

Abstract—The Traveling Salesman Problem (TSP) is a well

known Nondeterministic Polynomial (NP) problem. A number
of sequential algorithms have been well defined to solve TSP.
However in this paper the authors demonstrate an alternative
way of solving TSP with parallelism by modifying Prim’s
algorithm and integrate the modified algorithm with a Random
algorithm making the whole process more computational
extensive in visiting all the nodes/cities. This paper discussed on
converting the sequential algorithm into a parallel version to be
computed in a High Performance Computer (HPC) using
Message Passing Interface (MPI) libraries running on ROCKS
open source systems. Outcome of load balancing and cluster
performance is also discussed.

Index Terms— High Performance Computing (HPC),

Message Passing Interface (MPI), ROCKS Cluster, Traveling
Salesman Problem (TSP).

I. INTRODUCTION
The Travelling Salesman Problem (TSP) is famous as a

resource extensive algorithm due to its complex computation.
Given a number of cities representing vertices and edges
representing paths, this algorithm would compute the shortest
path for a person to make a round trip visiting all the cities
only once.

This algorithm has been applied in many engineering and
technological application [1],[2],[3] such as electronic
circuitry design, neuron chain, oil and gas transportation
application, DNA research and protein folding. The
importance of gaining the shortest path in these
computationally complex applications has led to the
optimality of operation thus achieving high-quality and
accurate results.

It is fairly clear that TSP algorithm needs to run in a high
performance computing facility in order to achieve
comparable result within diminutive time.

It is known to the mathematical and computing community
that TSP is a time consuming algorithm in getting to the
shortest path for few to enormous vertices. The aims of this
paper are to produce a parallel algorithm of TSP using
Message Passing Interface (MPI) and to measure the
performance on ROCKS Cluster in terms of load distribution

Manuscript received on September 27, 2007.
Izzatdin Abdul Aziz is with Universiti Teknologi PETRONAS, Tronoh ,

31750, Perak, Malaysia (phone: 605-3687473; fax: 605-3656180; e-mail:
izzatdin@petronas.com.my).

Low Tan Jung is with Universiti Teknologi PETRONAS, Tronoh, 31750,
Perak, Malaysia (e-mail: lowtanjung@petronas.com.my)

Mazlina Mehat is with Universiti Teknologi PETRONAS, Tronoh,
31750, Perak, Malaysia (e-mail: mazlinamehat@petronas.com.my)

and CPU performance.
The ROCKS is an open source application that allows

networked computing terminals to perceive each other as one
cluster working in unison to solve a common problem [4],[5].

It is not difficult for one to predict that the more the number
of computing nodes used for a fix number of vertices would
results in a shorter completion time.

The data used for this study is 500 cities to represent
vertices in x:y axis. To illustrate the complexity of the
situation, the number of possible path a salesmen could
possibly take is P = n!, where n factorial indicates the number
of cities and P number of possibilities. For the case of three
cities, six permutations representing viable paths are
possible. When considering the case of 20 cities or 20! in
which there are over 2.4 billions permutations. If we
exhaustively searched through all the possible path traversals
at a rate of 500 million per second, it would take over 150
years to examine them all [6]. Therefore, imagine how
immense a TSP problem could be when dealing with 500
cities or 500!

II. ROCKS CLUSTER
Twenty machines were used to form the cluster. Each was

off-the-shelf Intel based machine with dual P3-733 MHz
processors and came with 512 MB memory. However it
should be noted here that only five machines/nodes (ten
processors) were actually used in the performance
measurement.

All these machines were connected to a Fast Ethernet
100Mbps switch at which there exist a head node that acted
as the master node. The master node has multiple network
interfaces [7].

ROCKS Cluster Distribution is a Linux distribution
intended for high-performance computing clusters. ROCKS
was initially based on Red Hat Linux distribution. ROCKS
includes many tools such as MPI, which are not part of
CentOS but are integral components that make a group of
computers into a cluster [8].

