

Abstract—In this paper a new method based on the

Ant-Miner algorithm is proposed to discover sets of

unstructured classification rules. This method, called the

Tree-Miner, creates a directed graph made up of nodes

representing operators and operands. Each ant in a colony of

artificial ants traverses this graph to find routes that represent

the best unstructured rule antecedents. These antecedents are

used to classify the given data and are also interpreted as

knowledge hidden in the training data. The performance of the

Tree-Miner algorithm was evaluated against that of the

Ant-Miner according to the accuracy and the simplicity of the

constructed rules. The results showed that our method has an

acceptable predictive accuracy while discovering rules that are

simpler and more comprehensive.

Index Terms—Ant Colony Optimization, rule based

classifiers, unstructured rules.

I. INTRODUCTION

After sufficient training, a classifier’s task is to try to

correctly predict the classes of a number of given instances of

data. By examining the way that a particular system has been

trained to respond, they can also be used to enhance our

knowledge of a particular phenomenon. One such system, that

directly fits this bill is the rule based classifier.

During the training of a rule based classifier a set of rules is

assigned to it. These rules not only decide the class of each

instance of data, but also present the knowledge that is

inherent in the data set that was used to train the classifier.

Recently in [1] the Ant-Miner Algorithm was proposed

which used an ant colony optimization algorithm to discover a

set of ordered rules. From this a number of research activities

originated that focused on optimizing the Ant-Miner

algorithms. In [2] a modified version of Ant-Miner was

proposed where the computation of the heuristic value was

based on a simple density estimation of the heuristic. [3]

Introduced another ant-based algorithm which uses a different

pheromone updating strategy and a state transition rule. A

new heuristic function, simple state transition and a

self-adaptive parameter are used in [4]. Further works include

Manuscript received January 15, 2008.

Negar Zakeri Nejad is a graduate student at the Computer Engineering

dept. of the Iran University of Science and Technology, Iran (e-mail:

n.zakerinejad@gmail.com).

Amir H. Bakhtiary is a graduate student at ECE dept. of the University of

Tehran, Iran (e-mail: amirishere@yahoo.com).

Morteza Analoui is a professor at the Computer Engineering dept. of the

Iran University of Science and Technology, Iran (e-mail:

analoui@iust.ac.ir).

the discovery of unordered sets [5], pruning using a hybrid

rule pruning strategy [6], an extension to address the multi

label problem [7] and the use of punishment for reducing the

number of rules and conditions [8].

All the previous works have focused on deriving rules that

have a fixed structure where each rule chosen by an ant is a set

of <attribute, operator, value> triples that are bound together

using AND operators to form the antecedent of a single rule.

In this work an algorithm is devised which allows an ant to

construct rules that do not have a fixed structure. This is done

by having each ant traverse a predefined graph. The path that

each ant chooses is in the form of a tree that represents the

antecedent of a rule.

This paper is organized as follows: In section II, the Ant

Colony Optimization (ACO) is considered. Section III gives

an overview of the original Ant-Miner algorithm. Section IV

describes the proposed algorithm. In section V we present the

experimental results and in section VI we conclude the paper

and suggest future work.

II. PROCEDURE ANT COLONY OPTIMIZATION

Swarm Intelligence is a field that deals with the emergent

behavior in systems where independent simple agents work

together to achieve complex behaviors. The Ant Colony

Optimization (ACO) is one such system where the actions of

artificial ants resembling the behavior of real ants are used to

sub-optimally solve computationally expensive problems.

This algorithm was first devised by Dorigo et al. [9] as a way

to solve the TSP problem. It was later extended to be applied

to other optimization problems.

A. Cooperative ants

Although blind, ants are able to find the shortest path from

their nest to sources of food. This is possible through the

deposition and sensing of a substance named pheromone.

When an ant is randomly searching for a route it leaves a trail

of pheromone on the path that it chooses. Other ants that pick

up the pheromone decide to follow the path or not. This form

of communication allows a very intelligent behavior to be

displayed from a group whose individuals are very simple.

III. ANT-MINER

Algorithm I presents the pseudo code for the Ant-Miner

Algorithm as is described in [3]. This Algorithm has two

nested loops. The inner loop executes in three main stages.

The first stage is to construct a rule according to the following

template given in (1):

Classification Using Unstructured Rules and Ant

Colony Optimization

Negar Zakeri Nejad, Amir H. Bakhtiary, and Morteza Analoui

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

>< classThenANDtermANDtermIf ...)21((1)

where the antecedent is made up of a number of terms joint

together with the AND operator and the consequent is the

class that is predicted by the rule. Each term is a <attribute,

operator, value> triple such as <Gender = female> [1]. In the

original Ant-Miner uses only the “=” operator and can only

manage categorical attributes.

