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Abstract—Multi-relational data mining has become
popular due to the limitations of propositional prob-
lem definition in structured domains and the ten-
dency of storing data in relational databases. Several
relational knowledge discovery systems have been de-
veloped employing various search strategies, heuris-
tics, language pattern limitations and hypothesis eval-
uation criteria, in order to cope with intractably
large search space and to be able to generate high-
quality patterns. In this work, a new ILP-based con-
cept discovery method is described in which user-
defined specifications are relaxed. Moreover, this new
method directly works on relational databases. In ad-
dition to this, a new confidence-based pruning is used
in this technique. A set of experiments are conducted
to test the performance of the new method.

Keywords: Multi-relational Data Mining, Concept Dis-

covery, ILP

1 Introduction

Due to the impracticality of single-table data representa-
tion, multi-relational databases are needed to store com-
plex data for real life, data intensive applications. This
has led to the development of multi-relational learning
systems that are directly applied to relational data [4].
Most relational upgrades of data mining and concept
learning systems employ first-order predicate logic as rep-
resentation language for background knowledge and data
structures/patterns. The learning systems, which induce
logical patterns or programs valid for given background
knowledge, have been gathered under a research area,
called Inductive Logic Programming (ILP) [8].

In this work, we propose a predictive 1 concept learning
ILP system, namely Confidence-based Concept Discov-
ery (C2D), which employs relational association rule min-
ing concepts and techniques. It utilizes absorption oper-
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1In predictive ILP systems, there is a specific target concept to
be learned in the light of past experiences

ator of inverse resolution for generalization of concept
instances in the presence of background knowledge and
refines these general patterns into frequent and strong
concept definitions with an Apriori-based specialization
operator based on confidence. The major contributions
of this work can be listed as follows:

1. The main difficulty in relational ILP systems is search-
ing in intractably large hypothesis spaces. In order to
cope with this problem, relational ILP systems put strong
declarative biases on the semantics of hypotheses. In this
work, we aimed to relax the declarative biases in such a
way that body clauses may have variables which do not
exist in the head predicate. In order to reduce the search
space, a confidence-based pruning mechanism is used.

2. Many multi-relational rule induction systems require
the user to determine the input-output modes of predi-
cate arguments. Since mode declarations require a high
level Prolog and domain knowledge, it is not meaningful
to expect such a declaration from a normal user. Instead
of this, we use the information about relationships be-
tween entities in the database if given.

3. The expected error of an hypothesis according to pos-
itive versus all (positive and negative) examples do not
have much difference if the number of examples is large
enough [7]. In other words, logic programs are learn-
able with arbitrarily low expected error from only positive
examples. As relational databases contain only positive
information, a pure multi-relational data mining system
based on logic programming could be developed which re-
lies on only positive instances stored as relations. There-
fore, the proposed system directly works on relational
database, without any requirement of negative instances.

4. The definition of confidence is modified to ap-
ply Closed World Assumption (CWA) in relational
databases. We introduce type relations to the body of
the clauses in order to express CWA.

This paper is organized as follows: Section 2 presents the
related work. Section 3 explains the proposed method.
Section 4 discusses the experimental results of the pro-
posed method on real-world problems. Finally, Section 5
includes concluding remarks.
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2 Related Work

In this section, we describe some of the well-known ILP
systems related to our system.

PROGOL [6] is a top-down relational ILP system, which
is based on inverse entailment. It performs a search
through the refinement graph. It reduces the hypothe-
sis space by using a set of mode declarations given by
the user, and a most specific clause (also called bot-
tom clause) as the greatest lower bound of the refine-
ment graph. A bottom clause is a maximally specific
clause, which covers a positive example and is derived us-
ing inverse entailment. PROGOL starts the search with
empty body, and goes through in the refinement lattice,
which has literals that are elements of the bottom clause.
PROGOL chooses the clause having maximum f value
[6]. PROGOL applies the covering approach and sup-
ports learning from positive data.

