

Abstract—Efficient discovery of maximal frequent itemsets (MFI)
in large databases is an important problem in data mining. Many
approaches have been suggested such as sequential mining for
maximal frequent itemsets or searching for all frequent itemsets in
parallel. So far, those approaches are still not genuinely effective to
mine extremely large databases. In this work we propose a parallel
method for mining MFI using PC clusters, exploiting their
relationships between MFI locally found in the cluster nodes and the
global MFI, and derive a top-down mechanism which produces
fewer candidates and substantially reduce the number of messages
passed among PCs. We also provide a clustering-based method to
partition the database to achieve a good balance of loading among
the nodes.

Evaluations on our method have been performed using both
synthetic and real databases. Empirical results show that our method
has a superior performance over the direct application of a typical
sequential MFI mining algorithm.

Index Terms—Parallel Data Mining, Maximal Frequent Itemsets,
Partition, PC Cluster

I. INTRODUCTION
Mining frequent itemsets [1][5][13] is a fundamental and essential
problem in many data mining applications, such as association rule
discovery, correlations detection and multidimensional pattern
identification. The framework of mining frequent itemsets was
originally proposed by Agrawal et al. [1].

Let I = {i1, i2, …, in} be a set of literals, called items and n is
considered the dimensionality of the item. Let D be a set of
transactions, where each transaction T is a set of items such as T⊆I.
A transaction T is said to contain X, a set of items in I, if X⊆T. An
itemset X is said to be frequent if its support s is greater than or
equal to given minimum support call thresholdσ . A frequent
itemset М is considered maximal if there is no other frequent
itemset that is superset of М . Consequently, any subset of a
maximal pattern is a frequent pattern. Discovering all maximal
patterns effortlessly yields the complete set of frequent patterns.

Many algorithms of the proposed frequent itemset mining are
variants of Apriori [1], which employ a bottom-up, breadth-first
search that enumerates every single frequent itemset. In many
applications (especially in dense data), enumerating all possible
2m−2 subsets of a m length pattern (m can easily be 30 or 40 or
longer) is computationally unfeasible. Thus, mining maximal
frequent itemset (MFI) attracts much attention in recent years.

Manuscript received December 10, 2007.
Vong Chan Veng, Terry is with the Macau University of Science and

Technology, Macao S.A.R (phone: 853-88972089; email:
cvvong@must.edu.mo)

MaxMiner [4], DepthProject [3], GenMax [9] and MAFIA [6] are
well-known solutions in mining MFI.

As databases become larger, sequential data mining algorithms have
become an unacceptable solution. Thus, parallel mining may deliver
an effective solution on huge database. Parallel approaches for
mining frequent itemsets are mainly based on two paradigms, Count
Distribution and Data Distribution, all inherit Apriori’s level-wise
processing style. Algorithms that belong to Count Distribution
include CD [2], PDM [14] and FPM [8]. Algorithms which belong
to Data Distribution include DD [2], IDD [10] and HPA [15].

As far as we know, most of the proposed parallel mining algorithms
are well tuned for discovering frequent itemsets rather than maximal
frequent itemsets. These methods are not easily extended to handle
the maximal frequent itemsets. Therefore we try to solve the
problem from another way. That is, local MFI on each node is
generated first, and then the relationships between local MFIs and
global MFI are explored to generate candidates with a top-down
manner. These relationships also guide us to partition databases in a
special way, which not only achieves a good balance in loading
among the nodes in the cluster but also produces fewer candidates.
This in turn makes our algorithm faster both in counting and in
sending fewer messages among nodes. Our contributions can be
summarized as follows.

z We introduce the first approach of parallel mining MFI on PC

clusters, DMFI, which can be easily integrated with any
available sequential MFI mining algorithm. It greatly reduces
the number of candidates by following a top-down candidate
generation approach.

z We have shown some interesting relationships between
locally found MFI and global MFI which enable us to
generate global MFI from local MFIs.

z We also propose an efficient and effective clustering based
database partitioning algorithm to partition the database into
the cluster nodes, which in general can help to balance the
workload for each node in the cluster.

