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Abstract— This paper analyzes the effects of distance between 

classes and training datasets size to XCS classifier system on 
imbalanced datasets. Our purpose is to answer the question whether 
the loss of performance incurred by the classifier faced with class 
imbalance problems stems from the class imbalance per se or it can 
be explained in some other ways. The experiments from 250 artificial 
imbalanced datasets show that XCS can perform well in some 
imbalance domains if the training datasets size is large enough and 
the distance between classes is appropriate. Thus, it dose not seem 
fair to correlate imbalance datasets directly to the loss performance 
of XCS. Through this research, we also know what kinds of datasets 
are suitable for training XCS and dealing with class imbalances alone 
will not always help improve performance of classifiers. 
 

Keywords - Data mining, XCS, imbalance dataset, distance 
between classes.  

I. INTRODUCTION 
CS is an accuracy-based learning classifier system 

(LCS) that is shown to perform very competitively with 
respect to other machine learning methods in classification 
problems. Different from other learning classifier systems 
executing genetic algorithm panmictically, XCS executes a 
genetic algorithm in niches defined by the action sets [3] that 
produces a more complete model of the problem space. 

XCS has already attracted much attention from machine 
learning and data mining communities [1], [5]. There are some 
performance comparisons of strength-based fitness systems 
and accuracy-based fitness systems showing that accuracy-
based fitness systems, including XCS, have a significant 
impact on data mining field. In [6], Mansilla and Garrel-Guiu 
studied the performance in a set of well-known machine 

learning problems demonstrating that XCS is able to produce 
a classification performance and rule set which exceeds the 
performance of most current Machine Learning techniques. 
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Recently, the class imbalance problem has been recognized 
as a crucial problem in machine learning and data mining. 
This problem has been reported to hinder the XCS’s 
performance on many types of problems [6][7][8]. However, 
the main problem with these proposals is that they ignored the 
effects of training datasets, distance between classes and no 
study has made a point of linking the class imbalance problem 
directly to this loss. As a matter of fact, although the 
performance of XCS may decrease on many imbalance 
domains, that does not prove that it is imbalance domains per 
se, that causes that decrease. Rather it is quite possible that 
class imbalances yield certain conditions that hamper 
classification, which would suggest that 1) class imbalances 
are not necessarily always a problem and, perhaps even more 
importantly, 2) dealing with class imbalances will not always 
help improve performance of classifiers. Our experiments 
show that the distance between classes affects extremely to 
accuracy of learning systems on high class imbalance levels. 
And in this research, we also analyze the effects of training 
dataset size and determine how it affects to classifier learning 
system, XCS. 

The purpose of this paper is to answer the question whether 
class imbalances are truly to blame for the reported losses of 
XCS performance or whether these deficiencies can be 
explained in some other ways. We show that class imbalances 
are, actually, not a problem by themselves, but that, in small 
and complex datasets, they come accompanied with the 
problem of distance between classes which in turn causes 
degradation in XCS’s performance. 

The remainder of this paper is organized as follows. The 
application of data mining techniques to class imbalance 
problems are discussed in section 2 which is followed by a 
brief description of XCS. From section 4, dataset generation 
with all parameters: imbalance rate – ir, distance between 
classes – dis and training dataset size – s will be described. In 
section 5, the results and experiments of XCS in different 
dataset domains will be presented. Section 6 concludes this 
work and directs the future works. 

