
SystemCFL
tlm: Motivation and Development

K.L. Man, M. Mercaldi, F. Garberoglio, A. Trischitta, H.Y. Lai and C.M. Ho ∗

Abstract— This paper introduces an algebraic theory
SystemCFLtlm that can be used to specify and analyse the behaviour
of SystemC designs. This theory/language is the successor of the
SystemCFL language. It extends SystemCFL with the possibil-
ity to define process term instantiations and the use of SystemC
positional connections/named connection and Transaction Level
Modelling (TLM). We illustrate the practical use of SystemCFLtlm
by means of a TLM example.
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1 Introduction

In an attempt to give a formal semantics of a reasonable subset
of SystemC [8] based on process algebras that could be used
for the formal specification and analysis of SystemC designs,
the formal language SystemCFL (SCFL in ASCII format) [5]
was first defined in [9] (2004); and subsequently extended
with some features in [10] (2005). SystemCFL maybe re-
garded as the formalisation of a reasonable subset of SystemC
based on the classical process algebras Algebra of Communi-
cating Processes (ACP) [2] and A Timed Process Algebra for
Specifying Real-Time Systems (ATP) [18]. The semantics of
SystemCFL is defined by means of deduction rules in a Struc-
tured Operational Semantics (SOS) [21] style that associates
a time transition system (TTS) with a SystemCFL process.
A set of properties is presented for a notion of bisimilarity.
More precisely, SystemCFL is aimed at giving formal speci-
fications of SystemC designs and to perform formal analysis
of SystemC processes. Furthermore, SystemCFL is a single
formalism that can be used for specifying concurrent systems,
finite state systems and real-time systems (as in SystemC).

Nowadays, Transaction Level Modelling (TLM) is indispens-
able to solve a variety of practical problems (e.g. providing an
early platform for software development and system level de-
sign architecture analysis) during the design and development
of complex electronic systems. Also, TLM has been widely
propagated and used for System-on-a-Chip (SoC) and embed-
ded system design. The interested reader may refer to [7] for
excellent surveys on the topic of TLM. SystemC has supported
TLM since the version 2.0. In the past few years, SystemC has
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proven to be suitable for TLM and has also becoming the de-
facto standard for TLM in the electronic design community.
However, TLM is still a relatively young kind of approach
meant to ease the handling of the constantly growing com-
plexity of electronic systems; by raising the level of abstrac-
tion it allows system architects, embedded software engineers,
and system developers, to explore architectural alternatives, to
start software development, and to produce raw performance
estimation at a much earlier stage than it would be possible if
a RTL description of the system were used as platform refer-
ence.

With alternative exploration in mind, the main advantage of
TLM is the simulation speed-up that it offers w.r.t. cycle-
accurate representation, essentially due to the different ab-
straction level, which turns into a much smaller amount of in-
formation to be handled. The main disadvantage shown by
TLM, so far, is the lack of a formal semantics, that could
be used both for consistency checking during description re-
finement, and for property checking on untimed descriptions,
mainly aimed at checking functional correctness on an ab-
straction of the final system. Various attempts to give TLM a
formal background have already been made, but none of those
has proposed a framework to allow checking on specific as-
pects of the component being designed with the most suited
formal checking tool. To reach the goal of formal verification
of SystemC designs (with a focus on SystemC TLM), as re-
ported in [14], we have focused our attention on SystemC as a
language for TLM, and selected SystemCFL as the language
to formally represent SystemC designs.

