
 
 

  
Abstract—Efficient discovery of maximal frequent itemsets (MFI) 
in large databases is an important problem in data mining. Many 
approaches have been suggested such as sequential mining for 
maximal frequent itemsets or searching for all frequent itemsets in 
parallel. So far, those approaches are still not genuinely effective to 
mine extremely large databases. In this work we propose a parallel 
method for mining MFI using PC clusters, exploiting their 
relationships between MFI locally found in the cluster nodes and the 
global MFI, and derive a top-down mechanism which produces 
fewer candidates and substantially reduce the number of messages 
passed among PCs. We also provide a clustering-based method to 
partition the database to achieve a good balance of loading among 
the nodes. 
 
Evaluations on our method have been performed using both 
synthetic and real databases. Empirical results show that our method 
has a superior performance over the direct application of a typical 
sequential MFI mining algorithm. 
 
Index Terms—Parallel Data Mining, Maximal Frequent Itemsets, 
Partition, PC Cluster  
 

I. INTRODUCTION 
Mining frequent itemsets [1][5][13] is a fundamental and essential 
problem in many data mining applications, such as association rule 
discovery, correlations detection and multidimensional pattern 
identification. The framework of mining frequent itemsets was 
originally proposed by Agrawal et al. [1]. 
 
Let I = {i1, i2, …, in} be a set of literals, called items and n is 
considered the dimensionality of the item. Let D be a set of 
transactions, where each transaction T is a set of items such as T⊆I. 
A transaction T is said to contain X, a set of items in I, if X⊆T. An 
itemset X is said to be frequent if its support s is greater than or 
equal to given minimum support call thresholdσ . A frequent 
itemset М is considered maximal if there is no other frequent 
itemset that is superset of М . Consequently, any subset of a 
maximal pattern is a frequent pattern. Discovering all maximal 
patterns effortlessly yields the complete set of frequent patterns. 
 
Many algorithms of the proposed frequent itemset mining are 
variants of Apriori [1], which employ a bottom-up, breadth-first 
search that enumerates every single frequent itemset. In many 
applications (especially in dense data), enumerating all possible 
2m−2 subsets of a m length pattern (m can easily be 30 or 40 or 
longer) is computationally unfeasible. Thus, mining maximal 
frequent itemset (MFI) attracts much attention in recent years. 

 
Manuscript received December 10, 2007.  
Vong Chan Veng, Terry is with the Macau University of Science and 

Technology, Macao S.A.R (phone: 853-88972089; email: 
cvvong@must.edu.mo) 

 
 

MaxMiner [4], DepthProject [3], GenMax [9] and MAFIA [6] are 
well-known solutions in mining MFI. 
 
As databases become larger, sequential data mining algorithms have 
become an unacceptable solution. Thus, parallel mining may deliver 
an effective solution on huge database. Parallel approaches for 
mining frequent itemsets are mainly based on two paradigms, Count 
Distribution and Data Distribution, all inherit Apriori’s level-wise 
processing style. Algorithms that belong to Count Distribution 
include CD [2], PDM [14] and FPM [8]. Algorithms which belong 
to Data Distribution include DD [2], IDD [10] and HPA [15]. 
 
As far as we know, most of the proposed parallel mining algorithms 
are well tuned for discovering frequent itemsets rather than maximal 
frequent itemsets. These methods are not easily extended to handle 
the maximal frequent itemsets. Therefore we try to solve the 
problem from another way. That is, local MFI on each node is 
generated first, and then the relationships between local MFIs and 
global MFI are explored to generate candidates with a top-down 
manner. These relationships also guide us to partition databases in a 
special way, which not only achieves a good balance in loading 
among the nodes in the cluster but also produces fewer candidates. 
This in turn makes our algorithm faster both in counting and in 
sending fewer messages among nodes. Our contributions can be 
summarized as follows. 
 
z We introduce the first approach of parallel mining MFI on PC 

clusters, DMFI, which can be easily integrated with any 
available sequential MFI mining algorithm. It greatly reduces 
the number of candidates by following a top-down candidate 
generation approach. 

z We have shown some interesting relationships between 
locally found MFI and global MFI which enable us to 
generate global MFI from local MFIs. 

z We also propose an efficient and effective clustering based 
database partitioning algorithm to partition the database into 
the cluster nodes, which in general can help to balance the 
workload for each node in the cluster. 

 
We have evaluated our approach using both synthetic and real 
databases. The results show that our approach is efficient and 
effective. 
 
