

Abstract—The management of large collections of music data

in a multimedia database has received much attention in the
past few years. In the most of current works, the researchers
extract the features, such as melodies, rhythms and chords,
from the music data and develop indices that will help to
retrieve the relevant music quickly. Several reports have
pointed out that these features of music can be transformed and
represented in the forms of music feature strings or numeric
values such that the indices can be created for music retrievals.
However, there is only a small number of existing approaches
introduced multi-feature index structures for music queries
while most of others are for developing single feature indices.
The existing music multi-feature index structures are memory
consuming and lack of scalability. In this paper, we will propose
an improved version of index structure which is a memory
saving approach for multi-feature music indexing. Our
experimental results show that the new approach outperforms
existing multi-feature index schemes.

Index Terms — multimedia database, music database,
multi-feature index, content-based retrieval.

I. INTRODUCTION
 As the explosive growth of the multimedia applications,

there is more and more non-alphabet data needed being
processed now. These data, unlike the conventional numeric
or character types of data, includes images, voices, films,
documents and so on. For manipulating these new data types,
most of proposed papers are contented-based retrieval to
process voices, films, and documents [4][5][6][7][13].
Recently, as the rapid progress in digital representations of
music data, how to efficiently manage music data is getting
more attentions. There are more and more investigations
increasingly attractive in retrieving the music collections
such as the Query by Rhythm by Chen, et al. [2], Query by
Music Segments by Chen, et al. [3], Multi-Feature Index
Structures by Lee, et al. [12], Non-Trivial Repeating Pattern
Discovering by Liu, et al. [14], Approximate String Matching
Algorithm by Liu, et al. [15], Key Melody Extraction and
N-note Indexing by Tseng [20], Melodic Matching
Techniques by Uitdenbogerd, et al. [21], Numeric Indexing
for Music Data by Lo, et al. [16][17] and more in
[1][9][13][16] [18].

1 This work was supported by National Science Council of ROC Grant NSC

95-2221-E-324-039.
Yu-Lung Lo is with the Chaoyang University of Technology, Wufong

Township Taichung County, 41349 Taiwan. Phone: (04)2332-3000 ext.
7121; fax: (04)2374-2337; e-mail: yllo@ cyut.edu.tw.

Chun-Hsiung Wang is with the Chaoyang University of Technology,
Wufong Township Taichung County, 41349 Taiwan. E-mail:
s9514612@cyut.edu.tw.

In the researches of music content-based retrieval, many
approaches extract the features, such as key melodies,
rhythms, and chords, from the music objects and develop
indices that will help to retrieve the relevant music efficiently
[11][14][18]. Several reports have also pointed out that these
features of music can be transformed and represented in the
forms of music feature strings [2][3][9][12][13][18][20] or
numeric values [16][17] such that the indices can be created
for music retrievals. We also can combine these different
features to support various types of queries. However, there
is only a small number of existing approaches introduced
multi-feature index structures for music retrievals while most
of researches are for developing single feature indices. The
existing music multi-feature string index structures are
memory consuming and lack of scalability, whereas the
numeric indexing approaches for music data are inflexible for
varied of query lengths and difficult to support for fault
tolerance searching. To address the drawbacks of current
multi-feature indices for music data retrieval, in this paper,
we will propose a space saving multi-feature index structure
for music query searching. Our study is also shown that the
proposed index structure is more economic in memory need
than existing multi-feature indexing approach though it is
without query restriction.

The remaining of this paper is organized as follows: in
section 2, we specify the string indexing and numeric
indexing for music data retrievals. After that, the existing
music multi-feature indexing schemes are discussed in
section 3. The section 4 introduces our proposed new index
structure for music data, and then we show our experimental
results in section 5. Finally, a conclusion is given in the last
section.

II. INDEXING FOR MUSIC DATA RETRIEVAL

Currently, there are two structures of string indexing and
numeric indexing for music data retrieval. We specify these
two indexing schemes in this section.

A. String Indexing for Music Data
A suffix tree is a tree-like index structure representing

all suffixes of a string and provided solutions for string
matching problems [19][22][23]. It consists of following
characteristics:

1) A suffix tree, constructed from a string with length of m
symbols, consists of m leaf nodes. These leaf nodes can
be numbered from 1 to m.

2) Any two branches from a non-leaf node should be
labeled with different symbols.

3) The number of each leaf node points out the start
position of the sub-string which consists of the symbols
labeled from the root to this leaf node of the tree.