We have evaluated our approach using both synthetic and real
databases. The results show that our approach is efficient and
effective.

The rest parts of paper are organized as follows: In section 2, we
discuss the relationships between locally found MFI and global
MFI. Our algorithm for parallel mining of MFI is also presented in
this section. In section 3, we discuss how to effectively partition
database into the cluster nodes. The performance evaluation is
presented in Section 4. Finally, Section 5 concludes the paper and
presents some of the possible future works.

II. MINING OF THE MAXIMAL FREQUENT ITEMSETS
In this section, we first elaborate the relationships between local
MFI in each cluster nodes and global MFI, which essentially enable
us to design our method, DMFI.

Parallel Mining of Maximal Frequent Itemsets in
PC Clusters
Vong Chan Veng, Terry

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

A. Relationships between Local and Global MFI
Let D denotes a database, which is partitioned into d1, d2,..., dn parts
for n nodes respectively. Let MFIi, Fi and Ii be the sets of maximal
frequent itemsets, frequent but not maximal itemsets and infrequent
itemsets in the ith PC cluster node respectively. Let MFI, F and I be
the sets of maximal frequent itemsets, frequent but not maximal
itemsets and infrequent itemsets in D. Obviously, MFIi, Fi and Ii
only carry local information, but MFI, F and I represent the global
information.

Given an itemset q can only be MFI or F or I on the each node.
Therefore, n nodes imply 3n combinations of a maximal frequent
itemset can be produced. However, it is easy to classify these
combinations into 7 cases:
(1) q is local maximal frequent in all nodes.
(2) q is local frequent in all nodes but not maximal.
(3) q is infrequent in all nodes.
(4) q is local maximal in some of nodes, but infrequent in others.
(5) q is local maximal in some of nodes, but frequent in others.
(6) q is local frequent in some of nodes, but infrequent in others.
(7) q is local maximal frequent, frequent and infrequent in all nodes.

The case 3 can be skipped because itemset q is infrequent in all
nodes. It is no doubt about case 1, itemset q must be global maximal
frequent. For case 4, 5 and 7, itemset q is local maximal frequent in
at least one node, when the minimum support of itemset q in whole
database is greater than threshold, then itemset q is also global
maximal frequent.

After checking those cases, itemsets in MFIx that are globally
maximal frequent partially composing MFI. In addition, we use
loser to denote those itemsets in MFIx, which turn out to be not in
MFI. When loser is empty, that means no more itemsets can join
global MFI, our algorithm can be stopped. Otherwise, the case 2 and
6 must be considered, they may turn out to be a global maximal
frequent itemset. The following shows how we can determine if a
frequent itemset q found locally in the cluster nodes is a member of
MFI.

In case 2 and 6, itemset q is global maximal frequent itemset if and
only if it doesn’t exist a superset in global MFI and its support in
whole database is greater than threshold.

B. Algorithm DMFI
/* Input D, n, threshold*/
/* Output MFI*/
1). divide D into D1, D2, ..., Dn
2). Run available algorithm on each Di to get MFIi
3). MFI=MFI1 ∩MFI2 ∩ ... ∩MFIn
4). MFI1 ...n = MFI1 ...n - MFI
5). loser = ∅
6). for each d ∈ MFI1 ...n
7). . . sup(d) = sup1(d) + sup2(d) + ... + supn(d)
8). . . . if sup(d) ≥ threshold
9). then MFI = MFI � {d}
10). . . else loser = loser � {d}
11). maxsize now stores the length of the longest itemset in loser
12). while(loser≠∅)
13). . candidate = ∅
14). . for each q ∈ loser with |q| = maxsize
15). . . Z = {v|v ⊂ q, |v| + 1 = |q|}
16). . . candidate = candidate � Z
17). . while (candidate≠∅)
18). . . for each q in candidate
19). . . . if q is a subset of some itemset(s) in MFI
20). then remove q from candidate
21). . send candidate to n PCs to do frequency counting