A Learning Engine for Proposing Hypotheses (ALEPH)
[10] is a top-down relational ILP system based on inverse
entailment similar to PROGOL. The basic algorithm is
the same as PROGOL whereas it is possible to apply dif-
ferent search strategies, evaluation functions and refine-
ment operators. It is also possible to define more settings
in ALEPH such as minimum confidence and support.

WARMR [1] is a descriptive ILP system that employs
Apriori rule as search heuristics. Therefore, it does not
search for clauses in order to model a target relation. In-
stead, it finds frequent queries having the target relation
by using support criteria. Then, it is possible to extract
association rules having target relation in the head ac-
cording to confidence criteria.

The proposed work is similar to ALEPH as both sys-
tems produce concept definition from the given target.
WARMR is another similar work in a sense that, both
systems employ Apriori-based searching methods. In
contrast to ALEPH and WARMR, our system does not
need input/output mode declarations. It only requires
type specifications of the arguments, which already ex-
ist together with relational tables corresponding to pred-
icates. Some of the ILP-based systems require nega-
tive information, whereas our system directly works on
databases which have only positive data. In our al-
gorithm, negative information is implicitly described in
the data sets according to CWA. Finally, it presents a
new confidence-based hypothesis evaluation criterion and
search space pruning method.

3 C2D: Confidence-based Concept Dis-
covery Method

C2D is a concept discovery system that uses first-order
logic as the concept definition language and generates a
set of definite clauses having the target concept in the

head. However, C2D only allows unification of predicate
arguments having same types. It is developed on the
basis of the systems described in [12, 13]. In C2D, two
mechanisms are effective for pruning the search space.
The first one is a generality ordering on the concept
clauses based on θ-subsumption and is defined as follows:
A definite clause C θ-subsumes a definite clause C′, i.e.
at least as general as C′, if and only if ∃θ such that:
head(C) = head(C ′) and body(C ′) ⊇ body(C)θ. The sec-
ond one, which is new in C2D, is the confidence which is
utilized as follows: If the confidence value of a clause is
not higher than the confidence values of the two parent
clauses in the Apriori search lattice, then it is pruned.
By this way, in the solution path, each specialized clause
has higher confidence value than its parents. A similar
aproach is used in the Dense-Miner system [9] for tradi-
tional association rule mining.

Another new feature of C2D is its parametric structure for
support, confidence, recursion and f-metric definitions.
The user can set support threshold and she/he can allow
or disallow the use of support as a part of the pruning
mechanism. It is possible to set confidence threshold for
selecting the best clause, so that the best clause will have
an acceptable confidence value. Similarly, by changing
the value of the recursion parameter, it is possible to allow
generating recursive or only linearly recursive hypothesis,
or totally disallow recursive concept definitions. Another
parametric declaration is for the f-metric (adapted from
f-score formula [5]), whose definition is as follows:

f -metric = ((B2 + 1) × confidence × support) / ((B ×
confidence) + support))

The user can emphasize the effect of support or confi-
dence by changing the value of B.

The database given in Figure 1, is used as a running
example in this paper. In this example, daughter (d) is
the concept to be learned, and two concept instances are
given. Background facts of two relations, namely parent
(p) and female (f) are provided. Finally, types of the
attributes of relations are listed.

Concept Inst. Backgr. Facts Type Dec.
d(mary, ann). p(ann, mary). d(person, person).
d(eve, tom). p(ann, tom). p(person, person).

p(tom, eve). f(person).
f(ann).
f(mary).
f(eve).

Figure 1: The database of the daughter example with
type declarations

3.1 Improved Confidence Definition

Two criteria are important in the evaluation of a candi-
date concept rule: support and confidence. The support
value of a definite clause C is defined as the number of

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



different bindings for the variables in the head relation
that satisfies the clause, divided by the the number of
different bindings for the variables in the head relation.
The confidence of a definite clause C is defined as the
number of different bindings for the variables in the head
relation that satisfies the clause, divided by the number
of different bindings for the variables in the head relation
that satisfies the body literals. As the head relation is the
key relation in our method, the support and confidence
calculation of a clause is same as calculation in query ex-
tensions. These values can be obtained with SQL queries
given in [2].

