
  

 
Abstract—The management of large collections of music data 

in a multimedia database has received much attention in the 
past few years. In the most of current works, the researchers 
extract the features, such as melodies, rhythms and chords, 
from the music data and develop indices that will help to 
retrieve the relevant music quickly. Several reports have 
pointed out that these features of music can be transformed and 
represented in the forms of music feature strings or numeric 
values such that the indices can be created for music retrievals. 
However, there is only a small number of existing approaches 
introduced multi-feature index structures for music queries 
while most of others are for developing single feature indices. 
The existing music multi-feature index structures are memory 
consuming and lack of scalability. In this paper, we will propose 
an improved version of index structure which is a memory 
saving approach for multi-feature music indexing. Our 
experimental results show that the new approach outperforms 
existing multi-feature index schemes. 
 

Index Terms — multimedia database, music database, 
multi-feature index, content-based retrieval. 
 

I. INTRODUCTION 
 As the explosive growth of the multimedia applications, 

there is more and more non-alphabet data needed being 
processed now. These data, unlike the conventional numeric 
or character types of data, includes images, voices, films, 
documents and so on. For manipulating these new data types, 
most of proposed papers are contented-based retrieval to 
process voices, films, and documents [4][5][6][7][13]. 
Recently, as the rapid progress in digital representations of 
music data, how to efficiently manage music data is getting 
more attentions. There are more and more investigations 
increasingly attractive in retrieving the music collections 
such as the Query by Rhythm by Chen, et al. [2], Query by 
Music Segments by Chen, et al. [3],  Multi-Feature Index 
Structures by Lee, et al. [12], Non-Trivial Repeating Pattern 
Discovering by Liu, et al. [14], Approximate String Matching 
Algorithm by Liu, et al. [15], Key Melody Extraction and 
N-note Indexing by Tseng [20], Melodic Matching 
Techniques by Uitdenbogerd, et al. [21], Numeric Indexing 
for Music Data by Lo, et al. [16][17] and more in 
[1][9][13][16] [18].  
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In the researches of music content-based retrieval, many 
approaches extract the features, such as key melodies, 
rhythms, and chords, from the music objects and develop 
indices that will help to retrieve the relevant music efficiently 
[11][14][18]. Several reports have also pointed out that these 
features of music can be transformed and represented in the 
forms of music feature strings [2][3][9][12][13][18][20] or 
numeric values [16][17] such that the indices can be created 
for music retrievals. We also can combine these different 
features to support various types of queries. However, there 
is only a small number of existing approaches introduced 
multi-feature index structures for music retrievals while most 
of researches are for developing single feature indices. The 
existing music multi-feature string index structures are 
memory consuming and lack of scalability, whereas the 
numeric indexing approaches for music data are inflexible for 
varied of query lengths and difficult to support for fault 
tolerance searching. To address the drawbacks of current 
multi-feature indices for music data retrieval, in this paper, 
we will propose a space saving multi-feature index structure 
for music query searching. Our study is also shown that the 
proposed index structure is more economic in memory need 
than existing multi-feature indexing approach though it is 
without query restriction.  

The remaining of this paper is organized as follows: in 
section 2, we specify the string indexing and numeric 
indexing for music data retrievals. After that, the existing 
music multi-feature indexing schemes are discussed in 
section 3. The section 4 introduces our proposed new index 
structure for music data, and then we show our experimental 
results in section 5. Finally, a conclusion is given in the last 
section. 

 
II. INDEXING FOR MUSIC DATA RETRIEVAL 

Currently, there are two structures of string indexing and 
numeric indexing for music data retrieval. We specify these 
two indexing schemes in this section. 

A. String Indexing for Music Data 
A suffix tree is a tree-like index structure representing 

all suffixes of a string and provided solutions for string 
matching problems [19][22][23]. It consists of following 
characteristics: 

1)  A suffix tree, constructed from a string with length of m 
symbols, consists of m leaf nodes. These leaf nodes can 
be numbered from 1 to m. 

2)  Any two branches from a non-leaf node should be 
labeled with different symbols. 

3)  The number of each leaf node points out the start 
position of the sub-string which consists of the symbols 
labeled from the root to this leaf node of the tree.  