For example, if there is a string - “ababc”, the suffix tree
constructed from this string can be shown in Fig. 1. Recently,

Economical Structure for Multi-feature Music
Indexing1

Yu-Lung Lo, and Chun-Hsiung Wang

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

the suffix tree is also used as indices for music feature strings
to help searching in music database [3][12].

Fig. 1. An example of suffix tree for music string - “ababc＂

B. Numeric Indexing for Music Data
In 2000, Jagadish, et al. proposed numeric mapping which

maps a string into a real value [10]. Later on, a numeric
indexing technique for music data was proposed by Lo, et al.
[16][17]. If the music data can be represented by a numeric
value, the R-tree and many other numeric index structures
can be used to construct the index for music data. For
translating music data into numeric value, let’s assume that
the music symbols, ‘a’, ‘b’, ‘c’, …, ‘m’, also can map into
integer values 0, 1, 2, … m-1, respectively. If we pick out a
music segment with n sequential notes from a melody feature
string, denoted x1, x2, …, xn, the integer value of each note can
be represented by P(xi), 1 ≤ i ≤ n. Therefore, this segment of n
sequential notes can be transformed into a numeric value by
the conversion function – v(n), as shown below.

1

1

)()(−

=

×= ∑ x
n

x

mxPnv ... (1)

Afterward, the converted numeric value can be inserted
into the index, such as R-tree [8], for music data retrieval.

III. EXISTING MULTI-FEATURE INDEXING FOR MUSIC DATA
In the researches of indexing for music database

retrieval, most of existing works were concentrated in
constructing single-feature index structures for query
searching: for instance, in 1999, the Key Melody Extraction
and N-note Indexing by Tseng [19], Melodic Matching
Techniques by Uitdenbogerd, et al. [20], and Approximate
String Matching Algorithm by Liu, et al. [15]; in 2000, Query
by Music Segments by Chen, et al. [3]; and in 2002, Numeric
Indexing by Lo, et al. [16]. There are only a couple of
researches emphasized on how to create a multi-feature index
for music data retrieval. The most of recent works are
Multi-Feature Index Structures [12] and Multi-feature
Numeric Indexing [17]. We briefly discuss these two
approaches in the following sections.

A. Grid-Twin Suffix Trees

There were four multi-feature index structures for
music data retrieval proposed by Lee and Chen [12], in which
it consists of Combined Suffix Trees, Independent Suffix
Trees, Twin Suffix Trees, and Grid-Twin Suffix Trees. They
claimed that the structure of Grid-Twin Suffix Trees provides
most scalability among them. Since the structure of
Grid-Twin Suffix Trees is an improved version from Twin
Suffix Trees, let’s introduce the Twin Suffix Trees first.

There could be two music features in the Twin Suffix
Trees and each feature has its own index structure of

independent suffix tree. There are links between them
pointing from each node in one independent suffix tree to the
corresponding feature nodes in another independent suffix
tree. For example, they use letters, i.e., ‘a’. ‘b’, ‘c’, … , and
‘1’, ‘2’, ‘3’, … , to represent the melody symbols and rhythm
symbols, respectively, then they can be combined into a
two-feature music string, such as “a1b2a2b1a2b2c2”. A portion
of the Twin Suffix Tree for “a1b2a2b1a2b2c2” is shown in Fig.
2. There are links between two trees, from nodes ‘a’ and ‘b’
in the 2nd level of melody suffix tree to corresponding nodes
‘1’ and ‘2’ in the 2nd level of rhythm suffix tree, respectively,
to represent the melody string “ab” corresponding to rhythm
string “12”.

Fig. 2. Construction of the Twin Suffix Tree [12]

Fig. 3. An example of the Grid-Twin Suffix Trees[12]

Furthermore, the Fig. 3 shows an overview of the structure
for Grid-Twin Suffix Tree. They first use a hash function to
map each suffix of the feature string into a specific bucket of
a 2-dimensional grid. The hash function uses the first n
symbols of the suffix to map it into a specific bucket.
Considering melody and rhythm only, the hash function is as
following,

∑
=

=
n

i
ii

r

n
r

ii
m

n
m R

Num
NumM

Num
NumP(x,y)

