
 

 

 

  

Abstract—In this paper a new method based on the 

Ant-Miner algorithm is proposed to discover sets of 

unstructured classification rules. This method, called the 

Tree-Miner, creates a directed graph made up of nodes 

representing operators and operands. Each ant in a colony of 

artificial ants traverses this graph to find routes that represent 

the best unstructured rule antecedents. These antecedents are 

used to classify the given data and are also interpreted as 

knowledge hidden in the training data. The performance of the 

Tree-Miner algorithm was evaluated against that of the 

Ant-Miner according to the accuracy and the simplicity of the 

constructed rules. The results showed that our method has an 

acceptable predictive accuracy while discovering rules that are 

simpler and more comprehensive. 

 
Index Terms—Ant Colony Optimization, rule based 

classifiers, unstructured rules. 

I.  INTRODUCTION 

After sufficient training, a classifier’s task is to try to 

correctly predict the classes of a number of given instances of 

data. By examining the way that a particular system has been 

trained to respond, they can also be used to enhance our 

knowledge of a particular phenomenon. One such system, that 

directly fits this bill is the rule based classifier. 

During the training of a rule based classifier a set of rules is 

assigned to it. These rules not only decide the class of each 

instance of data, but also present the knowledge that is 

inherent in the data set that was used to train the classifier. 

Recently in [1] the Ant-Miner Algorithm was proposed 

which used an ant colony optimization algorithm to discover a 

set of ordered rules. From this a number of research activities 

originated that focused on optimizing the Ant-Miner 

algorithms. In [2] a modified version of Ant-Miner was 

proposed where the computation of the heuristic value was 

based on a simple density estimation of the heuristic. [3] 

Introduced another ant-based algorithm which uses a different 

pheromone updating strategy and a state transition rule. A 

new heuristic function, simple state transition and a 

self-adaptive parameter are used in [4]. Further works include 
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the discovery of unordered sets [5], pruning using a hybrid 

rule pruning strategy [6], an extension to address the multi 

label problem [7] and the use of punishment for reducing the 

number of rules and conditions [8]. 

All the previous works have focused on deriving rules that 

have a fixed structure where each rule chosen by an ant is a set 

of <attribute, operator, value> triples that are bound together 

using AND operators to form the antecedent of a single rule. 

In this work an algorithm is devised which allows an ant to 

construct rules that do not have a fixed structure. This is done 

by having each ant traverse a predefined graph. The path that 

each ant chooses is in the form of a tree that represents the 

antecedent of a rule. 

This paper is organized as follows: In section II, the Ant 

Colony Optimization (ACO) is considered. Section III gives 

an overview of the original Ant-Miner algorithm. Section IV 

describes the proposed algorithm. In section V we present the 

experimental results and in section VI we conclude the paper 

and suggest future work. 

II. PROCEDURE ANT COLONY OPTIMIZATION 

Swarm Intelligence is a field that deals with the emergent 

behavior in systems where independent simple agents work 

together to achieve complex behaviors. The Ant Colony 

Optimization (ACO) is one such system where the actions of 

artificial ants resembling the behavior of real ants are used to 

sub-optimally solve computationally expensive problems. 

This algorithm was first devised by Dorigo et al. [9] as a way 

to solve the TSP problem. It was later extended to be applied 

to other optimization problems. 

A. Cooperative ants 

Although blind, ants are able to find the shortest path from 

their nest to sources of food. This is possible through the 

deposition and sensing of a substance named pheromone. 

When an ant is randomly searching for a route it leaves a trail 

of pheromone on the path that it chooses. Other ants that pick 

up the pheromone decide to follow the path or not. This form 

of communication allows a very intelligent behavior to be 

displayed from a group whose individuals are very simple. 

III. ANT-MINER  

Algorithm I presents the pseudo code for the Ant-Miner 

Algorithm as is described in [3]. This Algorithm has two 

nested loops. The inner loop executes in three main stages. 

The first stage is to construct a rule according to the following  

template given in (1): 

Classification Using Unstructured Rules and Ant 

Colony Optimization 
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where the antecedent is made up of a number of terms joint 

together with the AND operator and the consequent is the 

class that is predicted by the rule. Each term is a <attribute, 

operator, value> triple such as <Gender = female> [1]. In the 

original Ant-Miner uses only the “=” operator and can only 

manage categorical attributes. 

In this stage the choosing of each term is done with a 

probability proportional to the amount of pheromone 

associated with the term at the time of the choosing and a 

heuristic function which is the information gain criteria for 

that term [10]. 