III. TSP PSEUDOCODE AND ALGORITHM
There could be various ways to achieve parallelism in

solving TSP. The authors chose to apply modifications to
Prim’s algorithm and integrate it with Random algorithm
making it more computational extensive in visiting all the
nodes. Prim’s algorithm was chosen so that the process will
visit all vertices before master can consolidate the result to
determine the shortest path. The Random algorithm was

Parallelization Of Traveling Salesman Problem
Using Rocks Cluster

Izzatdin Abdul Aziz, Low Tan Jung, and Mazlina Mehat

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

picked for its ability to randomly initiate the process for each
computing node or slave in order to discover the shortest
path.

Fig. 1 is the proposed TSP with parallelism using modified
version of Prim’s and integration of Random algorithm.

Fig. 1: Proposed parallel algorithm of TSP

IV. DECOMPOSITION
In decomposition or job distribution the algorithm works

by having the Master creating a linked-list structure in a
sorted order from shortest to farthest distance in a 2D matrix.
Then, the Master transforms the 2D matrix to a
single-dimension array to be broadcasted using MPI_Bcast
(this array acts as a map for the entire slave). The Master then
sends a random starting point (num_nodes) for the slave as
shown in Fig. 2.

Fig. 2: The transformation of the 2D matrix to single
dimensional arrays.

 As soon as the slave receives the initial random start, it

compares the distances of itself with all the connected nodes.
Once the shortest edge is found, it will go by that edge and
marks the current node flag to 1 so that it would not revisit
nor consider that node again. It is worth noted here that this
marking mechanism does not exist in the original Prim's
algorithm.

 Each node that was visited will be stored in an array.
The first element of the array is the minimal path. Then this
array is sent to the Master for comparison with other
processors’ results. Note that the send and receive process
uses a Non-blocking method.

V. PROBLEMS ENCOUNTERED
There were two weaknesses encountered in the algorithm

proposed. Firstly the array map broadcasted by the Master
can be large. This might overwhelm the slave buffer. One
possible solution is to break the array map into smaller
chunks and reassemble these chunks once they arrives at the
slaves. Secondly, the use of linked-list to add and delete
nodes by the Master may slow down the processing speed
due to memory allocation and de-allocation by the compiler.
A possible solution to this problem is by having a fix-size
array instead of building up a dynamic linked list.

 Nevertheless the strength is the linked-list which allows

START

Master nds and display s
shortest distance and

shortest

Master open file and get
input coordinate of node

END

Master initialize
source and
destination node

Master computes all
possible paths in
dynamic 2D array

Master send m, number
of rows to slave
(possible path)

First
Row

 1

n

Comput
distance for all
possible paths

and find
shortest

S 1

Comput
distance for all
possible paths

and find
shortest

S 2

Comput
distance for all
possible paths

and find
shortest

S n

Retur
shortes

distance
shortes

pat

Retur
shortes

distance
shortes

pat

Retur
shortes

distance
shortes

pat

Last
Row

Start
point [n]

Start
point [1]

Start
point [9]

Start
point [3]

Start
point [0]

Randomly choose a start
point

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

100

0.75 0.75 0.75 0.75

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
PU

 P
er

fo
rm

an
ce

 (%
)

M
as

te
r

S
la

ve
 0

S
la

ve
 1

S
la

ve
 2

S
la

ve
 3

Processors

0.75

0.75 0.75 0.75 0.75

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Lo
ad

 B
al

an
ce

 (%
)

M
as

te
r

S
la

ve
 0

S
la

ve
 1

S
la

ve
 2

S
la

ve
 3

Processors

the dynamic linked list tree to be built up only once by the
master. So this could optimize the execution of the program
by not forcing the slave to iteratively building the linked list,
thus avoiding redundancy for slave to visit a particular node
more than once if the nodes have been flagged to 1.

VI. RESULTS AND DISCUSSIONS
Two variables were investigated upon execution of the

parallel TSP algorithm. The variables are load balance and
CPU performance (processing time). The master processor
resides in the High Performance Computer (HPC) is used to
disseminate the jobs to each and every slave for computation
as according to the written algorithm.

A. Load Balancing
From the experiment it can be seen that in Fig. 3, to

certain extent an ideal load balancing is achieved. Through
out the test, the system is able to maintain 75% of CPU loads.