1

)
)(
)(,

)(
)((… (2)

where x and y are the row and column coordinates,
respectively, and P(x, y) denotes the position of the bucket.
The Numm, Numr, Mi, and Ri are the sizes of the melody and
rhythm, the values of the ith symbols of melody and rhythm,
respectively. The length of the suffix is denoted by n.
Suppose Numm and Numr are both assumed to be 3 in Figure 3
and the values that represent melody symbols ‘a’, ’b’, and ‘c’,
and rhythm symbols ‘1’, ‘2’, and ‘3’ are same as 0, 1, and 2,

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

respectively. To insert the first 2 symbols of the music feature
string “a1b2a2c1a3”, said “a1b2”, it can be computed as P(x, y)
= (32/31*0,32/31*0) + (32/32*1, 32/32*1) = (0, 0) + (1, 1) = (1,
1). Then it can be mapped into the (1, 1) bucket in Figure 3.
After hashing all suffixes, the remaining symbols of feature
string following the suffixes are used to construct the Twin
Suffix Trees and accompanied under the buckets as shown in
Fig. 3.

B. Multi-Feature Numeric Index
The Multi-Feature Numeric Index for music data retrieval

was proposed by Lo and Chen [17]. Like in Section 3.1, each
music feature segment can be converted into a numeric value
by equation (1) and these values for a music feature segment
can be looked as a coordinate for multi-dimensional space.
Such that the coordinate can be inserted into a
multi-dimensional index tree, such as R-tree [8], for music
retrieval. For example, let’s assume that there are two music
features, melody with ten distinct melody notes of ‘a’ to ‘j’
and rhythm with ten distinct symbols of ‘0’ to ‘9’, such that
the symbols of both features can be individually mapped into
integer values of 0 to 9, respectively. If there is a 2-feature
music segment denoted by “a3b3c3a3”, such that melody
string and rhythm string can be extracted as “abca” and
“3333”, respectively. Consequently, these two feature strings
can be transformed into numeric values 210 and 2222 by
equation (1). Thereafter, the 2-dimensional coordinate, (210,
2222), of the music segment can be inserted into a
2-dimensional index R-tree for music retrieval. It also can be
extended for converting 3 or more features into high
dimensional index tree.

C. Discussions
Although, the authors claimed that Grid-Twin Suffix

Trees provides more scalability than the other three index
structures in [12]. However, this approach didn’t point out
the index structure for Twin Suffix Trees, if there are three or
more music features. Therefore, the scalability of Grid-Twin
Suffix Trees for number of music features is unclear.

In addition, since numeric index is created by
transforming fixed length, n in equation (1), of music
segment into numeric value, the main drawback of
Multi-Feature Numeric Index is that the length of a query
(Query By Example, QBE) is inflexible. It had better equal to
the length of music segment which the index created,
otherwise, searching time for the query will be a multiple
times increasing.

IV. GRID SUFFIX TREES WITH BIT ARRAYS FOR
MULTI-FEATURE MUSIC INDEXING

In this section, we address the problem of Twin Suffix
Trees for three or more music features and propose a new
multi-feature music index structure called Grid Suffix Trees
with Bit Arrays. Our approach is not only more scalable but
also less memory space needed for index.

To construct Grid Suffix Trees with Bit Arrays, the grid structure
as in Grid-Twin Suffix Trees is extended to higher dimensions and
the suffix trees with bit arrays in non-leaf nodes is redesigned to
instead of the Twin Suffix Trees under the grid structure. Suppose
there are d features in music data and we organize the creating of
our approach in the following two steps:

Step 1. Computing entry in grid structure: We first create a
d-dimensional grid structure. For each music feature
string, the first n symbols of the music segment will be
transformed into a coordinate as the entry in grid structure.
We extend the equation (2) and design new equation (3)
for d-feature coordinate P(x1, .., xd) as follows,

∑
=

−− ⋅⋅=
n

i

in
dd

in
d NiFNiF)x,P(x

1
111))(,..,)((.., … (3)

Where F1(i), …, Fd(i) and N1, …, Nd represent the values and
sizes of alphabet symbols, respectively, for d music features.
The coordinate P(x1, .., xd) can direct the entry in the grid
structure. We note that the transformation of a prefix within
any music segments, such as “a1” or “a1b2”, will have only one
corresponding coordinate. An example of 2-feature grid
structure is shown in Fig 4.