For example, if there is a string - “ababc”, the suffix tree 
constructed from this string can be shown in Fig. 1. Recently, 
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the suffix tree is also used as indices for music feature strings 
to help searching in music database [3][12].  

 
Fig. 1. An example of suffix tree for music string - “ababc＂ 

B. Numeric Indexing for Music Data 
In 2000, Jagadish, et al. proposed numeric mapping which 

maps a string into a real value [10]. Later on, a numeric 
indexing technique for music data was proposed by Lo, et al. 
[16][17]. If the music data can be represented by a numeric 
value, the R-tree and many other numeric index structures 
can be used to construct the index for music data. For 
translating music data into numeric value, let’s assume that 
the music symbols, ‘a’, ‘b’, ‘c’, …, ‘m’, also can map into 
integer values 0, 1, 2, … m-1, respectively. If we pick out a 
music segment with n sequential notes from a melody feature 
string, denoted x1, x2, …, xn, the integer value of each note can 
be represented by P(xi), 1 ≤ i ≤ n. Therefore, this segment of n 
sequential notes can be transformed into a numeric value by 
the conversion function – v(n), as shown below. 
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Afterward, the converted numeric value can be inserted 
into the index, such as R-tree [8], for music data retrieval.  

 

III. EXISTING MULTI-FEATURE INDEXING FOR MUSIC DATA 
In the researches of indexing for music database 

retrieval, most of existing works were concentrated in 
constructing single-feature index structures for query 
searching: for instance, in 1999, the Key Melody Extraction 
and N-note Indexing by Tseng [19], Melodic Matching 
Techniques by Uitdenbogerd, et al. [20], and Approximate 
String Matching Algorithm by Liu, et al. [15]; in 2000, Query 
by Music Segments by Chen, et al. [3]; and in 2002, Numeric 
Indexing by Lo, et al. [16]. There are only a couple of 
researches emphasized on how to create a multi-feature index 
for music data retrieval. The most of recent works are 
Multi-Feature Index Structures [12] and Multi-feature 
Numeric Indexing [17]. We briefly discuss these two 
approaches in the following sections. 

 
A. Grid-Twin Suffix Trees 

There were four multi-feature index structures for 
music data retrieval proposed by Lee and Chen [12], in which 
it consists of Combined Suffix Trees, Independent Suffix 
Trees, Twin Suffix Trees, and Grid-Twin Suffix Trees. They 
claimed that the structure of Grid-Twin Suffix Trees provides 
most scalability among them. Since the structure of 
Grid-Twin Suffix Trees is an improved version from Twin 
Suffix Trees, let’s introduce the Twin Suffix Trees first.  

There could be two music features in the Twin Suffix 
Trees and each feature has its own index structure of 

independent suffix tree. There are links between them 
pointing from each node in one independent suffix tree to the 
corresponding feature nodes in another independent suffix 
tree. For example, they use letters, i.e., ‘a’. ‘b’, ‘c’, … ,  and 
‘1’, ‘2’, ‘3’, … , to represent the melody symbols and rhythm 
symbols, respectively, then they can be combined into a 
two-feature music string, such as “a1b2a2b1a2b2c2”. A portion 
of the Twin Suffix Tree for “a1b2a2b1a2b2c2” is shown in Fig. 
2. There are links between two trees, from nodes ‘a’ and ‘b’ 
in the 2nd level of melody suffix tree to corresponding nodes 
‘1’ and ‘2’ in the 2nd level of rhythm suffix tree, respectively, 
to represent the melody string “ab” corresponding to rhythm 
string “12”. 