In the frame of a tight collaboration between re-
searchers/engineers from industrial entities and research
institutes, several tools for SystemCFL have been being
developed. These tools enable automatic translations from
SystemC codes to SystemCFL specifications and from
SystemCFL specifications to various formalisms that are
the input languages of some existing formal verification
tools. Using SystemCFL tools in combination with some
formal verification tools yields automatic verifications of
SystemC designs via SystemCFL specifications (for different
verification purposes). Our first goal of the research in these
directions is to develop an automatic translation tool which
converts untimed SystemC codes into the corresponding
SystemCFL specifications that can be further mapped to the
input languages of several formal verification tools (e.g. SPIN
and NuSMV [19]). Recently, such an automatic translation
tool SC2SCFL has been developed in the Java language (JDK
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1.5.0) using JavaCC 4.0 as a parser generator. Although the
current release of SC2SCFL can be used to translate some
SystemC designs (e.g. counter & test-bench and scalable
synchronous bus arbiter as shown in [13, 16]) to the corre-
sponding specifications in SystemC, it is not applicable in
practise to deal with the translation of industrial SystemC
designs. Our experience with SC2SCFL tells us that, based
on the current semantics of SystemCFL, it is impossible to
build a translator in such a way that it can be used to translate
complex SystemC designs, because SystemCFL is not
expressive enough to formally represent the current version
of SystemC (2.2). For instance, SystemCFL (developed in
2004) has no well-defined semantics for TLM and cannot
deal with SystemC process instantiations and positional
connections modelling features.

After having several attempts, by means of defining new se-
mantics and new operators, to extend SystemCFL to cope
with the features such as SystemC TLM and process instantia-
tion; it turned out to be very difficult to show that SystemCFL

with new operators could be an operational conservative ex-
tension [28] of SystemCFL as defined in [9, 10]. Furthermore,
we had several ideas to improve SystemCFL in such a way
that the semantics of SystemCFL would be more intuitive,
simpler and elegant. Hence, we made a decision to redesign
SystemCFL. Recently, the successor of SystemCFL, called
SystemCFLtlm (SCFL2 in ASCII format), has been developed.

The aim of SystemCFLtlm is to serve as a formalism to for-
mally represent SystemC (current version) including SystemC
TLM features. In this paper, we sketch the newly developed
formal language SystemCFLtlm . The SystemCFLtlm language ex-
tends SystemCFL with the possibility to define process term
instantiations and for the use of SystemC positional connec-
tions/named connection and SystemC TLM. For the reason of
space limitation, overviews of SystemC and SystemCFL are
not given in this paper. Some familiarities with SystemC and
SystemCFL are required. The desirable backgrounds can, for
example, be found in [8, 26, 9, 10]. The reminder of the paper
is organised as follows.

The motivations and outlines of the development of
SystemCFLtlm are given in Section 2 and Section 3 presents
the SystemCFLtlm language including the syntax and the for-
mal semantics. By means of a TLM example, the practical
use of SystemCFLtlm is illustrated in Section 4 and Section 5
discusses the related work of SystemCFL. Finally, conclud-
ing remarks are made in Section 6 and the direction of future
work is pointed out in the same section.

2 From SystemCFL to SystemCFLtlm

As we already mentioned in Section 1, it turned out to be im-
possible to use SystemCFL to formally represent the current
version of SystemC. The main clauses are the following:

• Expressivity and TLM. Clearly, SystemCFL (developed
in 2004) is rather old. It is not expressive enough to for-

mally represent SystemC (today) and SystemCFL has no
well-defined semantics for TLM.
• Lack of SystemC features. There is also quite a lot of

SystemC constructs and features that were not formalised
in SystemCFL yet. As examples, instantiation of Sys-
temC modules, positional connections in SystemC and
some C++ constructs.
• Unintuitive syntax. Generally speaking, the common

syntax used in process algebraic theories (including
SystemCFL) is not intuitive for designers and engineers
in the electronic design community. Also, designers and
engineers are uncomfortable with mathematical notations
used in SystemCFL.
• Unintuitive semantics. Needless to say that the formal se-

mantics of SystemCFL is also not intuitive for designers
and engineers in the electronic design community. In our
experience, for example, the use/definition of two valua-
tions (e.g. previous accompanying valuation and current
valuation) in the quintuple of a SystemCFL process is
highly unintuitive for the users. According to the deduc-
tion rules of some SystemCFL operators (e.g. the watch
operator ª), this is needed and can be used to observe the
change of the valuation of variables in the sensitivity list.