22). . get frequencies for candidate from each PC
23). . for each c ∈ candidate
24). . . sup(c) = sup1(c) + sup2(c) + ... + supn(c)
25). . . . if c.sup ≥ threshold
26). then MFI = MFI � {c}
27). . . . else loser = loser � {c}
28). . maxsize = maxsize − 1

Figure 1.The DMFI Algorithm

In DMFI, candidates are generated and organized by their lengths.
For each length, communication between server and clients is
carried out for requesting candidate’s frequencies counting (from
server to clients) and for answering frequency for each candidate
(from clients to server). In real implementation, one client can play
the role of server.

C. Subset Checking
We can skip the counting of an itemset if it is already a subset of a
member in MFI. Therefore, besides frequency counting, subset
checking is one of the most time consuming task in MFI mining. In
[9], subset checking is already embedded in the process of mining
MFI with high efficiency. In our method, after using any available
algorithm to discover all MFIi, we follow a top-down mechanism to
generate candidate for validation, therefore the idea used in [9]
cannot be applied here any more.

We construct a bit matrix to do subset checking, with the number of
rows is equal to the number of items in the database, while the
number of column is equal to the current size of MFI. In this matrix,
each itemset in MFI is encoded in a column, where the ith bit is set to
”1” if the related item occurs in it or ”0” otherwise. Given an itemset
q = {2, 4, 5} for subset checking, we can AND the 2nd, the 4th and the
5th rows in the bit matrix and see whether there is a bit ”1” in the
result. If we find one that means the itemset is a subset of at least one
member in MFI, and the checking can be stopped. Otherwise, it is
not a subset of any itemsets in MFI.

III. DATABASE PARTITIONING
In this section, we first present the relationship between
commonality of FI and MFI, and then show a clustering based
partitioning method.

Definition 2 The size of MFI after Case (1) over the final size of
MFI is defined as the commonality of MFI.
Definition 3 The size of FI1 ∩ FI2 ∩ ... ∩ FIn over the size of FI is
defined as the commonality of FI.
Definition 4 The size of MFI after Case (1) and (4) over the final
size of MFI is defined as MFI coverage.

A. Relationship between Commonality of FI and MFI
It is easy to see the performance of our algorithm is dominated by
loser, the smaller the loser in size, the better the performance. A
smaller initialized loser is a good starting point to lead to a smaller
loser. In DMFI, the initial size of loser is controlled by the
commonality of MFI: the larger the commonality of MFI, the
smaller the initial size of loser. But how to achieve this?

As we know, maximal frequent itemsets represent a higher level
information summary compared with frequent itemsets. And
intuitively, high commonality of FI leads to high commonality of
MFI. Therefore we resort to seeking method that brings us high FI
rather than MFI.

In [16], a formula was established to estimate the sampling size for
mining frequent itemsets, where the sampling size is independent to
the database. Given an acceptable frequency error rate and an

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

acceptable probability for case where frequency error rate exceeds
our expectation. For example, if an acceptable probability of 0.001
for an error rate of more than 0.001, then a 50,000 sampling size is
sufficient. Obviously, the formula in [16] tells us a good sampling
size can unveil most of the real frequent itemsets in database with
high accuracy in their frequencies. But we interpret sampling in
another way, namely, we get n samples from the database, where the
size of each sample is |D|/n. Because each partition is an essential
sample of the database. If the size of sampling is large enough
according to [16], the commonality among frequent itemsets
discovered in each partition should be high, which implies a high
commonality among the maximal frequent itemsets in each
partition, so that we may have a loser with smaller size.