In this stage the choosing of each term is done with a

probability proportional to the amount of pheromone

associated with the term at the time of the choosing and a

heuristic function which is the information gain criteria for

that term [10].

The next step is to prune the constructed rule. This is done

by repetitively adjusting the antecedent of the rule, evaluating

the class that the rule represents best and evaluating the

quality of the rule according to the following equation:

FPTN

TN

FNTP

TP
Q

+

⋅

+

= (2)

Where the first part denotes sensitivity and the second part

denotes specificity [5] and:

TP (true positives) is the number of cases covered by the

rule that have the class predicted by the rule.

FP (false positives) is the number of cases covered by the

rule that have a class different from the class predicted by the

rule.

FN (false negatives) is the number of cases that are not

covered by the rule but that have the class predicted by the

rule.

TN (true negatives) is the number of cases that are not

covered by the rule and that do not have the class predicted by

the rule.

In the final stage, the pheromone of the terms included in

the antecedent of the rule is updated according to the quality

of the rule.

The loop stops when either it has executed a certain number

of times or when the convergence criterion is met.

In the outer loop, the best rule after being found by the

inner loop is added to the list of the discovered rules. Then the

cases that are covered by the discovered rule are removed

from the training set. This loop continues until the number of

cases in the training set is less than a maximum number of

uncovered cases set by the user.

IV. PROPOSED ALGORITHM

The main difference in this work is the construction of rules

that have less structural constraints allowing us to model more

complex relationships with rules that are more concise.

To allow more complete rules the rules are allowed to have

OR and XOR operators as well as AND operators. Also the

concept of operator precedence has been added to allow the

interpretation of these rules. The NOT operators have only

been introduced on the terms. These rules are represented by

trees that are searched for by ants, hence the name

Tree-Miner.

Another difference of the Tree-Miner with the Ant-Miner is

that no pruning has been used for the rules. Thus the

consequent of each rule is determined right after the

construction of the antecedent.

A. Unstructured rules

The representation of an unstructured rule is easily

managed using trees an example of which is shown in Fig. 1.

In these trees terms appear in the leaves of the tree while the

internal nodes are the binary operators that act on the leaves of

the tree. Notice that in the trees that we construct only binary

operators are used and that the NOT operator has not been

directly included in the tree as a node, because by recursively

applying De Morgan’s rule to an arbitrary antecedent, we can

form an equivalent antecedent in which the NOT operators act

directly on the <value, operator, attribute> triples.

In the proposed algorithm each search that is performed by

an ant leads to the construction of one tree that represents one

unstructured rule antecedent.

B. Rule Graph

An example of this graph is shown in Fig. 2. This graph

contains a start node, a set of binary nodes and a set of term

nodes. The start node is the node that the search for the

antecedent begins from; the binary nodes represent binary

Fig. 1. Each rule antecedent can be represented using a tree.

 ALGORITHM I

THE ORIGINAL ANT-MINER ALGORITHM.

Training set = all training cases;

WHILE (No. of cases in the Training set >

Max_uncovered_ cases)

i = 0;

REPEAT

i = i+1;

Anti incrementally constructs a classification rule;

Prune the constructed rule;

Update the pheromone of the trail followed by

Anti;

UNTIL (i ≥ No_of_ants) or (Anti constructed the same

rule as the previous No_Rules_Converg-1 Ants)

Select the best rule among all constructed rules;

Remove the cases correctly covered by the selected rule

from the training set;

END WHILE

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

operators that can be used in the forming of the antecedent.

The each term node represents one <attribute, operator,

value> triple.

The start node is connected to all of the binary nodes and all

pairs of binary nodes are connected together.

We use two edges called left and right, for connecting two

binary nodes one for each of its operands. In the same way,

each binary node is connected to each term nodes by two

edges.

C. Traversal of the tree and rule construction

As we have already mentioned that for the construction of a

rule, each ant needs to build a tree by traversing the rule

graph. To do this first each ant begins from the start node and

chooses one of the outgoing edges according to the roulette

wheel schema where the probability of choosing edge x is

giving as follows:

∑
∈

=

Si

tiPh

txPh
xP

),(

),(
)((3)

In (3) S is the set of outgoing edges from start node and

Ph(x,t) is the amount of existing pheromone on edge x at time

t.

Each time a binary node is reached; the ant will choose two

of the outgoing edges, one from the left edges and one from

the right edges. From there each of the chosen edges is

traversed.

An outgoing edge from a binary node x is chosen with

probability P(x) as in (4).