3 Formal Language SystemCFLtlm

Based on the concept of SystemCFL towards a slightly richer
language, the successor of SystemCFL, the formal language
SystemCFLtlm has been recently developed, which can be used
to formally represent (most of the features of) the current ver-
sion of SystemC (2.2) including SystemC TLM features.

3.1 SystemCFLtlm Data Types

In order to define the semantics of SystemCFLtlm processes, we
need to make some assumptions about the data types:

1. Let Var denote the set of all variables (x0, . . . , xn,time).
Besides the variables x0, . . . , xn , the existence of the pre-
defined reserved global variable time which denotes the
current time, the value of which is initially zero, that
is assumed. This variable cannot be declared. Note
that the reason for introducing the predefined variable
time representing time in SystemCFLtlm is to allow a
better capture of the notion of time in SystemCFLtlm and
a more straightforward translation from SystemCFLtlm to
other formalisms with timing (e.g. timed automata).

2. Also, we make use of the sets of variables Var− = {x− |
x ∈ Var} and Var+ = {x+ | x ∈ Var}, modelling the cur-
rent value and future value (after a transition) of a vari-
able, respectively. The introduction of these two sets of
variables aims to ease modelling. Similarly, e− and e+
are used to represent the current value and future value
of e respectively, where e is an expression over variables
from Var.

3. Let Value denote the set of all possible values
(v0, . . . , vm, ⊥) that contains at least all Integers, all
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Reals and Booleans, where ⊥ denotes the “undefined-
ness”. As in SystemCFL, the set Value can be eas-
ily extended with some other data types (e.g. “sc bit”).
We usually use true and false to represent the predicates
“true” and “false” respectively.

4. We then define a valuation as a partial function from vari-
ables to values. Syntactically, a valuation is denoted by a
set of pairs {x0 7→ v0, . . . , xn, 7→ vn,time 7→ t}, where
xi ∈ Var represents a variable and vi ∈ Value represents
the associating value to xi ; and t ∈ R≥0. Further to this,
the set of all valuations is denoted by 6.

5. Pω is the set of all process term instantiations of the form
P℘(x1, . . . , xn), where P℘ denotes a process term label
and x1, . . . , xn ∈ Var.

6. An environment E is a tuple of (s,m, i) such that s ∈ S,
m ∈ Ch and i ∈ Pω, where S and Ch denote the sets
of all sensitivity lists with clocks and all channels may
be used in SystemCFLtlm processes, respectively, that are
assumed. Also, we choose to use ℵ to denote the set of
all environments.

Note that the type “array” in SystemC has not been formalised
in SystemCFLtlm , because the behaviour of elements in an ar-
ray in SystemC can be modelled in SystemCFLtlm by introduc-
ing fresh variables. As an example, for an array A[0..10]
in SystemC, we can introduce fresh variables A0, . . . , A10
in SystemCFLtlm to associate correspondingly A0 with A0, A1
with A1 and so on.

3.2 Syntax of the SystemCFLtlm Language

The formal language SystemCFLtlm is defined according to the
following grammar for process terms p ∈ P:

p = δ | skip | x = e | 1en | ≫ | p J b I p
| b ª p | p • p | p2p | p 4d p | p¨d p
| ∗p | p ‖ p | p ‖ p | p v p | ∂H (p) | τI (p)
| π(p) | a(p) | ϒ Â p | P℘(x1, . . . , xn)

Here, x and x1, . . . , xn are variables taken from Var and
d ∈ R≥0. b and e denote a boolean expression and an ex-
pression over variables from Var respectively; and ϒ denotes
a predicate over variables from Var and/or Pω; and en denotes
an numerical expression. Moreover, H and I are sets of ac-
tions. In SystemCFLtlm , we allow the use of common arith-
metic operators (e.g. +,−), relational operators (e.g. =,≥)
and logical operators (e.g. ∧, ∨) as in mathematics to con-
struct expressions over variables from Var. The operators are
listed in descending order of their binding strength as follows :
{ ª , • , 4 , ¨ , Â }, { J I , 2 , ‖ , ‖ , v }.
The operators inside the braces have equal binding strength. In
addition, operators of equal binding strength associate to the
left, and parentheses may be used to group expressions. For
example, p;q ;r means p;(q ;r), where p,q, r ∈ P . Note that
more intuitive and user-friendly syntax of SystemCFLtlm will
be defined in ASCII format for the SystemCFLtlm tool develop-
ment.