Based on [16], if the size of each partition is large enough, we can
derive a high commonality of FI. In fact, this is verified by our
experiments. We notice that the commonality of FI is always above
95% in all FI computable experiments, and many of them even
reach 99%. However, the related commonalities of MFI do not show
the same optimistic result. It can drop down to 40% in one case.
Why does this happen? This is mainly because MFI represents a
much higher level of information summary compared against FI.
Let us see an example, there are two sets FI1 =
{AB,AC,AD,BC,BD,CD,ABC,ABD,ACD,BCD,ABCD} and FI2 =
{AB,AC,AD,BC,BD, CD,ABC,ABD,ACD}. BCD, ABCD are missed
from FI2. MFI1 = {ABCD} and MFI2 = {ABC, ABD, ACD}, they are
completely different. In general, given X% commonality of FI, we
should not expect the same X% but a lower, say Y % commonality of
MFI. Till now, we have not traced how to compute the difference
between X% and Y %.

At the current stage, we can only conclude that increasing
commonality of FI will give us a relatively high commonality of
MFI. Because low commonality between FIi, 1 ≤ i ≤ n always leads
to lower commonality of MFI. Based on the previous discussion, we
should divide the database in a special way such that the
commonality among FIis is as high as possible. One way to achieve
this is to distribute similar transactions to different PCs, so that they
might generate roughly the same set of frequent itemsets in each PC.
We have tested several ways to do the partitioning and have
designed a clustering based partitioning method, which always
brings us a smaller size loser compared with several other obvious
partitioning methods.

B. Clustering Based Partitioning
Previous discussion points out that we can assign similar
transactions into different PCs, so that different PC can generate FI
with high commonality. Our clustering based partitioning method
follows this direction. Namely, transactions are grouped into
clusters, where transactions in each cluster are similar, *so that they
are distributed to different PCs. As an extension of K-means, our
method is a three steps procedure. In the first step, a sample S is
drawn the database, and then the distance between each pair of
transactions in S is computed. The pair of transactions that have the
largest distance become two seeds. After that, we iteratively choose
a transaction as a new seed until we have K seeds. The chosen seed
should maximize the sum of distance to all available seeds. The
second step is also a loop process, it runs until the K seeds are stable
in two consecutive iterations. In the each iteration, after assigning
each transaction to its nearest seed, we have K clusters. Now, seed
of each cluster is replaced by the transaction in this cluster so that
the sum of distance between the new seed and all other transaction
in this cluster is minimized. The third step is the real partitioning
step based on K seeds get in the second step. For all clusters, we
divide the distance range [0, 1] into M consecutive slots with equal

width, and associate each slot with an index indicating which
partition will accept the next transaction falling in this slot. All
indices are initialized to one, and increase by one after each
assignment. If it is equals to the number of PCs, then it is back to one
again. Now we can sequentially scan the database, after reading a
transaction, it is assigned to the nearest seed and is dropped into a
slot, related index tells us which partition this transaction should be
distributed to.

Workload balance is a hard problem in parallel processing. In our
case, the workload is essentially the time used on counting
frequencies of candidates. This is determined by three factors: the
number of transactions, number of candidates and the average
length of candidates in each PC. It is easy to see the number of
transactions distributed to each PC is roughly the same by our
method. Further because similar transactions are distributed into
different PCs, therefore candidates produced in each PC should be
similar, which makes us believe the number of candidates and the
average length of them in each PC should be close. Under this
condition, the workload distributed among different PCs should be
balanced. This is verified by our experimental results.

Figure 2.Clustering Based Partition

Let us see an example in Figure 2. Here, we have one cluster with
seed C. By scanning database, the 1st, 4th and 5th transactions drop in
the second distance slot of C one by one. Therefore, they are
distributed to PC1, PC2 and PC3 respectively. If there is one more
transaction falling in the same slot later on, it will be assigned to
PC1 again.

Selection of K
As a variant of K-means, our method also faces the difficult
question, what value should K be? In [7], a new two-phase sampling
based algorithm for discovering frequent itemsets was implemented.
The foundation of the method was simple; a good sample should
produce accurate frequency information for all items as possible.
We extend the idea a little bit to fit our problem, namely, a good K
should make the sum of frequency-difference among items in
different partitions as small as possible. More formally, we hope to
minimize the following formula. Here P denotes the number of
partitions, supk(Ix) denotes the support of the xth item in I on the kth
partition.