∑
∈

×

×
=

Bi

diWtiPh

dxWtxPh
xP

),(),(

),(),(
)((4)

In (4), B is the set of edges from which the ant is choosing

from. d is the depth of the binary node in the currently

constructed tree. W(x,d) is a weight that serves to limit the

depth of the tree and is defined in (5).









<∧=

=

=

otherwise

depthMaxdoperatorxtype

termxtype

dxW

0

)_())((1

)(1

),(

 (5)

In (5), type(x) denotes the type of the node at the end of the

edge x. Max_depth is a user given parameter that limits the

depth of the constructed tree since choosing edges that lead to

binary nodes is only possible when the depth of the current

node is less than Max_depth. Otherwise the ant is force to

choose from the edges that lead to the term nodes. This poses

a limit on the height of the tree since nodes at depth

Max_depth are only chosen from the term nodes in the graph

and the term nodes can not have children in the tree.

D. Pheromone updating

At each iteration of the while loop of algorithm, the amount

of pheromone on all of the edges, is equal to one.

For updating the pheromone for each edge that is included

in a certain rule, we use equation (6):

)_1(),()1,(rateConvQtxPhtxPh ×+×=+ (6)

In the above equation Q is the quality of the rule and is

calculated as is shown in (2). Conv_rate is a parameter that

controls the speed at which the algorithm converges. This was

set to stop immature convergence to answers that are too far

from optimal.

Keeping in mind that in the original Ant-Miner

pheromones are associated with terms where as in the

Tree-Miner they are associated with links in the graph;

equation (6) is very similar to the formula used in the original

Ant-Miner to update the pheromones except for the addition

of Conv_rate.

By setting Conv_rate to a small value we are reducing the

effect that each ant has on the pheromone trails. This delays

the convergence of the constructed rules to a later time thus

allowing more exploration to take place before the algorithm

stops.

V. EXPERIMENTAL RESULTS

To evaluate the performance of the Tree-Miner algorithm,

it was compared to the original Ant-Miner algorithm.

A. Datasets

The performance of the algorithm was evaluated using four

public-domain data sets obtained from the UCI repository

[11]. The datasets were chosen so as to have a large number of

instances each, leading to results that were stable during

testing. The main characteristics of these datasets are shown

in Table I.

Some of the datasets used contained numerical attributes

which the Ant-Miner and the Tree-Miner can not manage. To

overcome this the discretization method available in Weka

[12] was used in conjunction with its “use equal Frequency”

option to change these variables into nominal attributes.

B. Test setup

For testing the Ant-Miner all of its parameters were kept to

a set which were tested in the setups used in the original paper

[1].

Fig. 2. An ant traverses through a graph similar to this to construct the

antecedent of a rule. Only one of the binary nodes has all its

connections shown.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

For the Tree-Miner all the parameters that it shared in

common with the Ant-Miner where kept the same. To keep

the test fair, the newly introduced parameters, namely

Conv_rate and Max_depth, were first tuned using a separate

dataset and after that the chosen value were used for

conducting the experiments. Table II summarizes the

parameters used for the tests.

The ten-fold cross-validation process was used to conduct

the tests. In this process each data set is partitioned in to ten

subsets, and the classification algorithm being tested is run ten

times, each time with a different subset used as the test set and

the rest used as the training set. Finally the ten results are

averaged [13].

C. Test results

The results of the experiments are summarized in Tables

III, IV and V. From Table III, which presents the average

classification rate of both the Ant-Miner and the Tree-Miner,

we can see that the Ant-Miner and the Tree-Miner have very

similar prediction accuracy.

Table IV and V present the average number of rules found

and the average number of terms used in each of the classifiers

respectively. We can see that in all of the datasets the

Tree-Miner has been able to decrease the number of rules that

are needed for classifying the data. This is very observable in

the Wisconsin Cancer case where the number of rules has

decreased significantly.

Turning our attention to Table V we can see that in the

Segmentation test the number of terms used is the same in

both algorithms while we have a reduction in the number of

terms used in two of the datasets and an increase in one. Note

that since the number of rules has decreased in all of the cases,

not having a change in the average number of terms suggests

an aggregation of the rules, while the reductions in the number

of terms suggest the discovery of newer and more effective

relationships between the terms.

VI. CONCLUSION

We have compared the performance of our method and

Ant-Miner according to the predictive accuracy and

simplicity of the discovered classification rules.

The results of experiments have shown that the rules

discovered by the proposed algorithm have an acceptable

predictive accuracy and that they are able to find more

complex relationships and give a simple representation for

them.

In this work no rule pruning was used before evaluating the

quality of each work. Adding this can improve the simplicity

of the rules leading to simpler rule sets.