Process terms δ and skip are mainly introduced for calculation
and axiomatisation purposes. Below is a brief introduction of
the syntax of SystemCFL:

• The deadlock δ is introduced as a constant, which repre-
sents no behaviour.
• The skip process term skip performs the internal action
τ , which is not externally visible.
• The assignment process term x = e, which assigns the

value of expression e to variable x (modelling a SystemC
assignment statement).
• The delay process term1en is able to first delay the value

of numerical expression en and then terminates by means
of an internal action τ .
• The unbounded delay process term ≫ (modelling a Sys-

temC wait statement) may delay for a long time that is
unbounded or perform the internal action τ .
• The conditional composition p J b I q operates as a

SystemC if then else statement, where b denotes a
boolean expression and p, q ∈ P . If b holds, p executes.
Otherwise, q executes.
• The watch process term b ª p is used to model a Sys-

temC construct of even control.
• The sequential composition p • q models the process

term that behaves as p, and upon termination of p, con-
tinues to behave as q .
• The alternative composition p2q models a non-

deterministic choice between p and q .
• The timeout process term p 4d q (modelling a SystemC
time out construct) behaves as p if p performs a time
transition before a time d ∈ R>0. Otherwise, it behaves
as q .
• The watchdog process term p¨dq behaves as p during a

period of time less than d , at time d , q takes over the ex-
ecution from p in p¨dq; if p performs an internal cancel
χ action, then the delay is cancelled, and the subsequent
behaviour is that of p after χ is executed.
• The repetition process term ∗p (modelling a SystemC
loop construct) executes p zero or more times.
• The parallel composition p ‖ q , the left-parallel compo-

sition p ‖ q and the communication composition p v q
are used to express parallelism in which actions are ex-
ecuted in an interleaving manner with the possibility of
synchronisation of actions. The synchronisation of ac-
tions take place using a (partial, commutative and asso-
ciative) synchronisation function γ ∈ Atlm× Atlm 7→ Atlm
(the set Atlm is defined in Subsection 3.3). For example,
if the actions a and b synchronise, the resulting action is
c such that γ (a, b) = c.
• The encapsulation of actions is allowed using ∂H (p),

where H represents the set of all actions to be blocked
in p.
• The abstraction τI (p) behaves as the process term p, ex-

cept that all action names in I are renamed to the internal
action τ .
• The maximal progress π(p) assigns action transitions

a higher priority over time transitions; this operator is
needed to establish a desired communication behaviour,
that is, both the sender and the receiver must be able to
perform time transitions, but if two of these can commu-
nicate (i.e. performing action transitions), they should not
perform time transitions.
• The grouping of actions in p and executing them in one

single step can be done by using a(p).
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• The signal emission operator ϒ Â p requires that the
predicate ϒ always holds; if it is the case, ϒ Â p be-
haves like p, otherwise, it is a δ; this operator is needed
for defining the translation from SystemCFL to the SMV
language [15] (see also [11]).
• The process term instantiation P℘(x1, . . . ,xn) is de-

fined in SystemCFLtlm , which is used to refer to a pro-
cess term declared by the process term definition of the
form P℘(x ′1, . . . , x ′n) = p, where x1, . . . , xn are (ac-
tual parameter) variables and x ′1, . . . , x ′n are (formal pa-
rameter) variables. This form of definition declares that
the behaviour of the process reference P℘(x ′1, . . . , x ′n)
is given by px ′1 . . . , x ′n/x1, . . . , xn , which means that all
free occurrences of variables x1, . . . , xn are replaced by
x ′1, . . . , x ′n in p.