The rest parts of paper are organized as follows: In section 2, we 
discuss the relationships between locally found MFI and global 
MFI. Our algorithm for parallel mining of MFI is also presented in 
this section. In section 3, we discuss how to effectively partition 
database into the cluster nodes. The performance evaluation is 
presented in Section 4. Finally, Section 5 concludes the paper and 
presents some of the possible future works. 

 

II. MINING OF THE MAXIMAL FREQUENT ITEMSETS 
In this section, we first elaborate the relationships between local 
MFI in each cluster nodes and global MFI, which essentially enable 
us to design our method, DMFI. 
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A. Relationships between Local and Global MFI 
Let D denotes a database, which is partitioned into d1, d2,..., dn  parts 
for n nodes respectively. Let MFIi, Fi and Ii be the sets of maximal 
frequent itemsets, frequent but not maximal itemsets and infrequent 
itemsets in the ith PC cluster node respectively. Let MFI, F and I be 
the sets of maximal frequent itemsets, frequent but not maximal 
itemsets and infrequent itemsets in D. Obviously, MFIi, Fi and Ii 
only carry local information, but MFI, F and I represent the global 
information. 
 
Given an itemset q can only be MFI or F or I on the each node. 
Therefore, n nodes imply 3n combinations of a maximal frequent 
itemset can be produced. However, it is easy to classify these 
combinations into 7 cases: 
(1) q is local maximal frequent in all nodes. 
(2) q is local frequent in all nodes but not maximal. 
(3) q is infrequent in all nodes. 
(4) q is local maximal in some of nodes, but infrequent in others. 
(5) q is local maximal in some of nodes, but frequent in others. 
(6) q is local frequent in some of nodes, but infrequent in others. 
(7) q is local maximal frequent, frequent and infrequent in all nodes. 
 
The case 3 can be skipped because itemset q is infrequent in all 
nodes. It is no doubt about case 1, itemset q must be global maximal 
frequent. For case 4, 5 and 7, itemset q is local maximal frequent in 
at least one node, when the minimum support of itemset q in whole 
database is greater than threshold, then itemset q is also global 
maximal frequent. 
 
After checking those cases, itemsets in MFIx that are globally 
maximal frequent partially composing MFI. In addition, we use 
loser to denote those itemsets in MFIx, which turn out to be not in 
MFI. When loser is empty, that means no more itemsets can join 
global MFI, our algorithm can be stopped. Otherwise, the case 2 and 
6 must be considered, they may turn out to be a global maximal 
frequent itemset. The following shows how we can determine if a 
frequent itemset q found locally in the cluster nodes is a member of 
MFI. 
 
In case 2 and 6, itemset q is global maximal frequent itemset if and 
only if it doesn’t exist a superset in global MFI and its support in 
whole database is greater than threshold. 
 

B. Algorithm DMFI 
/* Input D, n, threshold*/ 
/* Output MFI*/ 
1). divide D into D1, D2, ..., Dn 
2). Run available algorithm on each Di to get MFIi 
3). MFI=MFI1 ∩MFI2 ∩ ... ∩MFIn 
4). MFI1 ...n = MFI1 ...n  - MFI 
5). loser = ∅  
6).  for each d ∈ MFI1 ...n 
7). . . sup(d) = sup1(d) + sup2(d) + ... + supn(d) 
8). . . . if sup(d) ≥ threshold 
9). . . . . then MFI = MFI � {d}  
10). . . else loser = loser � {d}  
11). maxsize now stores the length of the longest itemset in loser 
12). while( loser≠∅ ) 
13). . candidate = ∅   
14). . for each q ∈ loser with |q| = maxsize 
15). . . Z = {v|v ⊂ q, |v| + 1 = |q|} 
16). . . candidate = candidate � Z 
17). . while (candidate≠∅ ) 
18). . . for each q in candidate 
19). . . . if q is a subset of some itemset(s) in MFI 
20). . . . . then remove q from candidate 
21). . send candidate to n PCs to do frequency counting 

22). . get frequencies for candidate from each PC 
23). . for each c ∈ candidate 
24). . . sup(c) = sup1(c) + sup2(c) + ... + supn(c) 
25). . . . if c.sup ≥ threshold 
26). . . . . then MFI = MFI � {c}  
27). . . . else loser = loser � {c}  
28). . maxsize = maxsize − 1 

Figure 1.The DMFI Algorithm 
 

In DMFI, candidates are generated and organized by their lengths. 
For each length, communication between server and clients is 
carried out for requesting candidate’s frequencies counting (from 
server to clients) and for answering frequency for each candidate 
(from clients to server). In real implementation, one client can play 
the role of server. 
 