∑ ∑ ∑
= +=

=

=

−
P

k

P

kj

Ix

x
xjxk II

1 1

||

1

|)(sup)(sup|

Given a set of values of K, our choice is the one giving us the
smallest value of Formula 1. After doing extensive experiments on
selecting the sampling size and K, we found 800 transactions is a
good sampling size at least for our sets of experiments. While K is
set between 10 to 50 with a stride of 5.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

IV. EXPERIMENTAL RESULTS
In this section we present the results of the performance evaluation
of DMFI in PC cluster and compare its performance against
GenMax running on a single PC. Both synthetic and real databases
are used. Because of the limitation of resources, we can only test our
method on at most 4 PCs.

Two synthetic databases were created using the data generator from
IBM Almaden denoted by T10I4D1000K and T40I10D200K, where
there were 1000 items. The two real databases are Chess which
contains 3196 transactions with 75 items and Mushroom which
contains 8124 transactions with 130 items. For each database,
experiments are carried out with three supporting thresholds on 1, 2,
3 and 4 PCs respectively. All PCs are using Windows XP as the OS
with Intel P4 2.4GHz and 512MB main memory. Java 5.0 SE is the
programming language.

A. Tests on Real Data
Notice that the two real databases contain only thousands of
transactions, counting on them is extremely fast. Therefore, we
enlarge the sizes of Mushroom and Chess to 200 times and 400
times of their original sizes respectively. The enlarging process is
simple, read a database in and write it out to another file 200 or 400
times. Figure 3 shows the experimental results on Chess and
Mushroom. Here (a) and (c) indicate the time cost while (b) and (d)
present the candidate ratio, which is computed as dividing number
of candidates on one PC by the number of candidates in DMFI that
really need to be counted on each PC.

There are two observations from these two figures, (1) as we
expected, when the number of PC increases, the time cost reduces
accordingly and both reach the best performance with 4 PCs. With 4
PCs, the speed up of Chess is ranging from 2 to 3, while Mushroom
ranges from 3 to 3.6. (2) As the number of PC increases, the number
of candidate increases accordingly. This is mainly because the
commonality of MFI reduces along with the number of PC
increases, which produces a loser with larger initial size. At the
worst case, the candidate ratio approaches to 1 in Chess. However,
candidate ratios for mushroom are pretty good. We believe this is
caused by our clustering-based partitioning method, which can not
fully capture the characteristics of Chess data.