Here, we highlight some features in SystemCFLtlm that lead
SystemCFLtlm to outperform SystemCFL:

1. As said already, SystemC TLM semantics is covered in
SystemCFLtlm (via its syntax and deduction rules).

2. In SystemCFLtlm , no explicit operator has been defined for
positional connections/named connection in SystemC,
because SystemC positional connections/named connec-
tion can be easily modelled using process term instanti-
ations in SystemCFLtlm together with the signal emission
operator.

3. It is not hard to see that the specifications described in
SystemCFLtlm are much more intuitive and elegant than the
specifications given in SystemCFL.

3.3 Semantics of the SystemCFLtlm Language

Definition 1 A SystemCFLtlm process is a tri-tuple 〈P, 6, ℵ〉.
We use the convention 〈p, σ, E〉 to write a SystemCFLtlm pro-
cess, where p ∈ P is a process term, σ ∈ 6 is a valuation and
E ∈ ℵ. We also assume that the variables occurring in p must
be defined and this also means that such variables are from
the domain of σ and/or in E.

Definition 2 The set of actions Atlm contains at least
aa(x, v), χ and τ , where aa(x, v) is the assignment action
(i.e. the value of v is assigned to the variable x), χ is the in-
ternal cancel action and τ is the internal action. The set Atlm
is considered as a parameter of SystemCFLtlm that can be freely
instantiated.

Definition 3 We give a formal semantics for SystemCFLtlm pro-
cesses in terms of a Timed Transition System (TTS), and define
the following transition relations on processes of SystemCFL:
• −→ ⊆ (P × 6 × ℵ) × Atlm × (P × 6 × ℵ), denotes

action transition;
• −→ 〈X, , 〉 ⊆ (P ×6×ℵ)× Atlm× (6×ℵ), denotes

termination, where X is used to indicate a successful ter-
mination, and X is not a process term;
• 7−→ ⊆ (P ×6 ×ℵ)×R>0 × (P ×6 ×ℵ), denotes

time transition (so-called delay).
The three kinds of transition relations can be explained as fol-
lows:
• Firstly, an action transition 〈p,σ, E〉 a−→〈p′,σ ′, E〉 is that

the process 〈p,σ, E〉 executes the action a ∈ Atlm starting

with the current valuation σ (at the moment of the tran-
sition taking place) and by this execution p evolves into
p′. Notice that σ ′ represents the accompanying valuation
of the process after the action a is executed.
• Secondly, a termination 〈p,σ,E〉 a−→〈X,σ ′,E〉 is that the

process executes the action a followed by termination.
• Thirdly, a time transition 〈p, σ, E〉 d7−→ 〈p′, σ ′, E〉 is that

the process 〈p, σ, E〉 may idle during a time d and then
behaves like 〈p′, σ ′, E〉.

For brevity, in what follows, we abbreviate 〈p, σ, E〉 as
〈p, σ 〉E
3.4 Deduction Rules and Improvement of the Se-

mantics

The above transition relations are also defined through deduc-
tion rules (SOS style). We refer to [12] for a detailed account
of SystemCFLtlm deduction rules, the congruence result and the
set of axioms/properties of SystemCFLtlm . There is a techni-
cality issue about the definition of a SystemCFLtlm process and
the way to define deduction rules for SystemCFLtlm semantics,
which make the specifications described in SystemCFLtlm are
much more intuitive and elegant (than the SystemCFL speci-
fications in general).

A SystemCFL process (e.g. 〈p, σ ′, σ, s,m〉) consists of two
valuations (the previous valuation σ ′ and the current valua-
tion σ ). Based on the variation/information of the valuations
(σ ′ and σ ), some deduction rules of SystemCFL operators
were defined in such a way that the behaviour of such a pro-
cess could be predicted/defined after a possible transition (e.g.
〈p, σ ′, σ, s,m〉 a−→ 〈p′, σ, σ ′′, s,m〉). The disadvantage of this
approach to define deduction rules is that one additional val-
uation is always needed to keep as a part of the SystemCFL

process definition. Also, this approach was only needed to
define semantics for very few operators in SystemCFL and
made some SystemCFL deduction rules unintuitive.