 

 
Fig. 2. Construction of the Twin Suffix Tree [12]

 
Fig. 3. An example of the Grid-Twin Suffix Trees[12]

Furthermore, the Fig. 3 shows an overview of the structure 
for Grid-Twin Suffix Tree. They first use a hash function to 
map each suffix of the feature string into a specific bucket of 
a 2-dimensional grid. The hash function uses the first n 
symbols of the suffix to map it into a specific bucket. 
Considering melody and rhythm only, the hash function is as 
following, 
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where x and y are the row and column coordinates, 
respectively, and P(x, y) denotes the position of the bucket. 
The Numm, Numr, Mi, and Ri are the sizes of the melody and 
rhythm, the values of the ith symbols of melody and rhythm, 
respectively. The length of the suffix is denoted by n. 
Suppose Numm and Numr are both assumed to be 3 in Figure 3 
and the values that represent melody symbols ‘a’, ’b’, and ‘c’, 
and rhythm symbols ‘1’, ‘2’, and ‘3’ are same as 0, 1, and 2, 
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respectively. To insert the first 2 symbols of the music feature 
string “a1b2a2c1a3”, said “a1b2”, it can be computed as P(x, y) 
= (32/31*0,32/31*0) + (32/32*1, 32/32*1) = (0, 0) + (1, 1) = (1, 
1). Then it can be mapped into the (1, 1) bucket in Figure 3. 
After hashing all suffixes, the remaining symbols of feature 
string following the suffixes are used to construct the Twin 
Suffix Trees and accompanied under the buckets as shown in 
Fig. 3. 

B. Multi-Feature Numeric Index 
The Multi-Feature Numeric Index for music data retrieval 

was proposed by Lo and Chen [17]. Like in Section 3.1, each 
music feature segment can be converted into a numeric value 
by equation (1) and these values for a music feature segment 
can be looked as a coordinate for multi-dimensional space. 
Such that the coordinate can be inserted into a 
multi-dimensional index tree, such as R-tree [8], for music 
retrieval. For example, let’s assume that there are two music 
features, melody with ten distinct melody notes of ‘a’ to ‘j’ 
and rhythm with ten distinct symbols of ‘0’ to ‘9’, such that 
the symbols of both features can be individually mapped into 
integer values of 0 to 9, respectively.  If there is a 2-feature 
music segment denoted by “a3b3c3a3”, such that melody 
string and rhythm string can be extracted as “abca” and 
“3333”, respectively. Consequently, these two feature strings 
can be transformed into numeric values 210 and 2222 by 
equation (1). Thereafter, the 2-dimensional coordinate, (210, 
2222), of the music segment can be inserted into a 
2-dimensional index R-tree for music retrieval. It also can be 
extended for converting 3 or more features into high 
dimensional index tree. 

C. Discussions 
Although, the authors claimed that Grid-Twin Suffix 

Trees provides more scalability than the other three index 
structures in [12]. However, this approach didn’t point out 
the index structure for Twin Suffix Trees, if there are three or 
more music features. Therefore, the scalability of Grid-Twin 
Suffix Trees for number of music features is unclear. 

In addition, since numeric index is created by 
transforming fixed length, n in equation (1), of music 
segment into numeric value, the main drawback of 
Multi-Feature Numeric Index is that the length of  a query 
(Query By Example, QBE) is inflexible. It had better equal to 
the length of music segment which the index created, 
otherwise, searching time for the query will be a multiple 
times increasing.  

IV. GRID SUFFIX TREES WITH BIT ARRAYS FOR 
MULTI-FEATURE MUSIC INDEXING 

In this section, we address the problem of Twin Suffix 
Trees for three or more music features and propose a new 
multi-feature music index structure called Grid Suffix Trees 
with Bit Arrays. Our approach is not only more scalable but 
also less memory space needed for index.  

To construct Grid Suffix Trees with Bit Arrays, the grid structure 
as in Grid-Twin Suffix Trees is extended to higher dimensions and 
the suffix trees with bit arrays in non-leaf nodes is redesigned to 
instead of the Twin Suffix Trees under the grid structure. Suppose 
there are d features in music data and we organize the creating of 
our approach in the following two steps:  

Step 1. Computing entry in grid structure: We first create a 
d-dimensional grid structure. For each music feature 
string, the first n symbols of the music segment will be 
transformed into a coordinate as the entry in grid structure. 
We extend the equation (2) and design new equation (3) 
for d-feature coordinate P(x1, .., xd) as follows, 
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Where F1(i), …, Fd(i) and N1, …, Nd represent the values and 
sizes of alphabet symbols, respectively, for d music features. 
The coordinate P(x1, .., xd) can direct the entry in the grid 
structure. We note that the transformation of a prefix within 
any music segments, such as “a1” or “a1b2”, will have only one 
corresponding coordinate. An example of 2-feature grid 
structure is shown in Fig 4. 

