions. The extension 

multiplexers in stage2 and 5, function exactly the same way as 

that of the 5/3, described earlier. The normal function of the 

extension multiplexer  labeled muxe0 is to pass the input 

signal X(2n + 2) to the latch, whereas function of the 

extension multiplexer labeled muxe3 in stage 4, is to pass the 

forward signal, ( )22 +′′ nY , to the adder. Only in the even 

length signals and in the calculation of the last coefficient, 

muxe0 passes the input signal X(2n) to the latch and muxe3 

passes the delay signal ( )nY 2′′  to the adder instead of the 

forward signal ( )22 +′′ nY . Note that multiplication 

operations in Fig. 7 can be implemented by adders only [3]. 

 

   C.   Row and Column Processors for 5/3 and 9/7 

 

     The 5/3 and 9/7 processor datapath architectures  shown in 

Figs 6 and 7 were developed assuming the external memory is 

scanned  either row-by-row or column-by-column.  The CPs 

in both architectures shown in Figs 4 and 5 scan the high and 

the low coefficients generated by RP column-by-column. But, 

since the CPs alternate between the high and the low 

coefficients calculations as indicated in Table I, two registers 

must be placed in each stage, stage 2 of 5/3 and stages 2 and 5 

of 9/7 instead of the one labeled Rd. The two new registers are 

labeled RdH and RdL. Thus, the final column-processor 

datapath architecture that can fit into the two proposed 

architectures is obtained when stage 2 of 5/3 and stages 2 and 

5 of 9/7 are modified as shown in Fig. 8.  

     On the other hand, the row-processors in the two proposed 

architectures scan the external frame memory according to one 

of the two scan methods illustrated in Fig.3. A careful 

examination of the scan methods and the DDGs shows that the 

N high coefficients that were calculated during a run must be 

kept, in order to be used in the N operations of the next run.  

This requires the addition of a temporary line buffer (TLB) of 

size N in stage 2 of the 5/3 and stages 2 and 5 of the 9/7. Thus, 

the final RP’s datapath architecture that can fit into the two 

proposed architectures is obtained when a TLB is incorporated 

into stage 2 of the 5/3 and stages 2 and 5 of the 9/7 as shown 

in figure 9.The inclusion of the TLB may decrease the speed of 

the architectures. To maintain the speed, the TLB can be 

placed in a separate pipeline stage as shown in Fig. 10. In 

addition, inclusion of a TLB causes a problem because the 

same TLB’s location must be read and written in the same 

clock cycle. To solve this problem, the   signal labeled WR /  

in Fig. 9 is connected to the clock f/3 so that the TLB can be 

read in the first half cycle and written in the second half. The 

register labeled TLBAR (TLB address register) generates 

addresses for the TLB. Initially, TLBAR is cleared to zero by 

asserting signal INCAR low to point at the first location. Then 

to address the next location, after each read and write, register 

TLBAR is incremented by one by asserting INCAR high. 

 

V.  EVALUATION OF ARCHITECTURES 

 

     In the previous section, it is mentioned that algorithm (3) 

can be used to determine the frequency f of the architectures. 

Pipelining the processors to k stages changes the frequency f, 

which can be determined by the following algorithm which is 

a slight modification of (3). 
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               (4) 

Where f1=τ , mm ft 1=  and pp ft 1=  are the clock 

period, the critical path delays of the external frame memory 

and the processors, respectively. 

     In the algorithm stated above either case 1 or case 2 can be 

true. Case 2 implies the availability of a very high speed scan 

that can scan the three pixels required for an operation during 

the specified time limit given by tp/k. If that is the case-the 

architectures shown in Figs 4 and 5 with their processors 

pipelined-the hardware utilization is 100% and the 

architectures are complete. Now, suppose 1τ and 2τ denote the 

clock periods of the architectures before and after pipelining, 

respectively. Then from (3), case2 

                         It p=1τ .   

 And from (4), case2    

           .112 kkIIkIt p τττ =⋅⋅=⋅=  

The speedup factor S is then given by 

            ( ) kkS === 1121 ττττ                        (5) 

The efficiency E of k-stage pipeline is defined in [10] as 

            1=== kkkSE                                       (6) 

Thus, the architectures with pipelined processors are k times
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faster than the architectures with nonpipelined processors with 

efficiency 1. 

    On the other hand, case 1 implies low scanning frequency. 