II. RELATED WORK 
To solve class imbalance problems, many methods and 

X 
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algorithms have been proposed. Some of the best well-known 
approaches are applied at the sampling level. In [10], Chawla 
et al. presented SMOTE which can be done either over-
sampling minority class or under-sampling the majority class. 
Both methods can be applied in any concept learning system, 
since they act as a preprocessing phase, allowing the learning 
system to receive the training instances as if they belonged to 
a well-balance dataset. Thus, any bias of the system towards 
the majority class due to the different proportion of examples 
per class would be expected to be suppressed. In addition, in 
[12], the effects of sampling method, probabilistic estimate 
and decision tree structure of C4.5 on imbalance datasets were 
investigated. They also proposed an average improvement of 
the Area under the ROC curve (AUC) measure over the other 
sampling schemes. Beside that, G.M. Weiss and F. Provost 
[16] analysis the effects of imbalance datasets to classifier 
learning systems and how they affect through the evaluation 
of learned classifiers by using two performance measures: 
AUC and classification accuracy. In [13], a new approach in 
cost-sensitive to neural networks is proposed instead of 
decision trees to solve multiclass tasks. And in [17], G.M. 
Weiss indicated the learning from imbalance and rarity 
datasets can be handled in a similar manner. Recently, Chris 
S. et al. [9] evaluated the performance of seven commonly-
used sampling techniques on imbalance and noise datasets to 
study the effects of noise to imbalance problem. The most 
notice researches are [14] and [15]. They proposed a new 
sight in imbalance problem by proposing to consider the 
effects of overlapping datasets and small disjunction problem. 
This approach is also focused in our research. 

In learning classifier systems field, there are 3 different 
approaches: Fitness adaptation, population size and parameter 
settings. In [8], Albert O.P. and Ester B.M showed that XCS 
with standard parameter settings for 10 imbalance levels, the 
True Negative (TN or majority class) rate quickly reaches 
100%, but the True Positive (TP or minority class) rate raises 
to 100% for imbalance levels up to i=4 (i is the imbalance 
level used to calculate the imbalance ratio ir=2i). For i=5, 
XCS needs a long training time to reach 100% correct of TP 
rate and, for i ≥ 6, the system classifies all input instances 
belonged to the majority. At that time, the population mainly 
consists of the two overgeneral rules: ######:0 and ######:1 
(in case of 6-multiplexer). 

To overcome this problem, tuning XCS’s parameters based 
on the dataset imbalance ratio, is proposed by 2 methods: 
manual (offline) and automatic (online) adjustment. The 
experiments show that XCS can solve the unbalanced 11-bit 
multiplexer problem until i=8, which is a notable 
improvement with respect to the initial experiments. 

Another attribution deals with the class imbalance problem 
by finding fitness adaption [7] based on class-sensitive 
accuracy in combination with UCS, a supervised LCS derived 
from XCS, as a useful tool for alleviating the effects of class 
imbalances. In fact, because XCS, UCS and some other 
learning classifier systems have their fitness based on 
accuracy, they present a high bias toward the majority class 

instances and evolve easily overgeneral classifiers. Idea of the 
proposal is restrict classifiers to cover regions formed by 
examples of a single class and make accuracy class-sensitive 
rather than instance-sensitive. Thus, accuracy is modified so 
that each class is considered equally important regardless of 
the number of instances representing in each class. The 
experiments show that this model evolved with imbalance 
level up to i=7. 

III. XCS OVERVIEW 
Like other classifier systems, XCS seeks a reinforcement 

reward from its environment based on an evolving set of 
condition-action rules called classifiers. Via genetic algorithm 
process, classifiers useful in gaining reinforcement are 
selected and propagate over those less useful leading to 
increasing system performance. Figure 1 illustrates a broad 
picture of XCS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Schematic illustration of XCS in classification application. 