C. Subset Checking 
We can skip the counting of an itemset if it is already a subset of a 
member in MFI. Therefore, besides frequency counting, subset 
checking is one of the most time consuming task in MFI mining. In 
[9], subset checking is already embedded in the process of mining 
MFI with high efficiency. In our method, after using any available 
algorithm to discover all MFIi, we follow a top-down mechanism to 
generate candidate for validation, therefore the idea used in [9] 
cannot be applied here any more. 
 
We construct a bit matrix to do subset checking, with the number of 
rows is equal to the number of items in the database, while the 
number of column is equal to the current size of MFI. In this matrix, 
each itemset in MFI is encoded in a column, where the ith bit is set to 
”1” if the related item occurs in it or ”0” otherwise. Given an itemset 
q = {2, 4, 5} for subset checking, we can AND the 2nd, the 4th and the 
5th rows in the bit matrix and see whether there is a bit ”1” in the 
result. If we find one that means the itemset is a subset of at least one 
member in MFI, and the checking can be stopped. Otherwise, it is 
not a subset of any itemsets in MFI. 
 

III. DATABASE PARTITIONING 
In this section, we first present the relationship between 
commonality of FI and MFI, and then show a clustering based 
partitioning method. 
 
Definition 2 The size of MFI after Case (1) over the final size of 
MFI is defined as the commonality of MFI. 
Definition 3 The size of FI1 ∩ FI2 ∩ ... ∩ FIn over the size of FI is 
defined as the commonality of FI. 
Definition 4 The size of MFI after Case (1) and (4) over the final 
size of MFI is defined as MFI coverage. 
 

A. Relationship between Commonality of FI and MFI  
It is easy to see the performance of our algorithm is dominated by 
loser, the smaller the loser in size, the better the performance. A 
smaller initialized loser is a good starting point to lead to a smaller 
loser. In DMFI, the initial size of loser is controlled by the 
commonality of MFI: the larger the commonality of MFI, the 
smaller the initial size of loser. But how to achieve this? 
 
As we know, maximal frequent itemsets represent a higher level 
information summary compared with frequent itemsets. And 
intuitively, high commonality of FI leads to high commonality of 
MFI. Therefore we resort to seeking method that brings us high FI 
rather than MFI.  
 
In [16], a formula was established to estimate the sampling size for 
mining frequent itemsets, where the sampling size is independent to 
the database. Given an acceptable frequency error rate and an 
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acceptable probability for case where frequency error rate exceeds 
our expectation. For example, if an acceptable probability of 0.001 
for an error rate of more than 0.001, then a 50,000 sampling size is 
sufficient. Obviously, the formula in [16] tells us a good sampling 
size can unveil most of the real frequent itemsets in database with 
high accuracy in their frequencies. But we interpret sampling in 
another way, namely, we get n samples from the database, where the 
size of each sample is |D|/n. Because each partition is an essential 
sample of the database. If the size of sampling is large enough 
according to [16], the commonality among frequent itemsets 
discovered in each partition should be high, which implies a high 
commonality among the maximal frequent itemsets in each 
partition, so that we may have a loser with smaller size. 

 
Based on [16], if the size of each partition is large enough, we can 
derive a high commonality of FI. In fact, this is verified by our 
experiments. We notice that the commonality of FI is always above 
95% in all FI computable experiments, and many of them even 
reach 99%. However, the related commonalities of MFI do not show 
the same optimistic result. It can drop down to 40% in one case. 
Why does this happen? This is mainly because MFI represents a 
much higher level of information summary compared against FI. 
Let us see an example, there are two sets FI1 = 
{AB,AC,AD,BC,BD,CD,ABC,ABD,ACD,BCD,ABCD} and FI2 = 
{AB,AC,AD,BC,BD, CD,ABC,ABD,ACD}. BCD, ABCD are missed 
from FI2. MFI1 = {ABCD} and MFI2 = {ABC, ABD, ACD}, they are 
completely different. In general, given X% commonality of FI, we 
should not expect the same X% but a lower, say Y % commonality of 
MFI. Till now, we have not traced how to compute the difference 
between X% and Y %. 
 
At the current stage, we can only conclude that increasing 
commonality of FI will give us a relatively high commonality of 
MFI. Because low commonality between FIi, 1 ≤ i ≤ n always leads 
to lower commonality of MFI. Based on the previous discussion, we 
should divide the database in a special way such that the 
commonality among FIis is as high as possible. One way to achieve 
this is to distribute similar transactions to different PCs, so that they 
might generate roughly the same set of frequent itemsets in each PC. 
We have tested several ways to do the partitioning and have 
designed a clustering based partitioning method, which always 
brings us a smaller size loser compared with several other obvious 
partitioning methods. 