In this work, the application of the confidence is modi-
fied since the current definition has a problem. In order
to illustrate the problem with the classical definition of
confidence, consider the following example clauses:

d(X, Y) :- p(Y, tom). (s=0.5, c=1.0)

d(X, Y) :- f(X). (s=1.0, c=0.67)

Confidence is the ratio of number of positive instances
deducible from the clause over number of examples de-
ducible from the clause. In other words, it shows how
strong the clause is. For the first clause, the confidence
value shows that it is very strong. However, out of
the following four deducible facts d(ann, ann), d(mary,
ann), d(tom, ann) and d(eve, ann), only one of them
(only d(mary, ann) is positive) exists in the database.
As a result, the first clause covers some negative in-
stances. Similarly, for the second clause, the confidence
value is also high. The facts d(ann, ann), d(ann, mary),
d(ann, tom), d(ann, eve), d(mary, ann), d(mary, mary),
d(mary, tom), d(mary, eve), d(eve, ann), d(eve, mary),
d(eve, tom) and d(eve, eve) are deducible from the sec-
ond clause, but only 2 of them (only d(mary, ann) and
d(eve, tom) are positive) exist in the database. Out of
12 possible ground instances, only 2 of them are concept
instances. The confidence of this rule must be very low
(such as 2/12 = 0.17).

In order to solve this problem, we add type relations to
the body of the clause corresponding to the arguments
of the head predicate whose variable does not appear in
the body predicates. The type tables for the arguments
of the target relation are created in the database (if they
do not exist). For the daughter example, person table is
the type table. The type table contains all possible val-
ues of the corresponding argument of the target relation
in the database. For the daughter example, person table
contains 4 records which are ann, mary, tom and eve.
Each new literal has a relation name as the correspond-
ing head predicate argument type and has one argument
that is the same as the corresponding head predicate ar-
gument. The rules obtained by adding type literals are
used only to compute the confidence values, and for the
rest of the computation, original rules without type liter-

als are used.

The addition of type relations models the positive in-
stances better and reflects the confidence value correctly.
By this way, negative instances can be deduced as in
CWA. Besides this, since the type relation is always true
for the instance, this modification does not affect the se-
mantics of the clause. In addition, the definition of the
confidence query remains intact.

According to these modifications, the new clauses’ sup-
port and confidence values for the daughter example are
as follows:

d(X, Y) :- p(Y, tom), person(X). (s=0.5, c=0.25)

d(X, Y) :- f(X), person(Y). (s=1.0, c=0.17)

3.2 The Algorithm

The algorithm of C2D, given in Figure 2, starts with se-
lecting a positive concept instance. The most general
clauses with two literals, one in the head and one in the
body, that entail the positive example are generated and
then the concept rule space is searched with an Apriori-
based specialization operator. In the refinement graph, if
support parameter is on and the frequency of a clause is
below the support threshold, it is pruned as an infrequent
clause. In addition to this, clauses whose confidence val-
ues are not higher than their parents’ confidence values
are also eliminated. When the maximum depth reached
or no more candidate clause can be found, if confidence
parameter is on, then the clauses that have less confi-
dence value than the confidence threshold are eliminated
for the solution set. Among the produced strong and fre-
quent rules, according to the given hypothesis evaluation
criteria, the best clause is selected and the rule search is
repeated for the remaining concept instances that are not
in the coverage of the selected hypothesis clauses. If there
is no possible best clause found for the selected positive
concept instance, then the algorithm will select another
positive concept instance. In the rest of this section, the
main steps of the algorithm are described.