Fig. 4. 2-feature grid structure 

Step 2. Constructing Suffix Trees with Bit Arrays: The 
remaining symbols behind the first n symbols of suffix 
are then used to construct the suffix trees accompanied 
under f the d-dimension grid structure at P(x1, .., xd). 
Instead of the links between corresponding feature nodes 
in Twin Suffix Tree, we create the bit arrays to indicate 
the relationships between suffix trees. Each non-leaf node 
of suffix tree for the first feature consists of d-1 bit arrays. 
The number of entries (bits) for each array is the number 
of symbols (m) for each of corresponding feature such 
that the bit arrays can record the relationships (or virtual 
links) of this first feature and each of other features. 
Similarly, each non-leaf node in the suffix tree of second 
feature consists of d-2 bit arrays to record the relations 
with other d-2 features. Furthermore, the non-leaf nodes 
in the suffix trees of third, fourth, and etc. features should 
consist of the bit arrays in the same manner except the 
suffix tree of last feature without a bit array. The 
relationship between two suffix trees denotes the 
occurrence of the symbol combinations of two features. 
For example, “a1b2” representing melody ‘a’ and ‘b’ 
combined with rhythm ‘1’ and ‘2’, respectively, may 
occur in one or some music. If there is a bit array in each 
node of melody suffix tree recorded its relationship with 
rhythm suffix tree, the corresponding bits in the bit array 
of node ‘a’ related to node ‘1’ and node ‘b’ related to 
node ‘2’ will be marked as 1. Therefore, the structures of 
suffix trees with bit arrays for 2 features and 3 features 
can be presented in Fig 5 and Fig 6. In Fig 5, there is a bit 
array in each of non-leaf node of melody suffix tree 
indicating the relationship with the rhythm suffix tree. 
The first bit in the bit array of ‘a’ marked ‘1’ denotes that 
‘a1’ occurs in some music.  Likewise, in Fig 6, there are 
two bit arrays in melody suffix tree indicating the 
relationships with rhythm suffix tree and chord suffix tree. 
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There also has a bit array in each non-leaf node of rhythm 
suffix tree indicating its relationship with chord suffix 
tree. The structure of complete Grid Suffix Trees with Bit 
Arrays for 2-feature music index is shown in Fig 7.  

 
Fig. 5. Bit array in non-leaf node of 2-feature suffix trees 

 
Fig. 6. Bit arrays in non-leaf nodes of 3-feature suffix trees 

 
Fig. 7. Complete Grid Suffix Trees with Bit Arrays 

To retrieve the Grid Suffix Trees with Bit Arrays, we first 
use equation (3) to convert the first n symbols of query string 
into corresponding coordinate. This coordinate is the entry in 
the grid structure and we continue to examine the remaining 
symbols of query in the suffix trees under the entry. Unlike in 
Grid-Twin Suffix Tree, there is no link being examined 
between any two suffix trees. There only one suffix tree 
which includes all of the features in the query needs to be 
examined. If the search for a query string is exactly match the 
symbols and bit arrays in that suffix tree, the target music can 
be found. 

V. PERFORMANCE STUDY 
In order to evaluate the performance of our new approach, 

a series of experiments are performed in this section. Since, 
in Section III, we have discussed that the disadvantage of 
Multi-Feature Numeric Index [17] is inflexible for query 
lengths, it will not be used for comparison in our study. The 
Grid-Twin Suffix Trees [12] (GTST) and our Grid Suffix 
Tree with Bit Array (GST-BA) are without any specific 
limitation for queries. Therefore, we would like to know how 
memory is desired by comparing GTST with GST-BA. We 
consider following four factors in our experiments and the 
parameters used are also listed in Table 1. 

(a) The effect of length of feature strings (l). 
(b) The effect of number of symbols for each features (Ni). 
(c) The effect of music database size. 
(d) The effect of number of music features (d). 