 

B. Clustering Based Partitioning 
Previous discussion points out that we can assign similar 
transactions into different PCs, so that different PC can generate FI 
with high commonality. Our clustering based partitioning method 
follows this direction. Namely, transactions are grouped into 
clusters, where transactions in each cluster are similar, *so that they 
are distributed to different PCs. As an extension of K-means, our 
method is a three steps procedure. In the first step, a sample S is 
drawn the database, and then the distance between each pair of 
transactions in S is computed. The pair of transactions that have the 
largest distance become two seeds. After that, we iteratively choose 
a transaction as a new seed until we have K seeds. The chosen seed 
should maximize the sum of distance to all available seeds. The 
second step is also a loop process, it runs until the K seeds are stable 
in two consecutive iterations. In the each iteration, after assigning 
each transaction to its nearest seed, we have K clusters. Now, seed 
of each cluster is replaced by the transaction in this cluster so that 
the sum of distance between the new seed and all other transaction 
in this cluster is minimized. The third step is the real partitioning 
step based on K seeds get in the second step. For all clusters, we 
divide the distance range [0, 1] into M consecutive slots with equal 

width, and associate each slot with an index indicating which 
partition will accept the next transaction falling in this slot. All 
indices are initialized to one, and increase by one after each 
assignment. If it is equals to the number of PCs, then it is back to one 
again. Now we can sequentially scan the database, after reading a 
transaction, it is assigned to the nearest seed and is dropped into a 
slot, related index tells us which partition this transaction should be 
distributed to. 
 
Workload balance is a hard problem in parallel processing. In our 
case, the workload is essentially the time used on counting 
frequencies of candidates. This is determined by three factors: the 
number of transactions, number of candidates and the average 
length of candidates in each PC. It is easy to see the number of 
transactions distributed to each PC is roughly the same by our 
method. Further because similar transactions are distributed into 
different PCs, therefore candidates produced in each PC should be 
similar, which makes us believe the number of candidates and the 
average length of them in each PC should be close. Under this 
condition, the workload distributed among different PCs should be 
balanced. This is verified by our experimental results. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.Clustering Based Partition 
 
Let us see an example in Figure 2. Here, we have one cluster with 
seed C. By scanning database, the 1st, 4th  and 5th transactions drop in 
the second distance slot of C one by one. Therefore, they are 
distributed to PC1, PC2 and PC3 respectively. If there is one more 
transaction falling in the same slot later on, it will be assigned to 
PC1 again. 
 
Selection of K 
As a variant of K-means, our method also faces the difficult 
question, what value should K be? In [7], a new two-phase sampling 
based algorithm for discovering frequent itemsets was implemented. 
The foundation of the method was simple; a good sample should 
produce accurate frequency information for all items as possible. 
We extend the idea a little bit to fit our problem, namely, a good K 
should make the sum of frequency-difference among items in 
different partitions as small as possible. More formally, we hope to 
minimize the following formula. Here P denotes the number of 
partitions, supk(Ix) denotes the support of the xth item in I on the kth 
partition. 
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Given a set of values of K, our choice is the one giving us the 
smallest value of Formula 1. After doing extensive experiments on 
selecting the sampling size and K, we found 800 transactions is a 
good sampling size at least for our sets of experiments. While K is 
set between 10 to 50 with a stride of 5. 
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IV. EXPERIMENTAL RESULTS 
In this section we present the results of the performance evaluation 
of DMFI in PC cluster and compare its performance against 
GenMax running on a single PC. Both synthetic and real databases 
are used. Because of the limitation of resources, we can only test our 
method on at most 4 PCs. 
 
Two synthetic databases were created using the data generator from 
IBM Almaden denoted by T10I4D1000K and T40I10D200K, where 
there were 1000 items. The two real databases are Chess which 
contains 3196 transactions with 75 items and Mushroom which 
contains 8124 transactions with 130 items. For each database, 
experiments are carried out with three supporting thresholds on 1, 2, 
3 and 4 PCs respectively. All PCs are using Windows XP as the OS 
with Intel P4 2.4GHz and 512MB main memory. Java 5.0 SE is the 
programming language. 
 

A. Tests on Real Data 
Notice that the two real databases contain only thousands of 
transactions, counting on them is extremely fast. Therefore, we 
enlarge the sizes of Mushroom and Chess to 200 times and 400 
times of their original sizes respectively. The enlarging process is 
simple, read a database in and write it out to another file 200 or 400 
times. Figure 3 shows the experimental results on Chess and 
Mushroom. Here (a) and (c) indicate the time cost while (b) and (d) 
present the candidate ratio, which is computed as dividing number 
of candidates on one PC by the number of candidates in DMFI that 
really need to be counted on each PC. 
 