Generalization: The generalization step is similar to the
approach in [13]. After picking the first uncovered posi-
tive example, C2D searches facts related to selected con-
cept instance in the database, including the related facts
that belong to the target concept in order for the system
to induce recursive rules. Two facts are related if they
share the same constant in the predicate argument po-
sitions of the same type. Then, the system generalizes
the concept instance with all related facts. If a primary-
foreign key relation exist between the head and body re-
lations, the foreign key argument of the body relation can
only have the same variable name as the primary key ar-
gument of the head predicate in this step. In this way, the
key relation exists in the following specialization steps.
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- Input: I: concept inst. set, BF: back. facts (from DB)
- Output: H: hypothesis set (initially H=∅)
- Parameters: min-sup, min-conf, B (used in f-metric)

md: maximum depth (body literal count)
- Local Variables: Ci: candidate clauses set at level i

d: level, G: generalization clauses set
FSC: frequent and strong clauses set

- Repeat until I is covered by H (until I = ∅) or
No more possible G can be found according to given params:

1. Select p from I.
2. GENERALIZATION: Generate G of p by using BF
3. Initialize C1:=G, FSC:=∅, d:=1
4. REFINEMENT OF GENERALIZATION:
While Cd 6= ∅ and d≤md

a. FSC := FSC ∪ FREQ STR CLS(Cd, min-sup)
b. Cd+1= CAND GEN(FSC, min-sup)

i. UNION: For each pair of the clauses in level d
compute each possible union clause.

ii. For each union clause satisfying min-sup
-SPECIALIZATION: Generate clauses

by unifying existential variables
-FILTERING: Discard non-frequent

and less-confident clauses
c. d:=d+1.

5. EVALUATION:
Eliminate clauses from FSC according to min-conf
Select cbest from FSC

6. COVERING: Compute Ic ⊆ I covered by cbest

7. H := H ∪ cbest

8. I := I - Ic

-Return H.

Figure 2: C2D algorithm

In the daughter example, C2D selects the first concept
instance daughter(mary, ann) and then finds the related
fact set of the current concept instance {parent(ann,
mary), parent(ann, tom), female(ann), female(mary)}.
The system generalizes daughter(mary, ann) with each
related fact. For instance, by applying absorption oper-
ator to the daughter(mary, ann) and parent(ann,mary),
the concept descriptions of the form

{daughter(mary, ann) : − parent(ann,mary)}θ−1
2 are

derived.

Refinement of Generalization: C2D refines the two literal
concept descriptions with an Apriori-based specialization
operator that searches the definite clause space in a top-
down manner, from general to specific. As in Apriori, the
search proceeds level-wise in the hypothesis space and it
is mainly composed of two steps: frequent clause set se-
lection from candidate clauses and candidate clause set
generation as refinements of the frequent clauses in the
previous level. The standard Apriori search lattice is ex-
tended in order to capture first-order logical clauses and
the candidate generation and frequent pattern selection
tasks are customized for first-order logical clauses.

In the daughter example, for the concept instance daugh-
ter(mary, ann), two literal generalizations are gener-
ated in the presence of related facts and the first level
of the search lattice is populated with these generaliza-
tions. With the support threshold value 0.8, the system

eliminates the infrequent clauses. Notice that among
18 clauses generated for daughter(mary, ann) and par-
ent(ann, mary), only 6 of them satisfy the threshold
(bold ones below). Other clauses below are generated
from other generalizations.

d(X, Y) :- p(Z, mary). d(X, Y) :- p(Y, X).
d(X, Y) :- p(Z, X). d(X, Y) :- p(ann, Z).
d(X, Y) :- p(Y, Z). d(X, Y) :- p(Z, U).
d(X, Y) :- p(Z, tom). d(X, Y) :- f(X).
d(X, Y) :- f(Z).

In the candidate clause generation step, candidate clauses
for the next level of the search space are generated. It is
composed of three important steps:

1. Frequent clauses of the previous level are joined to
generate the candidate clauses via union operator. In
order to apply the union operator to two frequent definite
clauses, these clauses must have the same head literal,
and bodies must have all but one literal in common. Since
only clauses that have the same head literal are combined,
the search space is partitioned into disjoint Apriori sub-
lattices according to the head literal.