Table 1.Parameters for experiments 
Parameter Domain 

No. of symbols for creating grid structure (n) 2 
Average length of feature strings(l) 8~16 
No. of symbols for each feature(Ni) 10~30 
Database size(music segments) 50K~250K 
No. of music feature(d) 2~5 

A. The Effect of Length of Feature Strings 
The length of feature string (l) denotes the string length of single 

music feature which will be used to create suffix tree for index. For 
example, there is a music segment “a1b2a2b1a2b2c2” which consists 
of “abababc” and “1221222” two feature strings with length 7. The 
length of feature strings in a music database will affect the memory 
needed for constructing the music index. Since the structure of 
Twin Suffix Trees for 3 or more music feature was not pointed out 
for GTST in [12], we will only examine 2 music features in 
this study. In this experiment, we investigated melody and rhythm 
as the two features of music. Suppose that there are 20 notes most 
frequently used, such that, the number of symbols for melody can 
be set to 20. On the other hand, the rhythm consists of 1/8, 1/4, 1/2, 
3/8, 3/4, 11/2, 13/4, 2 and etc., we assume the most frequently used of 
rhythm is 15 of them the number of symbols for rhythm can be 15. 
The average lengths for music feature strings we examined are 
classified into 5 categories, 8, 10, 12, 14, and 16. The first 2 symbols 
of each feature string are transformed into coordinates as the entry 
to grid structure, then, the remaining symbols of feature string are 
used to create the corresponding suffix tree. Since, in research of 
music database retrieval, it usually stores the music themes or 
repeating segments in databases instead of storing entire melodies 
for saving storage [9][14][18], the database size is set on 100,000 
music feature segments. The experiment result for the effect of 
length of feature strings is shown in Fig. 8. 

In the Fig. 8, the memories needed for GTST and GST-BA are 
increasing as average length of feature strings growing. However, 
GTST consumes memory more urgently than GST-BA does. We 
can see that the memories required for GTST and GST-BA are very 
close when the average length of feature strings is 8. Nevertheless, 
GST-BA can have 37% of memory saving compared to GTST at 
average length being 14. The memory saving for GST-BA is 
keeping extended as average length of feature strings increasing. 
This experiment demonstrates that GST-BA is more scalable than 
GTST in the length of feature string in music databases.  
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Fig. 8. Memory needed for average length of feature strings 

B. The Effect of Number of Music Features 
For GST-BA, the number of dimensions for grid structure and 

the number of bit arrays for non-leaf nodes are depended on the 
number of music features (d). We would like to discuss the effect of 
number of music features in this section. Furthermore, the structure 
of Twin Suffix Trees for 3 or more music feature was not clear for 
GTST in [12], we only examine the performance of GST-BA 
alone in this study. In the experiment, we investigated the 
number of music features form 2 to 5, 20 symbols for each feature, 
length 12 for each feature string, and the database size still set on 
100,000 music feature segments. The experimental result is given in 
Fig. 9. The memory consuming for GST-BA versus the number of 
music features represents a linear growing up behavior. It clarifies 
the scalability of GST-BA and should be good for constructing the 
index for large music databases.  
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Fig. 9. Memory needed for no. of music features 

VI. CONCLUSIONS 
There are many features in music data, such as melodies, 

rhythms, chords and the tone differences of adjacent notes. 
We can extract these features to develop the multi-feature 
index to help the query searching quickly and to improve the 
accuracy of query results. The researches on multi-feature 
indexing for music data is relative rarer to the researches of 
music data retrieval.  In this paper, we propose an index structure, 
named Grid Suffix Trees with Bit Arrays, for music data retrieval. 
Our approach creates bit arrays in non-leaf nodes of suffix trees 
instead of link pointer in Twin Suffix Trees to denote the 
relationships among suffix trees. We examined our proposed index 
structure by comparing with Grid-Twin Suffix Tree in varied 
parameters of experiments. As expected, the experimental results 
show that the memory needed for our Grid Suffix Trees with Bit 
Arrays is far less than it is needed for Grid-Twin Suffix Trees. It 

also demonstrated that our approach is more scalable to support 
large music databases.  
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