That means the time required to scan the three pixels for an 

operation will take 3tp/k seconds or three clock cycles, where 

tp/k is the stage critical path delay of the pipelined processor. 

In that case, the architectures with pipelined processors will be 

under utilized 2/3 of the time, since every three clock cycles 

yield one output. In addition, the speedup due to pipelining is 

proportional to k. To determine that consider the following. 

From algorithm (3), case2, 

                  It p=1τ    

And from algorithm (4), case1, 

         
kIkt p 13 ττ ⋅==
 

The speedup factor (S) is then given by    

         ( ) IkkIS =⋅== 1131 ττττ                  (7) 

   

 
                                Fig. 7.  The 9/7 processor’s datapath architecture with extension 

 
                                            TABLE III    SYMMETRIC EXTENSION’S CONTROL SIGNALS    

 

 

   

                

 

 

                           a) Even length signals                                                           b) Odd length signals 

 

 
                          Fig. 8.  Modified circuit for CP                                               Fig. 9.  Incorporation of TLB in RP 

 

 

             step1   step2     step3    step4 

              se0   se1  se2    se3    se4  se5 

First         0     0       0      0        0     0     

Normal    0     0       1      0        0     1 

Last         0     1       1      0        1     1 

             step1   step2     step3    step4 

              se0   se1  se2    se3    se4  se5 

First         0     0       0      0        0     0     

Normal    0     0       1      0        0     1 

Last         1     0       1      1        0     1 
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                                                 Fig. 10.   TLB in a separate pipeline stage 

 

The efficiency  ( ) IkIkkSE 1===              (8) 

Thus, in 9/7 architectures, a gain in speedup factor of 2 can be 

achieved since k = 6 and I = 3 but no gain in speedup can be 

achieved in the case of 5/3 architectures, since k = 3, by 

pipelining the processors and the efficiency is very low, 1/3. 

      The   under utilization and speedup   problems   can   be 

alleviated, and the entire architecture can be made to operate 

with frequency f = tp/k and fully utilized, producing outputs 

every cycle. If the architecture is allowed to read from the 

external memory the required three pixels for an operation in 

parallel every clock cycle instead of one pixel at time. Of 

course, that will require three buses instead of one to scan the 

external frame memory. The parallel scan architectures can be 

obtained by slight modifications of the architectures shown in 

Figs. 4 and 5 from RP side only and will not be shown here 

because of the space limitation. 

     To compare the performances of the pipelined parallel scan 

architectures with the nonpipelined sequential scan 

architectures both of Figs 4 and 5, consider the following. In 

the architectures shown in Figs 4 and 5, 151 =ρ  clock 

cycles (Table I) are needed to complete the execution of the 

first operation. The remaining (n–1) operations require I(n-1) 

cycles, where I = 3 for 5/3 and 9/7. Thus, the total time 

required to perform (n) operations or tasks is  

        ( ) ( )[ ] 11 1 τρ −⋅+= nInonT seq                        (9) 

where 1`1 1 f=τ is the clock period. On the other hand, the 

parallel scan architectures would require 103 =ρ  cycles for 

5/3 or 153 =ρ  cycles for 9/7 to complete the execution of 

the first task. The remaining (n–1) tasks require (n–1) cycles. 

The total time required to execute n tasks is given by 

        ( ) ( )[ ] 33 1 τρ −+= npipeT par                          (10)                                          

The speedup factor is then given by 
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For large n, the above equation reduces to 
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        (11) 

The efficiency 1=== kkkSE                                 (12) 

That is the parallel scan architectures are k times faster than 

the sequential scan architectures with efficiency 1. 

     The throughput, H, which is defined as the number of tasks 

(operations) performed per unit time, can be written as 
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The maximum throughput, H
max

, occur when n is very large 

( )∞→n and in these architectures the maximum throughput 

is attainable, since n is expected to be very large. Thus, 

       ( ) IfnonH seq 1

max =   

and ( ) ( ) IkfpipeHpipeH parseq 1

maxmax ==              (13) 

The pipelined parallel and sequential scan architectures’ 

throughputs have increased by a factor of k as compared with 

the nonpipelined architectures. 

     Based on the above evaluations, we can conclude that both 

pipelined sequential and parallel scan architectures achieve the 

same performance in terms of speedup, efficiency, throughput, 

and hardware utilization. In addition, it can be shown that they 

also consume the same power. 