Fig. 4. 2-feature grid structure

Step 2. Constructing Suffix Trees with Bit Arrays: The
remaining symbols behind the first n symbols of suffix
are then used to construct the suffix trees accompanied
under f the d-dimension grid structure at P(x1, .., xd).
Instead of the links between corresponding feature nodes
in Twin Suffix Tree, we create the bit arrays to indicate
the relationships between suffix trees. Each non-leaf node
of suffix tree for the first feature consists of d-1 bit arrays.
The number of entries (bits) for each array is the number
of symbols (m) for each of corresponding feature such
that the bit arrays can record the relationships (or virtual
links) of this first feature and each of other features.
Similarly, each non-leaf node in the suffix tree of second
feature consists of d-2 bit arrays to record the relations
with other d-2 features. Furthermore, the non-leaf nodes
in the suffix trees of third, fourth, and etc. features should
consist of the bit arrays in the same manner except the
suffix tree of last feature without a bit array. The
relationship between two suffix trees denotes the
occurrence of the symbol combinations of two features.
For example, “a1b2” representing melody ‘a’ and ‘b’
combined with rhythm ‘1’ and ‘2’, respectively, may
occur in one or some music. If there is a bit array in each
node of melody suffix tree recorded its relationship with
rhythm suffix tree, the corresponding bits in the bit array
of node ‘a’ related to node ‘1’ and node ‘b’ related to
node ‘2’ will be marked as 1. Therefore, the structures of
suffix trees with bit arrays for 2 features and 3 features
can be presented in Fig 5 and Fig 6. In Fig 5, there is a bit
array in each of non-leaf node of melody suffix tree
indicating the relationship with the rhythm suffix tree.
The first bit in the bit array of ‘a’ marked ‘1’ denotes that
‘a1’ occurs in some music. Likewise, in Fig 6, there are
two bit arrays in melody suffix tree indicating the
relationships with rhythm suffix tree and chord suffix tree.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

There also has a bit array in each non-leaf node of rhythm
suffix tree indicating its relationship with chord suffix
tree. The structure of complete Grid Suffix Trees with Bit
Arrays for 2-feature music index is shown in Fig 7.

Fig. 5. Bit array in non-leaf node of 2-feature suffix trees

Fig. 6. Bit arrays in non-leaf nodes of 3-feature suffix trees

Fig. 7. Complete Grid Suffix Trees with Bit Arrays

To retrieve the Grid Suffix Trees with Bit Arrays, we first
use equation (3) to convert the first n symbols of query string
into corresponding coordinate. This coordinate is the entry in
the grid structure and we continue to examine the remaining
symbols of query in the suffix trees under the entry. Unlike in
Grid-Twin Suffix Tree, there is no link being examined
between any two suffix trees. There only one suffix tree
which includes all of the features in the query needs to be
examined. If the search for a query string is exactly match the
symbols and bit arrays in that suffix tree, the target music can
be found.

V. PERFORMANCE STUDY
In order to evaluate the performance of our new approach,

a series of experiments are performed in this section. Since,
in Section III, we have discussed that the disadvantage of
Multi-Feature Numeric Index [17] is inflexible for query
lengths, it will not be used for comparison in our study. The
Grid-Twin Suffix Trees [12] (GTST) and our Grid Suffix
Tree with Bit Array (GST-BA) are without any specific
limitation for queries. Therefore, we would like to know how
memory is desired by comparing GTST with GST-BA. We
consider following four factors in our experiments and the
parameters used are also listed in Table 1.

(a) The effect of length of feature strings (l).
(b) The effect of number of symbols for each features (Ni).
(c) The effect of music database size.
(d) The effect of number of music features (d).

Table 1.Parameters for experiments
Parameter Domain

No. of symbols for creating grid structure (n) 2
Average length of feature strings(l) 8~16
No. of symbols for each feature(Ni) 10~30
Database size(music segments) 50K~250K
No. of music feature(d) 2~5

A. The Effect of Length of Feature Strings
The length of feature string (l) denotes the string length of single

music feature which will be used to create suffix tree for index. For
example, there is a music segment “a1b2a2b1a2b2c2” which consists
of “abababc” and “1221222” two feature strings with length 7. The
length of feature strings in a music database will affect the memory
needed for constructing the music index. Since the structure of
Twin Suffix Trees for 3 or more music feature was not pointed out
for GTST in [12], we will only examine 2 music features in
this study. In this experiment, we investigated melody and rhythm
as the two features of music. Suppose that there are 20 notes most
frequently used, such that, the number of symbols for melody can
be set to 20. On the other hand, the rhythm consists of 1/8, 1/4, 1/2,
3/8, 3/4, 11/2, 13/4, 2 and etc., we assume the most frequently used of
rhythm is 15 of them the number of symbols for rhythm can be 15.
The average lengths for music feature strings we examined are
classified into 5 categories, 8, 10, 12, 14, and 16. The first 2 symbols
of each feature string are transformed into coordinates as the entry
to grid structure, then, the remaining symbols of feature string are
used to create the corresponding suffix tree. Since, in research of
music database retrieval, it usually stores the music themes or
repeating segments in databases instead of storing entire melodies
for saving storage [9][14][18], the database size is set on 100,000
music feature segments. The experiment result for the effect of
length of feature strings is shown in Fig. 8.