2. For each frequent union clause, a further specialization
step is employed that unifies the existential variables of
the same type in the body of the clause. By this way,
clauses with relations indirectly bound to the head pred-
icate can be captured.

3. Except for the first level, the candidate clauses that
have confidence value not higher than parent’s confidence
values are eliminated.

Evaluation: For the first instance of the target concept,
which has not been covered by the hypothesis yet, the
system constructs the search tree consisting of the fre-
quent and confident candidate clauses that induce the
current concept instance. Then it eliminates the clauses
having less confidence value than the confidence thresh-
old. Finally, the system decides on which clause in the
search tree represents a better concept description than
other candidates according to f-metric definition.

Covering: After the best clause is selected, concept in-
stances covered by this clause are determined and re-
moved from the concept instances set. The main iter-
ation continues until all concept instances are covered or
no more possible candidate clause can be found for the
uncovered concept instances.

In the daughter example, the search tree constructed for
the instance daughter(mary, ann) is traversed for the best
clause. The clause d(X, Y) :- p(Y, X), f(X) with support
value of 1.0 and the confidence value of 1.0 (f-metric=1.0)
is selected and added to the hypothesis. Since all the
concept instances are covered by this rule, the algorithm

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



terminates and outputs the following hypothesis:

daughter(X, Y ) :- parent(Y, X), female(X).

4 Experimental Results

One of the interesting test cases that we have used is
a complex family relation, “same-generation” learning
problem. In the data set, 344 pairs of actual family mem-
bers are given as positive examples of same-generation
(sg) relation. Additionally, 64 background facts are pro-
vided to describe the parental (p) relationships in the
family. As there are 47 different person in the examples,
the person table (type table) has 47 records. In this ex-
periment, only linear recursion is allowed and B value is
set to be 1. We set the support threshold as 0.3, confi-
dence threshold as 0.6 and maximum depth as 3.

C2D finds the following clauses for this data set:

sg(X, Y) :- sg(Z, U), p(Z, X), p(U, Y).

sg(X, Y) :- sg(Z, U), p(Z, Y), p(U, X).

sg(X, Y) :- p(Z, X), p(Z, Y).

For this data set, ALEPH and PROGOL cannot find a
solution under default settings. Under strong mode dec-
larations and constraints, ALEPH finds the following hy-
pothesis:

sg(X, Y) :- p(Z, X), p(Z, Y).

sg(X, Y) :- sg(X, Z), sg(Z, Y).

sg(X, Y) :- p(Z, X), sg(Z, U), p(U, Y).

However, PROGOL can only find “sg(X, Y) :- sg(Y, Z),
sg(Z ,X).” as a solution.

The experiment shows that, C2D can find the correct
hypothesis set for the same generation problem whereas
ALEPH and PROGOL cannot.

Among the experiments we conducted, another test case
is a well-known benchmark problem called Finite Ele-
ment Mesh Design [3]. The task is to learn the rules to
determine the number of elements for a given edge in the
presence of the background knowledge such as type of
edges, boundary conditions and geometric positions.

There are 223 positive training examples and 1474 back-
ground facts in the data set. The target relation mesh has
two arguments having element and integer type. The pri-
mary key for the target relation is element and it exists
in all background relations as a foreign key. The type
tables element and integer are created having 278 and 13
records. The test relation has 55 examples.

For Mesh Design data set, recursion is disallowed, sup-
port threshold is set as 0.1, B is set as 1 and maximum

depth is set as 3. We test the data set on several con-
fidence thresholds (0.1 through 0.5). C2D is run on this
data set by deriving a set of definite clauses for the four
structures (b, c, d, e) and these clauses are tested on the
remaining structure (a). The details of the results and
coverage of previous systems are shown in Figure 3.

System Cov. (over 55 records)
FOIL 17

GOLEM 17
PROGOL 17
MFOIL 19

ALEPH (strict decl.) 26
0.1 31
0.2 25

C2D (with min-conf) 0.3 15
0.4 19
0.5 17

Figure 3: Test results for the mesh-design data set

Selection of parameters is important to induce meaningful
results for sparse data sets such as Mesh Design data
set. For example, we get different results according to
different minimum confidence threshold values. For some
confidence thresholds, C2D finds better results according
to previous systems.