To improve the readability of and to simplify the deductions
in SystemCFLtlm , only one valuation is defined in a SystemCFLtlm
process. For a given current valuation σ and a given future val-
uation σ ′ (after a transition), deduction rules in SystemCFLtlm
have been defined in such a way that, starting from the cur-
rent state/valuation (i.e. σ ), a more specific transition (e.g.

〈p, σ 〉E
aspecific−−−−→ 〈p′, σ ′〉E ) is precisely defined to reach the

future state/valuation (i.e. σ ′). In other words, such a tran-
sition is highly restricted by the current state/valuation and fu-
ture state/valuation. The advantage of this approach to de-
fine deduction rules is that the defined deduction rules be-
come simpler and more intuitive. It also helps to reduce non-
determinism regarding the behaviour of the SystemCFLtlm pro-
cess.

4 TLM Buffer Example in SystemCFLtlm

In this section, we aim to illustrate that SystemCFLtlm can be
used for SystemC TLM by means of an example of TLM: one
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slot buffer. In the example, a process term ReadWrite issues
randomly and continuously write and read actions to an one
slot buffer and a process term Status describes the availability
of the buffer if it is ready for reading from the channel m (i.e.
when the flag variable busy evaluates to true) or if it is free for
writing to the channel m (i.e. when the flag variable busy eval-
uates to false). The process term Status is defined as follows:

Status ≡ busy = false J busy I busy = true.

As mentioned already in Definition 2, actions are consid-
ered as parameters of SystemCFLtlm that can be freely instan-
tiated. For this process term, we also write busym and freem
as the actions associating with the assignment process terms
busy = false and busy = true respectively. These actions are
used for the synchronisation with other actions (see the pro-
cess term Buffer below for details) for writing to the buffer
through the channel m when the buffer is free or reading from
the buffer through the channel m when the buffer is occupied.
As shown in the process term Status, depending on the status
of the flag variable busy, a choice is made between perform-
ing action busym or action freem . In either case, the value of
the flag variable busy will be converted (from true to false or
vice versa) after performing such actions. The process term
ReadWrite is defined below:

ReadWrite ≡ data = true 2 data = false.

For this process term ReadWrite, we write actions readm and
writem as the actions associating with the assignment process
terms data = true and data = false respectively. When readm
executes, the reading action is performed through the chan-
nel m and leads to free the buffer by means of assigning a
predicate true to the variable data (to denote that the buffer is
not busy). Similarly, when writem executes, the writing action
is performed through the channel m and leads to occupy the
buffer by means of assigning a predicate false to the variable
data (to denote that the buffer is busy). The complete system
is described by the process term Buffer as follows:

Buffer ≡ ∗(≫ •τI (∂H (ReadWrite ‖ Status))), where I =
{writeokm, readokm}, H =

{writem, readm, busym, freem}, γ (writem, freem) =
writeokm, and γ (readm, busym) = readokm .

Clearly, process terms ReadWrite and Status execute
concurrently with synchronisation of actions between
writem, readm, busym and freem over the channel m. Intu-
itively, writem is synchronised with freem and leads to an
action writeokm (let us say). Also, readm is synchronised
with busym and leads to an action readokm (let us say). The
execution of writeokm refers to the case that the buffer is free
and then is written through the channels m; and the execution
of readokm refers to the case that the buffer is occupied and
then is read from the channels m.

Figure 1 shows the interaction of synchronisation actions over
the channel m. It is not hard to see that the encapsulation oper-
ator is used to enforce actions over the channel m into synchro-
nisation, while the abstraction operator makes synchronisation
actions over the channels m invisible. In order to make the

Channel m

(writem,freem)

(readm,busym)

writeokm

readokm

Figure 1: Interaction of synchronisation actions over the chan-
nel m.

specification of the process term Buffer more interesting, pro-
cess terms ≫ and ∗ are used to introduce some arbitrary delay
and repetition to such a process term. Finally, the SystemCFLtlm
process BUFFER is given below:

BUFFER ≈ 〈Buffer, σ 〉E for some σ and E such that
σ = {data 7→ ⊥, busy 7→ false,time 7→ 0} and