 
In the training time, datum is read from the training data set 

and encoded to a classifier by detectors and it is matched with 
classifiers of population [P] in the condition part to form 
match set [M]. From the match set, the prediction value P(ai) 
for each action ai appearing in [M] is calculated. The P(ai) 
values are placed in a prediction array and an action is 
selected by some methods as: selecting action with the largest 
prediction is called deterministic action selection or exploit 
method, roulette-wheel action selection or selecting 
completely random. Once an action is selected, the action set 
[A] is formed. The action in [A] will be sent to environment 
by the effectors and a reward r be returned by the 
environment. The Q-learning method of Reinforcement 
learning and MAM technique use the reward r to update 
values of classifiers in the action set [A]. Because 
classification problem is a single step problem, Genetic 
Algorithm (GA) is applied in [A] instead of [A]-1, previous 
action set, as multi-step problems [3]. The more details are 
referred to [3] and a detailed algorithmic description can be 
found in [4]. 
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IV. DATASET GENERATION 
Because our purpose is to understand how class imbalances 

influence to the performance of XCS, we chose to run our 
experiments on a series of artificial domains whose 
characteristics could be controlled carefully rather than 
conducting our study on real-world domains whose results 
would be difficult to decipher. 

The artificial datasets employed in the experiments have 
three major controlled parameters. The first one is distance 
between means of two classes in Gaussian distribution (dis), 
the second one is the training dataset size level (s) and the last 
one is the grade of imbalance (i). In particular, we created 250 
domains belong to change of the three parameters by 
employing the method represented in [14]. In [14], Nathalie 
Japkowics designed a similar framework for testing the effect 
of the small disjunction to the imbalance dataset problem. In 
addition, in [15], R.C. Prati et al. studied the relationship 
between the problem of overlapping the data and dealing with 
class imbalances with the same method. It seemed reasonable 
to assume that this framework would apply to our case as 
well. 

The 250 generated domains of our study were generated in 
the following way: each of the domains is two-dimensional 
(two attributes), and each attribute value is generated at 
random, using a Gaussian distribution, with standard deviation 
equal to value 1. Jointly, each domain has two classes: 
positive and negative. The mean of the positive class is 
created firstly and based on the distance between classes; the 
mean of the negative class is found. After that, belong to the 
value of training dataset size level s and imbalance level i, we 
calculate the number of instances in majority class (nmaj) and 
minority class (nmin). Actual training datasets are generated 
from this backbone model. 

Ten differences of distance between classes were 
considered (dis=0..9). For the first domain, the means of the 
Gaussian function for both classes are similar. For the 
following domains, we stepwise add 1 standard deviation to 
the mean of the negative class, up to 9 standard deviations. 

Five training dataset sizes were considered (s=1..5) where 
each size, s, corresponds to the number of instances in the 
majority class: round((8192/25)*2s). We will explain why we 
chose the number 8192 later. 

Finally, five levels of class imbalance were also considered. 
Because, with standard parameter settings, XCS can solve 
well problems with imbalance level i ≤ 4 as introduced in the 
previous section, in this paper, the imbalance level i is 
considered only with i=5..9. Each level i corresponds to the 
situation that minority class contains only 1/2i of all instances 
in the majority class. So with given values of s and i, we can 
calculate the number of instances in majority and minority are 
nmaj=round((8192/25)*2s) and nmin=round((8192/25)*2s/2i), 
respectively. For example, for s=1 and i=5, the majority class 
is represented by nmaj=round((8192/25)*21)=512 instances and 
the minority class is represented by 
nmin=round((8192/25)*21/25)=16 instances; If s=5, i=9 then 

nmaj=8192 and nmin=16. 
Now, we explain why we chose the number 8192 in 

formulation nmaj=round((8192/25)*2s). In the initial time, we 
did not know that number, we called it is x, and we had to find 
it. By this framework, we have number of instances in 
minority class depending on x: nmin=round((x/25)*2s/2i). To 
ensure XCS can learn the condition nmin 1 must be approved. 
We see that, in the most extremely imbalance level case and 
the smallest training dataset size: s=1, i=9, nmin = 
round((x/25)*2s/2i) =  round((x/25)*21/29) = round(x*2-13) 1, 
or x 8912. In our research, we chose x=8912. 