 

VI.  COMPARISONS 

 

     Table IV   provides a   comparison   of    the     proposed 

architectures with most recent architectures in the literature. 

The generic RAM-based architecture [11] requires a line 

buffer of size 4N implemented with two-port RAM. Beside, its 

critical path delay is large, 4Tm + 8Ta. Whereas the proposed 

architectures use single-port RAMs of sizes N and 2N for 

overlapped and nonoverlapped architectures, respectively. 
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                                                                                              TABLE IV 
                                           COMPARISONS OF SEVERAL 1-LEVEL (9/7) ARCHITECTURES FOR 2-D DWT                                  

              Tm: The delay time of a multiplier   Ta: The delay time of an adder 

 

     Flipping structure [12] provides a new method to shorten 

the critical path of the lifting-based architecture to one 

multiplier delay but requires line buffer of size 11N [9]. On 

the other hand, in [9], by reordering the lifting-based DWT of 

the 9/7 filter; the critical path of the pipelined architecture has 

been reduced to one multiplier delay. However, this 

architecture requires line buffer of size 4N, two row-

processors, and a programmable multiplier. The 

programmable multiplier implies the use of a real multiplier 

with long delay that can not be implemented using the 

arithmetic shift method [3]. Moreover, the architecture 

proposed in [5], achieves critical path of one multiplier delay 

using very large number of pipeline registers, 52 registers, in 

addition to line buffer of size 6N. The architecture proposed in 

[8], achieves a speedup factor of 2 by employing 2 row-

processors and 2 column-processors with line buffer of size 

5.5N. However, the same performance can be achieved and 

with less line buffer if 4 of the proposed processors are used.  

In addition, note that the architectures proposed in this paper 

are complete and more precise than other architectures.    

 

VII.   CONCLUSIONS 

 

      In this paper, two highly efficient and novel architectures 

for 2-D DWT are proposed that meet the high speed, low 

power, and memory requirements for real-time applications. 

The most noticeable accomplishment is the elimination of the 

internal memories, between row and column processors, 

which dominates the hardware cost. In addition, the control 

logic can be derived easily. In the proposed pipelined 

architecture based on the nonoverlapped scan method, the 

power consumption due to the external frame memory access 

is reduced to minimum and it could be a very efficient 

alternative in applications where the power consumption is a 

serious issue. In the development of the architectures, two 

cases were identified based on the scanning frequencies; 

case1, low scan frequency and case2, high scan frequency. In 

case1, the optimal performances of the pipelined architectures 

in terms of speedup, efficiency, and hardware utilization are 

achieved by scanning 3 pixels in parallel each cycle. This 

requires slight modifications of the architectures developed in 

the first part that scan the external memory pixel-by-pixel. In 

case2, the optimal performances of the architectures are 

immediately obtained by pipelining the processors with no 

further modifications of the architectures developed in the first 

part. Furthermore, the critical path delay of the proposed 

pipelined architectures can be reduced to four adders delays 

when multiplications operations in the 9/7 processors are 

implemented by adders only. The advantage of the approach 

adopted in the development of the two proposed architectures 

is that it can be used in developing architecture for any 2-D 

DWT algorithm and it is certain to yield very efficient 

architectures in terms of hardware complexity, speedup, and 

power consumption with manageable control complexity. 

Furthermore, the evaluation formulas established in section V 

including algorithms (3) and (4) are general and can be 

applied to all 2-D DWT algorithms. 
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Architecture                                   Multipliers        Adders      Line          RAM         Computing              Critical 

                                                                                                  Buffer                             Time                     Path 

Generic RAM-based [11]                   10                    16            4N           N2/4                   4(1-4-j )N2/3               4Tm + 8Ta 

Flipping (5 stages) [12]                      10                    16          11N           N2/4                 N/A                    Tm 

Bing [9]                                               6                      8             4N           N2/4             4(1-4-j )N2/3             Tm   

Lan [5]                                                12                    12           6N           N2/4              4(1-4-j )N2/3                Tm 

Cheng [8]                                            18                    32        5.5N           N2/4              2(1-4-j )N2/3             N/A 

Proposed (overlapped)                        12                    16             N           N2/4             2(1-4-j )N2              Tm + 2Ta 

Proposed (nonoverlapped)                  12                    16           2N           N2/4                  4(1-4-j )N2/3           Tm + 2Ta  
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