Performance Comparison

0

20

40

60

80

100

120

140

160

180

0.6 0.7 0.8

R
un

ni
ng

 T
im

e(
se

c) 2PC
3PC
4PC
1PC

Figure 3(a) Time cost of Chess

Candidate Reduction

0

1

2

3

4

5

6

7

0.6 0.7 0.8Support

Ca
nd

id
at

e
Ra

tio 2PC
3PC
4PC

Figure 3(b) Candidate Ratio of Chess

Performance Comparison

0

20

40

60

80

100

120

0.1 0.2 0.3

R
un

ni
ng

 T
im

e(
se

c) 2PC
3PC
4PC
1PC

Figure 3(c) Time cost of Mushroom

Candidate Reduction

0

1
2

3

4

5
6

7

8
9

10

0.1 0.2 0.3
Support

C
an

di
da

te
 R

at
io 2PC

3PC
4PC

Figure 3(d) Candidate Ratio of Mushroom

B. Tests on Synthetic Data
Figure 4 shows the experimental results on T10I4D1000K and
T40I10D200K.

Performance Comparison

0
100
200
300
400
500
600
700
800
900

1000

0.0005 0.001 0.005

R
un

ni
ng

 T
im

e(
se

c) 2PC
3PC
4PC
1PC

Figure 4(a) Time cost of T10I4D1000K

Candidate Reduction

0

50

100

150

200

250

300

350

400

450

0.0005 0.001 0.005
Support

C
an

di
da

te
 R

at
io

2PC
3PC
4PC

Figure 4(b) Candidate Ratio of T10I4D1000K

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Performance Comparison

0
5

10
15
20
25
30
35
40
45
50

0.02 0.05 0.1

R
un

ni
ng

 T
im

e(
se

c) 2PC
3PC
4PC
1PC

Figure 4(c) Time cost of T40I10D200K

Candidate Reduction

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.02 0.05 0.1
Support

C
an

di
da

te
 R

at
io

2PC
3PC
4PC

Figure 4(d) Candidate Ratio of T40I10D200K

The general trends occur in real database appear again with one
exception, that is the candidate ratios are very good in all presented
cases. The major reason behind this is synthetic data is far more
uniform compared against real database.

C. Varying Partitioning Methods
In this set of experiments, we test the effectiveness of different
partitioning methods in terms of MFI commonality and coverage.
Figure 5 shows four different database partitioning methods on real
and synthetic databases with 2PCs. The four methods are: 1)random
distribution, 2)sort all transactions by all of their items in increasing
order and then randomly distribute, 3)sort all transactions by half of
their items in increasing order and then randomly distribute, 4)our
clustering-based method.

Chess

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1 2 3 4
Scenario

M
FI

 C
om

m
on

al
ity

 a
nd

 C
ov

er
ag

e

Commonality

Coverage

Figure 5(a) Support = 0.6

Mushroom

0.000

0.100
0.200

0.300

0.400
0.500

0.600

0.700

0.800
0.900

1.000

1 2 3 4
Scenario

M
FI

 C
om

m
on

al
ity

 a
nd

 C
ov

er
ag

e

Commonality

Coverage

Figure 5(b) Support = 0.1

T10I4D1000K

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

1 2 3 4Scenario

M
FI

 C
om

m
on

al
ity

 a
nd

 C
ov

er
ag

e

Commonality

Coverage

Figure 5(c) Support = 0.005

T40I10D200K

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

1 2 3 4
Scenario

M
FI

 C
om

m
on

al
ity

 a
nd

 C
ov

er
ag

e

Commonality

Coverage

Figure 5(d) Support = 0.02

Except performing a little bit worse than method 1) in coverage of
case T10I4D1000K, our method outperforms all other methods in
all other cases. Although it performs well in all three other cases,
randomly distribution performs the worst for Chess, no
commonality of MFI at all. As a consequence of high candidate ratio
depicted in Figure 5 (b) and (d), it is not strange to see extremely
high commonality and coverage of MFI for synthetic databases.
They can even approach to 99.5%.

D. Commonality of FI and MFI
As we have not discovered the quantitative relationship on
commonality between FI and MFI, we can only show some
comparisons here. Figure 6 shows the commonality of MFI and FI
on real and synthetic databases in 2 PCs respectively. It is easy to
see the commonality of FI is always very high, above 95%;
however, the related commonality of MFI is not always so
optimistic.

Chess

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.6 0.7 0.8
Threshold

C
om

m
on

al
ity MFI

FI

Mushroom

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.1 0.2 0.3
Threshold

C
om

m
on

al
ity MFI

FI

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

T10I4D1000K

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.0005 0.001 0.005
Threshold

C
om

m
on

al
ity

MFI

FI

T40I10D200K

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.02 0.05 0.1
Threshold

C
om

m
on

al
ity

MFI

FI

Figure 6 MFI and FI Commonalities of Real and Synthetic

Databases in 2 PCs

E. Remark on workload balance and communication cost
In all above experiments, we record the average candidate length
and number of candidate in each PC and find out that they are close
in all the cases. We also record the time used for communication,
and notice that it is always less than 5% of the total time

V. CONCLUSIONS

Parallel mining of frequent itemsets have already been extensively
studied with many efficient algorithms proposed. However, directly
apply those methods in discovering maximal frequent itemsets is not
easy because a global maximal frequent itemset may not be locally
maximal frequent in at least one partition of database. In this paper,
we follow another approach, database is partitioned in a special
way, such that the commonality of local discovered maximal
frequent itemsets from different partitions is maximized as possible.
For those itemsets that do not contribute to the commonality, they
are decomposed to produce candidates in a top-down manner rather
than a general bottom-up manner extensively used in other
approaches for mining frequent itemsets. The success of our
algorithm is determined by whether we can partition the database
good enough to achieve high commonality of locally discovered
maximal frequent itemsets. To solve this problem, we designed a
simple, but effective clustering base method, for which the
effectiveness has been experimentally verified by both synthetic
and real data.