The third experiment is conducted on the first PTE chal-
lenge data set. In this data set, compounds are classi-
fied as carcinogenic or non-carcinogenic in the presence
of background knowledge such as atom-bond structures,
mutagenicity and structural groups. There are 298 com-
pounds in the training set, 39 compounds exist in the
test set. The background knowledge has rougly 25,500
facts [11]. The target relation pte-active has two argu-
ments having drug and bool type. The primary key for
the target relation is drug and it exists in all background
relations as a foreign key. The type tables drug and bool
are created having 340 and 2 (T/F) records.

For this experiment, recursion is disallowed, support
threshold is set as 0.05, confidence threshold as 0.7, B is
set as 1 and maximum depth is set as 3. The predictive
accuracy of the hypothesis set is computed by the pro-
portion of the sum of the carcinogenic concept instances
classified as positive and non-carcinogenic instances clas-
sified as negative to the total number of concept instances
that the hypothesis set classifies. The predictive accura-
cies of the state-of-art methods and C2D for PTE-1 data
set are listed in Figure 4. You may refer to [11] for more
information on these systems.

Ashby and RASH are special systems which are devel-
oped for this kind of problem sets so that their predictive
accuracies are higher than our method. The hypothesis
set of C2D does not include any rule about the molec-
ular substructures composing of atom and bond rela-
tions. Also, C2D cannot handle continuous data (such as
atom charge) with comparison operators. Actually, PRO-
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Method Type Pred. Acc.
Ashby Chemist 0.77

PROGOL ILP 0.72
RASH Biological Potency Analysis 0.72
C2D ILP + DM 0.69
TIPT Propositional ML 0.67
Bakale Chemical Reactivity Analysis 0.63
Benigni Expert-guided Regression 0.62
DEREK Expert System 0.57
TOPCAT Statistical Discrimination 0.54

COMPACT Molecular Modeling 0.54

Figure 4: Predictive accuracies for the PTE-1 data set

GOL’s hypothesis is composed of nine first-order clauses
and five of them are related to the atom-bond relations
in the molecule. We can conclude that the predictive
accuracy of C2D will increase if carcinogenesis data is
normalized in a preprocessing step and also continuous
data is handled.

5 Conclusion and Future Work

This work presents a concept discovery system, C2D,
with a new improved confidence-based hypothesis eval-
uation criterion and confidence-based search space prun-
ing mechanism. For the improved hypothesis evaluation
criterion, conventional confidence definition is modified
by adding type predicates for the arguments of the head
predicate that do not appear in the body. By this way,
the need for the inclusion of negative examples in the con-
fidence value of the clause is removed, without changing
the semantics of the clauses.

Confidence-based pruning is used in the candidate fil-
tering phase. If the confidence value of the generated
clause is not higher than confidence values of its parents,
it means that the specifications through it will not im-
prove the hypothesis to be more confident. By this way,
such clauses are directly eliminated at early steps.

In addition to these features, as in the systems in [12,
13], C2D combines rule extraction methods in ILP and
Apriori-based specialization operator. The main benefits
of this approach are relaxing the strong declarative biases
and applying the method on relational databases. In ad-
dition to these, this system does not require user specifi-
cation of input/output modes of arguments of predicates
and negative concept instances. Instead of this, it uses
the information provided by the relationships between
entities in the database if given. Thus, it provides a suit-
able data mining framework for non-expert users who are
not expected to know much about the semantic details of
large relations they would like to mine.

The proposed system is tested on several benchmark
problems including the same-generation, mesh design and
PTE-1 challenge. The experiments reveal promising test
results that are comparable with the performance of cur-

rent state-of-the-art knowledge discovery systems. Also,
it may find better rules if one-to-many relationships and
continuous data can be handled in the algorithm.
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