Further research should also be conducted into the effects

of discovering a list of unordered set of unstructured rules that

may increase the performance of classification.

Additionally, the effect of pheromones on the types and

quality of the rules discovered needs to be assessed.

REFERENCES

[1] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, “Data mining with an

ant colony optimization algorithm,” IEEE Trans. on Evolutionary

Computation, 6(4), Aug 2002, pp. 321-332.

[2] B. Liu, H. A. Abbass, and B. Mckay, “Density-Based heuristic for rule

discovery with Ant-Miner,” The 6th Australasia-Japan Joint Workshop

on Intelligent and Evolutionary Systems (AJWIS 2002), Canberra,

Australia, 2002.

[3] B. Liu, H. A. Abbass, and B. Mckay, “Classification rule discovery

with ant colony optimization,” Proceeding of the IEEE/WIC

International Conference on Intelligent Agent Technology, Beijing,

China (2003), pp. 83-88.

[4] Z. Q. Wang and B. Q. Feng, “Classification rule mining with an

improved ant colony algorithm,” G.I. Webb and X. Yu (Eds.): AI 2004,

LNAI 3339, 2004, pp. 357-367, Springer.

TABLE IV. AVERAGE NUMBER OF RULES FOUND

Dataset
Classifier Algorithm

Ant-Miner Tree-Miner

Abalone 32.6+/-1.14 25.4+/-1.02

House Price 11.5+/-0.45 8.0+/-0.76

Segmentation 26.8+/-0.51 17.3+/-0.82

Wisconsin Cancer 11.4+/-0.16 4.7+/-0.26

TABLE III. CLASSIFICATION RATE

Dataset
Classifier Algorithm

Ant-Miner Tree-Miner

Abalone 22.62%+/-0.63% 22.6%+/-0.7%

House Price 64.49%+/-1.49% 66.21%+/-1.8%

Segmentation 77.44%+/-1.71% 75.08%+/-1.05%

Wisconsin Cancer 92.71%+/-1.14% 93.57%+/-1.17%

TABLE II. PARAMETERS USED FOR CONDUCTING THE TESTS

Parameters
Classifier Algorithm

Ant-Miner Tree-Miner

No_of_ants 7000 7000

Min_cases_per_rule 5 -

Max_uncovered_cases 10 10

No_rules_converge 10 10

Conv_rate - 0.01

Max_depth - 5

TABLE V. AVERAGE NUMBER OF TERMS USED FOR EACH CLASSIFIER

Dataset
Classifier Algorithm

Ant-Miner Tree-Miner

Abalone 62.9+/-3.19 52.1+/-2.33

House Price 14.5+/-0.56 17.1+/-1.68

Segmentation 35+/-0.83 34.9+/-1.65

Wisconsin Cancer 12.6+/-0.31 9.9+/-0.69

TABLE I. CHARACTERISTICS OF THE DATASETS

Test set

Characteristics

Number of

Instances

Number of

attributes
Number of classes

Abalone 4177 9 25

House Price 506 14 3

Segmentation 2100 19 7

Wisconsin Cancer 699 10 2

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

[5] J. Smaldon and A. A. Freitas, “A new version of the Ant-Miner

algorithm discovering unordered rule sets,” Proc. Genetic and

Evolutionary Computation Conf. (GECCO-2006), pp. 43-50.

[6] A. Chan and A. A. Freitas, “A new classification-rule pruning

procedure for an ant colony algorithm,” Springer, 2006.

[7] A. Chan and A. A. Freitas, “A new ant colony algorithm for multi-label

classification with applications in bioinformatics,” Proc. Genetic and

Evolutionary Computation Conf. (GECCO-2006), pp. 27-34.

[8] Junzhong Ji, Ning Zhang, Chunnian Liu, and Ning Zhong, “An ant

colony optimization algorithm for learning classification rules,”

Proceedings of the 2006 IEEE/WIC/ACM International Conference on

Web Intelligence.

[9] M. Dorigo, A. Colorni, and V. Maniezzo, “An investigation of some

properties of an ant algorithm,” Proceedings of the parallel problem

solving from nature conference, Elsevier publishing, 1992.

[10] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan

Kaufmann, 1993.

[11] UCI Machine Learning Repository. (University of California at Irvine).

Available: http://www.ics.uci.edu/~mlearn/MLRepository.html

[12] Publisher: Machine Learning Group, University of Waikato, Hamilton,

NZ. Available: http://www.cs.waikato.ac.nz/ml/weka

[13] S. M. Weiss and C. A. Kulikowski, Computer Systems that learn. San

Francisco, CA: Morgan Kaufmann, 1991.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