In the Fig. 8, the memories needed for GTST and GST-BA are
increasing as average length of feature strings growing. However,
GTST consumes memory more urgently than GST-BA does. We
can see that the memories required for GTST and GST-BA are very
close when the average length of feature strings is 8. Nevertheless,
GST-BA can have 37% of memory saving compared to GTST at
average length being 14. The memory saving for GST-BA is
keeping extended as average length of feature strings increasing.
This experiment demonstrates that GST-BA is more scalable than
GTST in the length of feature string in music databases.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

0

200

400

600

800

1000

1200

1400

8 10 12 14 16

Average length of feature strings

M
em

or
y

(M
B

)
GTST

GST-BA

Fig. 8. Memory needed for average length of feature strings

B. The Effect of Number of Music Features
For GST-BA, the number of dimensions for grid structure and

the number of bit arrays for non-leaf nodes are depended on the
number of music features (d). We would like to discuss the effect of
number of music features in this section. Furthermore, the structure
of Twin Suffix Trees for 3 or more music feature was not clear for
GTST in [12], we only examine the performance of GST-BA
alone in this study. In the experiment, we investigated the
number of music features form 2 to 5, 20 symbols for each feature,
length 12 for each feature string, and the database size still set on
100,000 music feature segments. The experimental result is given in
Fig. 9. The memory consuming for GST-BA versus the number of
music features represents a linear growing up behavior. It clarifies
the scalability of GST-BA and should be good for constructing the
index for large music databases.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 3 4 5

Number of music features

M
em

or
y

(M
B

)

GST-BA

Fig. 9. Memory needed for no. of music features

VI. CONCLUSIONS
There are many features in music data, such as melodies,

rhythms, chords and the tone differences of adjacent notes.
We can extract these features to develop the multi-feature
index to help the query searching quickly and to improve the
accuracy of query results. The researches on multi-feature
indexing for music data is relative rarer to the researches of
music data retrieval. In this paper, we propose an index structure,
named Grid Suffix Trees with Bit Arrays, for music data retrieval.
Our approach creates bit arrays in non-leaf nodes of suffix trees
instead of link pointer in Twin Suffix Trees to denote the
relationships among suffix trees. We examined our proposed index
structure by comparing with Grid-Twin Suffix Tree in varied
parameters of experiments. As expected, the experimental results
show that the memory needed for our Grid Suffix Trees with Bit
Arrays is far less than it is needed for Grid-Twin Suffix Trees. It

also demonstrated that our approach is more scalable to support
large music databases.

REFERENCES
[1] S. Blackburn and D. DeRoure, “A Tool for Content-based Navigation of

Music,” In Proc. Of ACM Multimedia, Pages 361-368, 1998.
[2] James C.C. Chen and Arbee L.P. Chen, “Query by Rhythm An Approach

for Song Retrieval in Music Databases,” In Proc. Of Int’l Workshop on
Research Issues in Data Engineering, Pages 139-146, 1998.

[3] Arbee L.P. Chen, M. Chang, J. Chen, J.L. Hsu, C.H. Hsu, and Spot Y.S.
Hua, “Query by Music Segments: An Efficient Approach for Song
Retrieval,” In Proc. of IEEE Int’l Conf. on Multimedia and Expro, 2000.

[4] G. Davenport, T.A. Smith, and N. Pincever, “Cinematic Primitives for
Multimedia,” IEEE Computer Graphics & Applications, Pages 67-74,
July 1991.

[5] Y.F. Day, S. Pagtas, M. Iino, A. Khokhar, and A. Ghafoor,
“Object-Oriented Conceptual Modeling of Video Data” In Proc. Of IEEE
Data Engineering, Pages 401-408,1995.

[6] E.A. El-Kwae and M.R. Kabuka, “Efficient Content-Based Indexing of
Large Image Databases,” ACM Trans. On Information Systems, Vol. 18,
No. 2, Pages 171-210, April 2000.