The next step is to prune the constructed rule. This is done 

by repetitively adjusting the antecedent of the rule, evaluating 

the class that the rule represents best and evaluating the 

quality of the rule according to the following equation: 

FPTN

TN

FNTP

TP
Q

+

⋅

+

=  (2) 

Where the first part denotes sensitivity and the second part 

denotes specificity [5] and: 

TP (true positives) is the number of cases covered by the 

rule that have the class predicted by the rule. 

FP (false positives) is the number of cases covered by the 

rule that have a class different from the class predicted by the 

rule. 

FN (false negatives) is the number of cases that are not 

covered by the rule but that have the class predicted by the 

rule. 

TN (true negatives) is the number of cases that are not 

covered by the rule and that do not have the class predicted by 

the rule. 

In the final stage, the pheromone of the terms included in 

the antecedent of the rule is updated according to the quality 

of the rule. 

The loop stops when either it has executed a certain number 

of times or when the convergence criterion is met. 

In the outer loop, the best rule after being found by the 

inner loop is added to the list of the discovered rules. Then the 

cases that are covered by the discovered rule are removed 

from the training set. This loop continues until the number of 

cases in the training set is less than a maximum number of 

uncovered cases set by the user.  

IV. PROPOSED ALGORITHM 

The main difference in this work is the construction of rules 

that have less structural constraints allowing us to model more 

complex relationships with rules that are more concise. 

To allow more complete rules the rules are allowed to have 

OR and XOR operators as well as AND operators. Also the 

concept of operator precedence has been added to allow the 

interpretation of these rules. The NOT operators have only 

been introduced on the terms. These rules are represented by 

trees that are searched for by ants, hence the name 

Tree-Miner. 

Another difference of the Tree-Miner with the Ant-Miner is 

that no pruning has been used for the rules. Thus the 

consequent of each rule is determined right after the 

construction of the antecedent. 

A. Unstructured rules 

The representation of an unstructured rule is easily 

managed using trees an example of which is shown in Fig. 1. 

In these trees terms appear in the leaves of the tree while the 

internal nodes are the binary operators that act on the leaves of 

the tree. Notice that in the trees that we construct only binary 

operators are used and that the NOT operator has not been 

directly included in the tree as a node, because by recursively 

applying De Morgan’s rule to an arbitrary antecedent, we can 

form an equivalent antecedent in which the NOT operators act 

directly on the <value, operator, attribute> triples. 

In the proposed algorithm each search that is performed by 

an ant leads to the construction of one tree that represents one 

unstructured rule antecedent.   

B. Rule Graph 

An example of this graph is shown in Fig. 2. This graph 

contains a start node, a set of binary nodes and a set of term 

nodes. The start node is the node that the search for the 

antecedent begins from; the binary nodes represent binary 

 

Fig. 1.  Each rule antecedent can be represented using a tree.  

 

 ALGORITHM I 

THE ORIGINAL ANT-MINER ALGORITHM. 

Training set = all training cases; 

WHILE (No. of cases in the Training set > 

Max_uncovered_ cases) 

i = 0; 

REPEAT 

i = i+1; 

Anti incrementally constructs a classification rule; 

Prune the constructed rule; 

Update the pheromone of the trail followed by          

Anti; 

UNTIL (i ≥ No_of_ants) or (Anti constructed the same 

rule as the previous No_Rules_Converg-1 Ants) 

Select the best rule among all constructed rules; 

Remove the cases correctly covered by the selected rule 

from the training set; 

END WHILE 
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operators that can be used in the forming of the antecedent. 

The each term node represents one <attribute, operator, 

value> triple. 

The start node is connected to all of the binary nodes and all 

pairs of binary nodes are connected together.   

We use two edges called left and right, for connecting two 

binary nodes one for each of its operands. In the same way, 

each binary node is connected to each term nodes by two 

edges. 

C. Traversal of the tree and rule construction 

As we have already mentioned that for the construction of a 

rule, each ant needs to build a tree by traversing the rule 

graph. To do this first each ant begins from the start node and 

chooses one of the outgoing edges according to the roulette 

wheel schema where the probability of choosing edge x is 

giving as follows: 

∑
∈

=
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In (3) S is the set of outgoing edges from start node and 

Ph(x,t) is the amount of existing pheromone on edge x at time 

t. 

Each time a binary node is reached; the ant will choose two 

of the outgoing edges, one from the left edges and one from 

the right edges. From there each of the chosen edges is 

traversed. 

An outgoing edge from a binary node x is chosen with 

probability P(x) as in (4). 

∑
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In (4), B is the set of edges from which the ant is choosing 

from. d is the depth of the binary node in the currently 

constructed tree. W(x,d) is a weight that serves to limit the 

depth of the tree and is defined in (5). 