E = (∅, {m}, ∅).
5 Related Work

Recently, some research works on the SystemC TLM seman-
tics have also been done by means of deduction rules [25] and
via PROMELA (an asynchronous formalism). It is generally
believed that a SOS provides more intuitive descriptions and
that ASM specifications and denotational semantics appear to
be less suited to describe the dynamic behaviour of processes
[1]. Since processes are the basic units of execution within
Verilog, VHDL and SystemC that are used to simulate the be-
haviour of a device or a system, process algebras with a SOS
style semantics are more immediate choices for giving for-
mal specifications of systems in electronic design community
(these motivated us to develop SystemCFL in a process alge-
braic way with SOS deduction rules).

In the recent years, various formal approaches (based on ASM
specifications, deduction rules and denotational semantics)
have already been studied and investigated for SystemC (e.g.
[17, 22]) that can only be considered as theoretical frame-
works, except a few trails (e.g. [6]), because they are not di-
rectly executable. In contrast to such formal approaches and
others [17, 22, 24, 23, 3, 4, 25, 27], SystemCFL specifica-
tions are completely executable (as in many process algebraic
specifications). More precisely, the behaviour of a specifica-
tion described in SystemCFL can be illustrated by means of
transition traces according to SystemCFL deduction rules to-
gether with the TTS associating to SystemCFL. Similarly,
formal analysis of the SystemCFL specifications can be per-
formed using SystemCFL deduction rules together with the
TTS associating to SystemCFL. Furthermore, we believe
that, among other formal approaches on research of SystemC
semantics, SystemCFL is the only one that the correctness of
the semantics of SystemCFL was carefully validated (see the
well-definedness of the semantics and congruence result pre-
sented in [9, 10] for details).

Recently, as pointed out incorrectly by [27], that SystemCFL

claims its similarity with SystemC, does not have a non-
preemptive scheduler (as given in [27]) and does not seem to
manage a notion of “event” (which is the basic synchronisa-
tion primitive on top of which everything else is built in Sys-
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temC), etc. In respond to these, strictly speaking, SystemCFL

is the formalisation of a subset of SystemC based on the clas-
sical process algebras and it is not a claim of certain similarity
with SystemC; the notion of a non-preemptive scheduler is
ensured by the (termination, action and time) transition rules
defined for various SystemCFL operators (see [9, 10] for de-
tails); and clearly the watch process term in SystemCFL is
used to model the construct of a “event control” in SystemC.

In SystemC, statements, macros, classes and other core lan-
guage elements are predefined. Users/modellers can use such
language elements in SystemC to make models, which repre-
sent, for instance, state machines and asynchronous systems.
With the same idea as in SystemC, users/modellers can use
process terms in SystemCFL to model various systems.

Although, there are no deduction rules in SystemCFL ex-
plicitely defined for synchronous and asynchronous composi-
tion as defined in [25], the semantics of them can be captured
in SystemCFL in a combination of deduction rules of the par-
allel composition and the grouping operator. As shown previ-
ously, SystemC is currently aimed to use as a vehicle to per-
form formal analysis of SystemC processes and not for simu-
lation. So, the semantics of delta cycle is not well-defined in
SystemCFL yet. However, a well-defined semantics of Sys-
temC delta cycle, for example, can be found at [20].

6 Concluding Remarks and Future Work

This paper motivated and presented the newly developed
language SystemCFLtlm (the successor of SystemCFL). The
SystemCFLtlm language is extended with process term instan-
tiations, SystemC positional connections/named connection
modeling features, as well as the semantics for SystemC TLM.
In addition, the syntax and semantics of SystemCFLtlm are much
simpler, intuitive and elegant (than in SystemCFL). We have
illustrated the pratical use of SystemCFLtlm by means of a TLM
example.

As future work, we plan to apply SystemCFLtlm for the formal
specification and analysis of larger SystemC designs. Also,
we focus on SystemC parsing for the making of the automatic
translator SC2SCFL2 (from SystemC to SystemCFLtlm ), which
is the next release of SC2SCFL.
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