There are two observations from these two figures, (1) as we 
expected, when the number of PC increases, the time cost reduces 
accordingly and both reach the best performance with 4 PCs. With 4 
PCs, the speed up of Chess is ranging from 2 to 3, while Mushroom 
ranges from 3 to 3.6. (2) As the number of PC increases, the number 
of candidate increases accordingly. This is mainly because the 
commonality of MFI reduces along with the number of PC 
increases, which produces a loser with larger initial size. At the 
worst case, the candidate ratio approaches to 1 in Chess. However, 
candidate ratios for mushroom are pretty good. We believe this is 
caused by our clustering-based partitioning method, which can not 
fully capture the characteristics of Chess data. 
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Figure 3(a) Time cost of Chess 
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Figure 3(b) Candidate Ratio of Chess 
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Figure 3(c) Time cost of Mushroom 
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Figure 3(d) Candidate Ratio of Mushroom 

 

B. Tests on Synthetic Data 
Figure 4 shows the experimental results on T10I4D1000K and 
T40I10D200K. 
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Figure 4(a) Time cost of T10I4D1000K 
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Figure 4(b) Candidate Ratio of T10I4D1000K 
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Figure 4(c) Time cost of T40I10D200K 
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Figure 4(d) Candidate Ratio of T40I10D200K 

 
The general trends occur in real database appear again with one 
exception, that is the candidate ratios are very good in all presented 
cases. The major reason behind this is synthetic data is far more 
uniform compared against real database. 
 

C. Varying Partitioning Methods 
In this set of experiments, we test the effectiveness of different 
partitioning methods in terms of MFI commonality and coverage. 
Figure 5 shows four different database partitioning methods on real 
and synthetic databases with 2PCs. The four methods are: 1)random 
distribution, 2)sort all transactions by all of their items in increasing 
order and then randomly distribute, 3)sort all transactions by half of 
their items in increasing order and then randomly distribute, 4)our 
clustering-based method. 
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Figure 5(a) Support = 0.6 
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Figure 5(b) Support = 0.1 
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Figure 5(c) Support = 0.005 
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Figure 5(d) Support = 0.02 

 
Except performing a little bit worse than method 1) in coverage of 
case T10I4D1000K, our method outperforms all other methods in 
all other cases. Although it performs well in all three other cases, 
randomly distribution performs the worst for Chess, no 
commonality of MFI at all. As a consequence of high candidate ratio 
depicted in Figure 5 (b) and (d), it is not strange to see extremely 
high commonality and coverage of MFI for synthetic databases. 
They can even approach to 99.5%. 
 

D. Commonality of FI and MFI 
As we have not discovered the quantitative relationship on 
commonality between FI and MFI, we can only show some 
comparisons here. Figure 6 shows the commonality of MFI and FI 
on real and synthetic databases in 2 PCs respectively. It is easy to 
see the commonality of FI is always very high, above 95%; 
however, the related commonality of MFI is not always so 
optimistic. 
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Figure 6 MFI and FI Commonalities of Real and Synthetic 

Databases in 2 PCs 
 

E. Remark on workload balance and communication cost 
In all above experiments, we record the average candidate length 
and number of candidate in each PC and find out that they are close 
in all the cases. We also record the time used for communication, 
and notice that it is always less than 5% of the total time 
 

V. CONCLUSIONS 

Parallel mining of frequent itemsets have already been extensively 
studied with many efficient algorithms proposed. However, directly 
apply those methods in discovering maximal frequent itemsets is not 
easy because a global maximal frequent itemset may not be locally 
maximal frequent in at least one partition of database. In this paper, 
we follow another approach, database is partitioned in a special 
way, such that the commonality of local discovered maximal 
frequent itemsets from different partitions is maximized as possible. 
For those itemsets that do not contribute to the commonality, they 
are decomposed to produce candidates in a top-down manner rather 
than a general bottom-up manner extensively used in other 
approaches for mining frequent itemsets. The success of our 
algorithm is determined by whether we can partition the database 
good enough to achieve high commonality of locally discovered 
maximal frequent itemsets. To solve this problem, we designed a 
simple, but effective clustering base method, for which the 
effectiveness has been experimentally verified by both synthetic 
and real data. 
 
One unsolved problem is the relationship between commonality of 
frequent itemsets and maximal itemsets. If it is uncovered, we might 
be able to get better partitioning method. Another direction is to 
unveil the relationship between MFI and partitions directly, rather 
than relying on FI to do partitioning. It is easy to see the server 
might become the bottle neck as more clients are involved. We will 
try to tackle this by using more than one server and overlapping the 
counting process with communication period in server(s). 
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