<∧=

=

=

otherwise

depthMaxdoperatorxtype

termxtype

dxW

0

)_())((1

)(1

),(

 (5) 

In (5), type(x) denotes the type of the node at the end of the 

edge x. Max_depth is a user given parameter that limits the 

depth of the constructed tree since choosing edges that lead to 

binary nodes is only possible when the depth of the current 

node is less than Max_depth. Otherwise the ant is force to 

choose from the edges that lead to the term nodes. This poses 

a limit on the height of the tree since nodes at depth 

Max_depth are only chosen from the term nodes in the graph 

and the term nodes can not have children in the tree. 

D. Pheromone updating 

At each iteration of the while loop of algorithm, the amount 

of pheromone on all of the edges, is equal to one. 

For updating the pheromone for each edge that is included 

in a certain rule, we use equation (6): 

)_1(),()1,( rateConvQtxPhtxPh ×+×=+  (6) 

In the above equation Q is the quality of the rule and is 

calculated as is shown in (2). Conv_rate is a parameter that 

controls the speed at which the algorithm converges. This was 

set to stop immature convergence to answers that are too far 

from optimal. 

Keeping in mind that in the original Ant-Miner 

pheromones are associated with terms where as in the 

Tree-Miner they are associated with links in the graph; 

equation (6) is very similar to the formula used in the original 

Ant-Miner to update the pheromones except for the addition 

of Conv_rate. 

By setting Conv_rate to a small value we are reducing the 

effect that each ant has on the pheromone trails. This delays 

the convergence of the constructed rules to a later time thus 

allowing more exploration to take place before the algorithm 

stops. 

V. EXPERIMENTAL RESULTS 

To evaluate the performance of the Tree-Miner algorithm, 

it was compared to the original Ant-Miner algorithm. 

A. Datasets 

The performance of the algorithm was evaluated using four 

public-domain data sets obtained from the UCI repository 

[11]. The datasets were chosen so as to have a large number of 

instances each, leading to results that were stable during 

testing. The main characteristics of these datasets are shown 

in Table I. 

Some of the datasets used contained numerical attributes 

which the Ant-Miner and the Tree-Miner can not manage. To 

overcome this the discretization method available in Weka 

[12] was used in conjunction with its “use equal Frequency” 

option to change these variables into nominal attributes. 

B. Test setup 

For testing the Ant-Miner all of its parameters were kept to 

a set which were tested in the setups used in the original paper 

[1].  

 
Fig. 2.  An ant traverses through a graph similar to this to construct the 

antecedent of a rule. Only one of the binary nodes has all its 

connections shown. 
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For the Tree-Miner all the parameters that it shared in 

common with the Ant-Miner where kept the same. To keep 

the test fair, the newly introduced parameters, namely 

Conv_rate and Max_depth, were first tuned using a separate 

dataset and after that the chosen value were used for 

conducting the experiments. Table II summarizes the 

parameters used for the tests. 

The ten-fold cross-validation process was used to conduct 

the tests. In this process each data set is partitioned in to ten 

subsets, and the classification algorithm being tested is run ten 

times, each time with a different subset used as the test set and 

the rest used as the training set. Finally the ten results are 

averaged [13]. 

C. Test results 

The results of the experiments are summarized in Tables 

III, IV and V. From Table III, which presents the average 

classification rate of both the Ant-Miner and the Tree-Miner, 

we can see that the Ant-Miner and the Tree-Miner have very 

similar prediction accuracy.  

Table IV and V present the average number of rules found 

and the average number of terms used in each of the classifiers 

respectively. We can see that in all of the datasets the 

Tree-Miner has been able to decrease the number of rules that 

are needed for classifying the data. This is very observable in 

the Wisconsin Cancer case where the number of rules has 

decreased significantly. 

Turning our attention to Table V we can see that in the 

Segmentation test the number of terms used is the same in 

both algorithms while we have a reduction in the number of 

terms used in two of the datasets and an increase in one. Note 

that since the number of rules has decreased in all of the cases, 

not having a change in the average number of terms suggests 

an aggregation of the rules, while the reductions in the number 

of terms suggest the discovery of newer and more effective 

relationships between the terms. 

VI. CONCLUSION 

We have compared the performance of our method and 

Ant-Miner according to the predictive accuracy and 

simplicity of the discovered classification rules. 

The results of experiments have shown that the rules 

discovered by the proposed algorithm have an acceptable 

predictive accuracy and that they are able to find more 

complex relationships and give a simple representation for 

them. 

In this work no rule pruning was used before evaluating the 

quality of each work. Adding this can improve the simplicity 

of the rules leading to simpler rule sets. 

Further research should also be conducted into the effects 

of discovering a list of unordered set of unstructured rules that 

may increase the performance of classification. 

Additionally, the effect of pheromones on the types and 

quality of the rules discovered needs to be assessed. 
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