One unsolved problem is the relationship between commonality of
frequent itemsets and maximal itemsets. If it is uncovered, we might
be able to get better partitioning method. Another direction is to
unveil the relationship between MFI and partitions directly, rather
than relying on FI to do partitioning. It is easy to see the server
might become the bottle neck as more clients are involved. We will
try to tackle this by using more than one server and overlapping the
counting process with communication period in server(s).

VI. REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proceedings of International Conference on
Very Large Data Bases, 1994.

[2] R. Agrawal, and J. C. Shafer. Parallel Mining of Association
Rules IEEE Transaction on Knowledge and Data Engineering, Vol
8, 1996.
[3] R. C. Agarwal, C. C. Aggarwal and V. V. V. Prasad A tree
projection algorithm for generation of frequent item sets. Journal of
Parallel and Distributed Computing, Vol. 61, No. 3, 2001.
[4] R.J. Bayardo. Efficiently Mining Long Patterns from Databases.
In Proceedings of ACM-SIGMOD International Conference on
Management of Data, 1998.
[5] S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic Itemset
Counting and Implication Rules for Market Basket Data. In
Proceedings of ACM-SIGMOD International Conference on
Management of Data, 1997.
[6] D. Burdick, M. Calimlim, J. Flannick, J. Gehrke and T. Yiu.
MAFIA: a maximal frequent itemset algorithm IEEE Transaction
on Knowledge and Data Engineering, Vol. 17, No. 11, 2005.
[7] B. Chen, P. Haas and P. Scheuermann. A New Two-Phase
Sampling Based Algorithm for Discovering Association Rules. In
Proceedings of ACM-SIGKDD Conference, 2002.
[8] D. W. Cheung, S.D. Lee and Y. Xiao. Effect of Data Skewness
and Workload Balance in Parallel Data Mining. IEEE Transaction
on Knowledge and Data Engineering, Vol 14, May, 2002.
[9] K. Gouda and M. J. Zaki. GenMax: An Efficient Algorithm for
Mining Maximal Frequent Itemsets. Data Mining and Knowledge
Discovery, Vol. 11, 2005.
[10] E. Han, G. Karypis, and V. Kumar. Scalable Parallel Data
Mining for Association Rules. In Proceedings of ACM-SIGMOD
International Conference on Management of Data, 1997.
[11] J. Han, J. Pei and Yiwen Yin. Mining Frequent Patterns without
Candidate Generation. In Proceeding of ACM-SIGMOD
International Conference on Management of Data, 2000.
[12] W. Lian, N. Mamoulis, D. Cheung and S. M. Yiu. Indexing
Useful Structural Patterns for XML Query Processing. IEEE
Transactions on Knowledge and Data Engine. Vol. 17, 2005.
[13] J. S. Park, M. S. Chen and P. S. Yu. An effective hash-based
algorithm for mining association rules. In Proceedings of
ACM-SIGMOD International Conference on Management of Data,
1995.
[14] J. S. Park, M. S. Chen, and P. S. Yiu. Efficient Parallel Mining
for Association Rules. In Proceedings International Conference on
Information and Knowledge Management. 1995
[15] T. Shintani, and M. Kitsuregawa. Hash Based Parallel
Algorithms for Miniing Association Rules. In Proceedings of
International Conference on Parallel and Distributed Information
Systems, 1996
[16] H. Toivonen. Sampling Large Databases for Association Rules.
In Proceedings of International Conference on Very Large Data
Bases, 1996.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