≥

≥
≥

V. EXPERIMENTS AND RESULTS 
To answer the question whether the class imbalance 

problem always causes degradation in performance of XCS or 
it does so only in certain cases, we ran XCS [3], [4] on the 
artificial datasets described in the previous section and XCS’s 
parameters settings as table 1. These values are described in 
[4]: 

 
TABLE I: XCS’S PARAMETERS SETTINGS 

Symbol Parameter Value 
N 
χ 
μ 
β 
γ 
θGA 
P# 

Maximum size of population 
Crossover probability in GA 
Mutation probability in GA 
Learning rate 
Discount factor 
GA threshold 
Covering probability of using # 
when covering 

2000 
0.75 
0.01 
0.2 
0.95 
25 
0.66 
 

 

A. The effects of imbalance datasets to XCS 
The results of our experiments are displayed in Figure 2 

which plots the performance of XCS obtained for each 
combination of training dataset size, imbalance level and 
distance between classes. Each plot of this figure represents 
XCS performance obtained at a difference training set size. 
The top-leftmost plot corresponds to the smallest size (s=1) 
and progress until the below-center plot which corresponds to 
the largest size (s=5). Within each of these plots, each line 
connected by 10 points represents the concept of imbalance 
level from i=5 to i=9. Within each line, finally, each point 
corresponds to a particular distance between classes. The 
leftmost (or starting) point of each line corresponds to the 
nearest distance between two classes (dis=0) and progress 
until the rightmost point which corresponds to the farthest 
distance between classes (dis=9). The height of each point 
represents the average percent performance obtained by XCS 
on the training dataset size, imbalance level and distance 
between classes that this point represents. 

Our results reveal several points of interest: first, no matter 
what size of the training set is, linearly separable domains 
with domains of distance level dis=9 do not appear sensitive 
to any amount of imbalance (except i=9, we will analysis this 
case in the next section). As a matter of fact, as degree of  
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Figure 2: XCS and the Class Imbalance Problem 
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Figure 3: XCS and the training dataset size
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distance between classes decreases, so does the XCS’s 
sensitivity to imbalances. Indeed, we can clearly see in the 
Figure 2 that as the degree of distance decreases, XCS’s 
performances are caused lower with higher of imbalance level. 

As could be expected, imbalance rates are also a factor in 
the performance of XCS and, perhaps more surprisingly, so 
are the training set sizes. Indeed, as the size of the training set 
increases, the effects of imbalance decreases. This suggests 
that in very large domains, the class imbalance problem may 
not be a hindrance to a classification system. Specifically, the 
issue of relative cardinality of the two classes – which is often 
assumed to be the problem underlying domains with class 
imbalanced – may in fact be easily overridden by the use of a 
large enough dataset (if, of course, such a dataset is available 
and its size does not prevent the classifier from learning the 
domain in an acceptable time frame). This question is 
considered in more detail in the next section. 

From our research, we can see that the imbalance problem 
may not always be to blame for the often observed XCS 
performance loss that accompanies it. Rather, we suggest that 
this performance loss may be cause by the small distance 
between classes with a small training dataset size. In other 
words, a huge class imbalance will not hinder classification of 
a domain whose distance between classes is far nor will we 
see a problem if the training dataset is very large. Conversely, 
a small dataset imbalance can greatly harm a very small 
dataset or one representing a very small distance between 
classes. 

B. Class imbalance versus Training dataset size and Distance 
between classes 

The experiments of this section were designed to verify the 
hypothesis proposed in the previous section and answer the 
question whether or not the loss of performance experienced 
by XCS is caused by the training dataset size and distance 
between classes rather than the class imbalance. In order to 
test this hypothesis in our artificial domains, we kept the same 
generation scheme with respect to concept of distance 
between classes, class imbalance and emphasized on the 
training set size. The amount of training data is known to 
affect on the performance of classifier systems. Providing 
additional training data typically leads to a more complex 
model (e.g. more rules, time training etc.) but with improving 
classification performance. 