[7] Shen-Tat Goh and Kian-Lee Tan, “MOSAIC: A Fast Multi-Feature
Image Retrieval System,” Data & Knowledge Engineering 33, Pages
219-239, 2000.

[8] A. Guttman, “R-Trees A Dynamic Index Structure For Spatial Search,”
Proceedings of the 1984 ACM SIGMOD international conference on
Management of data, Pages 47-57, 1984.

[9] J.L. Hsu, C.C. Liu, and Arbee L.P. Chen, “Efficient Repeating Patterrn
Finding in Music Databases,” In Proc. of ACM Int’l Conf. on Information
and Knowledge Management, 1998.

[10] H.V. Jagadish, N. Koudas, and D. Srivastava, “On Effective
Multi-Dimensional Indexing for Strings,” In Proc. of ACM SIGMOD,
Pages 403-414, May 2000.

[11] C. L. Krumhansl, “Cognitive Foundations of Musical Pitch,” Oxford
University Press, New York, 1990.

[12] W. Lee and A.L.P. Chen, “Efficient Multi-Feature Index Structures for
Music Data Retrieval,” In Proc. Of SPIE Conf. on Storage and
Retrieval for Image and Video Database, 2000.

[13] Chia-Han Lin and Arbee L. P. Chen, “Indexing and Matching
Multiple-Attribute Strings for Efficient Multimedia Query Processing,”
IEEE Transactions On Multimedia, Vol. 8, No. 2, April 2006.

[14] C.C. Liu, J.L. Hsu, and Arbee L.P. Chen, “Efficient Theme and
Non-Trivial Repeating Pattern Discovering in Music Databases,” In
Proc. of IEEE Data Engineering, Pages 14-21, 1999.

[15] C.C. Liu, J.L. Hsu, and Arbee L.P. Chen, “An Approximate String
Matching Algorithm for Content-Based Music Data Retrieval,” In Proc.
of IEEE Int’l Conf. on Multimedia Computing and Systems, Pages
451-456, 1999.

[16] Yu-lung Lo and Shiou-jiuan Chen, “The Numeric Indexing For Music
Data,” Proceedings of the IEEE 22nd Int’l Conference on Distributed
Computing Systems (ICDCS’2002) Workshops – the 4th Int’l Workshop
on Multimedia Network Systems and Applications (MNSA’2002),
Vienna, Austria, July, Pages 258-263, 2002.

[17] Yu-lung Lo and Shiou-jiuan Chen, “Multi-feature Indexing For Music
Data,” IEEE 23nd International Conference on Distributed Computing
Systems (ICDCS’2003) Workshops – the 5th International Workshop
on Multimedia Network Systems and Applications (MNSA’2003),
Providence, Rhode Island, USA, Pages 654-659, May 19-22, 2003.

[18] Yu-lung Lo, Wen-Ling Lee, and Lin-huang Chang, "True Suffix Tree
Approach for Discovering Non-trivial Repeating Patterns in a Music
Object," accepted by Journal of Multimedia Tools and Applications,
Springer, to appear.

[19] E. McCreight, “A Space-Economical Suffix Tree Construction
Algorithm,” Journal of Association for Computing Machinery, Pages
262-272, 1976.

[20] Y.H. Tseng, “Content-Based Retrieval for Music Collections,” In Proc.
of ACM SIGIR’99, Pages 176-182, 1999

[21] A.L. Uitdenbogerd and J. Zobel, “Melodic Matching Techniques for
Large Music Databases,” In Proc. of ACM Multimedia, Pages 57-66,
1999.

[22] E. Ukkonen, “On-Line Construction of Suffix Tree,” Algorithmica, Vol.
14, Pages 249-260, 1995.

[23] P. Weiner, “Linear Pattern Matching Algorithms,” in Proc. Of IEEE
Ann. Symp. On Switching and Automata Theory, Pages 1-11, 1973.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

	I. INTRODUCTION
	II. Indexing For Music Data Retrieval
	A. String Indexing for Music Data
	B. Numeric Indexing for Music Data
	III. Existing Multi-Feature Indexing For Music Data
	A. Grid-Twin Suffix Trees
	B. Multi-Feature Numeric Index
	C. Discussions

	IV. Grid Suffix Trees with Bit Arrays for multi-feature music indexing
	V. Performance Study
	A. The Effect of Length of Feature Strings
	B. The Effect of Number of Music Features

	VI. Conclusions