Fig. 3. Load balancing for 5 processors

Towards the end of processing time, the load has reduced to

an average of 10% as depicted in Fig. 4. This is due to
reduction of all results from slave processors back to the
master processor to decide which possibilities of the shortest
path is to be concluded.

Fig. 4: Load balance towards ending of the process

B Cluster Performance
 In Fig. 5, the master processor maintains a consistent

performance of 100%, however the slave maintains a

consistent performance rate of 75%. This is due to delegation
of tasks by the Master, which at the same time performs same
computation as the other nodes or slaves.

Fig. 5. CPU performance for 5 processors

It is best to remind that the cluster performance measured in

this paper refers to the CPU usage of each computing nodes.

VII. CONCLUSION
A parallel algorithm was developed by modifying the

Prim’s version to speed up the TSP processing time. This was
possible because TSP was solved in unison by a collection of
processors. The primary goal here is to address the common
problem of a sequential algorithm that consumes huge
amount of time when dealing with massive processing needs
or massive data set.

It can be seen that by having the ROCKS running on
Beowulf cluster we can effectively disseminate the tasks
through out the cluster thereby performing computation via
the developed parallel algorithm with reasonable
performance and load balancing.

The proposed algorithm can be easily applied to tasks that
demands high computation needs such as weather
forecasting, DNA simulation or analysis, etc. In view of the
possibilities of a task downloaded to the cluster for
processing may takes more than a day, we recommend that
the power supply to the whole cluster needs to be properly
backed-up. This is because any power failure shall cause the
cluster to process the whole task all over again.

The authors’ cluster setup does not come with a roll-back
recovery capability. Therefore, will be good to incorporate
some form of recovery mechanisms in the cluster for the sake
of recovering any possible lost data/results in the event of
unforeseen system or cluster crash.

REFERENCES

[1] P. Borovska,(2006,June). Solving the Travelling Salesman Problem in
Parallel by Genetic Algorithm on Multicomputer Cluster. International
Conference on Computer Systems and Technologies 2006. [Online].

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Available:
http://ecet.ecs.ru.acad.bg/cst06/index.php?cmd=dPage&pid=cpr

[2] K.Bryant, A. Benjamin, “Genetic Algorithms and Traveling Salesmen

Problem”, Thesis, Harvey Mudd College, Dept. of Mathematics, 2000.

[3] M. Manfrin, M. Birattari, T. Stutzle, and M. Dorigo, (2006, April).
Parallel Ant Colony Optimization for the Traveling Salesman Problem,
ANTS 2006: Fifth International Workshop on Ant Colony Optimization
and Swarm Intelligence. [Online]. Available:
http://iridia.ulb.ac.be/supp/IridiaSupp2006-001/index.html

[4] G. Bruno, M. J. Katz, F. D. Sacerdoti and P. M. Papadopoulos, (2004,
July). Rolls: Modifying a Standard System Installer to Support
User-Customizable Cluster Frontend Appliances. IEEE International
Conference on Cluster Computing (CLUSTER'04), pp. 421-430,
[Online]. Available:
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/p
roceedings/&toc=comp/proceedings/cluster/2004/8694/00/8694toc.x
ml&DOI=10.1109/CLUSTR.2004.1392641

[5] F. D. Sacerdoti, S. Chandra, and K. Bhatia, (2004, September).Grid
Systems Deployment & Management Using Rocks. IEEE International
Conference on Cluster Computing (CLUSTER'04) , pp. 337-345,
[Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1392631

[6] M. Lacy .(2001,March 1). An Introduction to Genetic Algorithms In
Java, [Online]. Available: http://java.sys-con.com/read/36224.htm

[7] D. Adhipta, I. A. Aziz, L. T. Jung, N. S. Haron,(2006, August).

Performance Evaluation on Hybrid Cluster: The Integration of
Beowulf and Single System Image, The 2nd Information and
 Communication Technology Seminar (ICTS).

[8] S. Meacham, (2007) SCI: Delivering Cyberinfrastructure: From Vision
to Reality [Online]. Available
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=043
8741,

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