For a better visualization, we look up these results shown 
graphically in Figure 2, it shows that the training dataset size 
affects slightly to dataset containing low imbalance rate (i.e. 
i=5, 6) but significantly to dataset containing high imbalance 
rate (i=8, 9). This phenomenon is explained that in low 
imbalance rate datasets, the number of instances in minority 
class is enough for XCS learning. For example, if i=5, s=1, 
the number of instances in minority class is nmin = 
round(213*2s/(25*2i)) =  round(213*21/(25*25))=16 comparing 
to number of instances in majority class is nmaj = 
round(213*2s/25) = round(213*21/25) = 512. However, in high 
imbalance rate datasets, the number of instances in minority 

class is very small and XCS encounters obstacle during 
training time so the performance is low. For example, if i=9, 
s=1; nmin= round(213*2s/(25*2i)) =  round(213*21/(25*29)) = 1 
comparing to nmaj = round(213*2s/25) = round(213*21/25) = 
512, or the imbalance ratio ir=1:512. 

With extremely imbalance datasets: i=9 when dis=9, we 
increase the training dataset size from 513 instances (the top-
left graph), correlative to s=1, to 8208 instances (the below-
center), correlative to s=5, the performance of XCS increases 
from 20% to 82%. 

In order to emphasis more detail on the function of training 
dataset size, we test performance of XCS in imbalance levels 
with respect to distance between classes, dis =9 and s=6 or 
s=7. In this case, we have the number of instances in minority 
class: nmin= round(213*2s/(25*2i)) =  round(213*26/(25*29)) = 
32 or nmin= round(213*2s/(25*2i)) =  round(213*27/(25*29)) = 
64 and the number of instances in the majority class nmaj= 
round(213*2s/25) =  round(213*26/25) = 16384 or nmaj= 
round(213*2s/25) =  round(213*27/25) = 32768  to implement 
the imbalance levels i=9 and i=10, respectively. We chose 
these values of i because the two imbalance levels represent 
two extremely imbalance cases in which we believe that many 
learners will suffer from biases to the majority class and 
according to [8], with standard or adjustment parameter 
settings, XCS encounters problem to solve these imbalance 
rates. However, by experiments showing in Figure 3, XCS can 
perform well in these cases. In all runs, XCS was trained 
during 4,000,000 learning iterations, but only the first 
2,000,000 are shown for a better visibility. These results once 
again agree with our assertion. In training size level s=6 with 
imbalance level i=10, XCS reaches to 80% and with i=9, XCS 
reaches to 95% after 2*106 iterations, stabilizing at 100% after 
4*106 explore trials. We increase the training size level to s=7, 
XCS even reaches to 100% performance with i=9 only after 
6*105 iterations and with i=10, XCS nearly reaches 100% 
after 2*106 explore trials. 

The goal of our experiments in the previous section and this 
section is to show that the performance of XCS, through 
hindered by class imbalance, is repaired as the training dataset 
size and distance between classes increase. 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 
In this work, we developed a systematic study using a set of 

artificially generated datasets with aim to answer question 
whether the loss of XCS’s performance with imbalance 
problems is from the class imbalance itself or it is caused by 
other reasons. Our experiments show that the class imbalance 
by itself does not seem to constitute a crucial problem for 
XCS’s performance. In fact, in the presence of imbalance with 
far distance between classes and large training dataset size, 
XCS provides high performance on both classes even in 
extremely imbalance datasets. In contrast, the combination of 
class imbalance, small distance between classes and small 
training dataset size make a degradation of XCS’s 
classification accuracy. 
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Our future works are to extend the study to a more general 
class of problems, effects of injecting various degrees and 
types of noises to XCS’s performance. Another important 
consideration has to do that is studying sampling techniques 
[10] in conjunction with XCS to enhance quality classification 
performance. Least but not last, it is imperative that we 
conduct experiments on a number of real-world datasets to 
verify that the hypothesis we posited on simple artificial 
datasets actually does apply to general and actual data. 
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