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Abstract— Outlier detection is an important problem in various 
fields.  A lot of algorithms have been proposed,  meanwhile a 
lot of definitions.  Unsatisfying  point is that definitions seem 
vague, which makes the problem an ad hoc one. We analyze the 
nature of outliers, and give a supplementary definition. Based 
on it,  we develop an  efficient relative deviation degree  (RDD)  
algorithm to identify outliers,  which converts outlier problem 
to pattern and degree problem.  We give two type of application 
in time series data –  line type  and curve type and introduce 
a longest    k -turn  subsequence problem.  We treat the 
structure of pattern as a kind of order,  which is a novel view.  
We also present  experimental  results  on synthetic and real 
datasets showing the efficiency of our technique. 

 
Index Terms—Curve, Outlier, Pattern, Relative Deviation 

Degree.  
        

I. INTRODUCTION 

Outlier problem could  be  traced  to its origin in the 
middle of the eighteenth century ([21] p27), when the main 
discussion is about  justification  to reject or retain an 
observation. From then, most methods in the early work 
have been developed in the field of statistics.  As the classic 
LS estimator is poor to outliers, different robust estimators 
were presented in turn. From L1 estimator [8] to 
M-estimators  [10], then to S-estimators [18], robust 
estimators have good performance to resist outliers. But as 
robust estimators are also based on statistical models, which 
is that the statistician always has a statistical model in mind 
(explicitly or implicitly) when analyzing data, e.g., a model 
based on a normal distribution or some other idealized 
parametric model such as an exponential distribution [15], 
and in reality, the distribution of a data set is not always 
curtain, these methods have their limits. Besides statistical 
methods, many other kinds of algorithms have been 
proposed. From distance-based [6] to density-based [13]; 
from deviation-based [2][9] to neural network [11][16] and 
genetic algorithm [17], etc. Meanwhile a lot of ad hoc 
definitions are presented, and we are  faced to the problem 
as Jagadish [9] stated that each of them gives a different 
answer, and none of them is conceptually satisfying. It is 
undoubtedly that we should make clear the definition of an 
outlier. But unfortunately, our general basic definition 
seems to be a descriptive one rather than an exact one. Let’s 

see a well-quoted intuitive definition of outlier by Hawkins 
[4]. 

An outlier is an observation that deviates so much from 
other observations as to arouse suspicions that it was 
generated by a different mechanism. 

And a further definition from Barnett and Lewis [21]. 
An observation (or subset of observations) which appears 

to be inconsistent with the remainder of that set of data. 
 
Barnett and Lewis stated that “the phrase ‘appears to be 

inconsistent’ is crucial. It is a matter of subjective judgement 
on the part of the observer whether or not some observation 
(or subset of observations) is picked out for scrutiny.”   

Obviously, we can’t get a certain answer on these 
definitions. Some additive definition should be given. This 
paper originates from this problem and aims to detect outlier 
patches in time series data. We show a neglected hidden 
feature of outlier problem ─ pattern, which may be used to 
describe outlier problem in a more general view. Based on it, 
we present a simple relative deviation detection algorithm, 
which is equal to a simple robust regression. We then develop 
it to a general form and apply it to curve type. By giving a 
new concept “turn”, we extend what called longest increasing 
subsequence problem [3] to longest turn subsequence 
problem. Combining it with our general relative deviation 
detection algorithm, we identify outliers in curve type 
successfully, which is similar to the mechanism of human 
beings. Our solution is simple and fast, besides, is clear in 
definition.  

 

We give related works in Section 2 and discuss the 
essence of outlier in Section 3 and present an additive 
definition, followed by our RDD algorithm in Section 4.  In 
section 5, we present longest turn subsequence problem and 
give out outlier detection algorithm to curve type data.  We 
will give complexity and experiments in section 6, 
conclusion and future work are in section 7. 

 
 

II. RELATED WORKS 
 

Identifying multiple outliers in linear models is not as 
simple as detecting a single outlier, owing to masking and 
swamping problems [19]. Multiple outliers, especially those 
which occur closely in time, often have severe masking 
effects that can render the usual outlier detection methods 
ineffective [1]. Ana Justel et al. [1] presented adaptive Gibbs 
sampling, which overcomes the inefficiency of standard 
Gibbs sampling to detect outlier patches. But among 200 
cases, it failed in 13 cases. It seems not escaped from what 
Jagadish et al. evaluated the statistical methods, especially, 
“in the case of time series data, the situation is more murky.” 
[9] Jagadish et al. then proposed a technique for mining 
deviants in time series. Their proposal is to use the well 
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recognized information theoretic principle of representation 
length. Though their algorithm is of beautiful form, but two 
parameters, the total storage and the number of deviants, 
should be assigned in advance, which makes the definition of 
deviant, hence outlier, a dependent one.  

In [7], Keogh et al. seemed treating outliers as 
individually surprising datapoints, and instead of processing 
outliers, they were interested in finding surprising patterns, 
i.e., combinations of datapoints whose structure and 
frequency somehow defies our expectations. Their novel 
definition about pattern surprising is that if the frequency of 
its occurrence differs substantially from that expected by 
chance, given some previously seen data. They believe the 
definition of surprise may be impossible to elicit from a 
domain expert and feel their new definition to be of 
advantage of not requiring an explicit definition of surprise. 
The use of “frequency” is also similar to human beings’ 
method, and forwarding one step, we could discover the 
essence of outlier. But neglecting characters of structure also 
brings shortage, which make the algorithm not so “general”. 
We may see this point easily from the random walk data 
experiment done in this paper. Furthermore, “TARZAN” 
algorithm has a threshold c that “can be identified by 
gathering statistics about the distribution of the scores and/or 
assuming the distribution of the scores to be normal, which 
indicates that finding surprising patterns in essence is also 
based on a kind of “deviation degree”, which, holds true in 
outlier detection, motivates our new RDD (relative deviation 
degree) algorithm.  

 

III. ESSENCE OF OUTLIER 
 

In their first edition ([20] p1), Barnett and Lewis 
quoted from Ferguson, “It is rather because…, that the loss in 
the accuracy of the experiment caused by throwing away a 
couple of good values is small compared to the loss caused by 
keeping even one bad value. The problem, then, is to 
introduce some degree of objectivity into the rejection of the 
outlying observations”. Outlier problem tends to be treated as 
an uncertain problem but measured by an objective quantity. 
After giving the definition of outlier ([21] p7), they drew a 
conclusion that “more fundamentally, the concept of an 
outlier must be viewed in relative terms”.  Though this 
conclusion was made in statistical field, it could be 
reasonably extended to other fields. And the attitude to 
relativity leads to the distinction of our approach from all the 
others. Barnett and Lewis seem to seek “a more appropriate 
model”, and Keogh et al. gave an “absolute” relative 
definition to “surprise”. In contrast, we accept and emphasize 
relativity, thus develop a supplementary definition. 

 
Definition 1: An outlier is an observation with a degree 

greater than a threshold in comparison with other 
observations referred to or associated with a specified 
pattern.  

 
 In this way, outlier problem changes to pattern problem. 

Here we distinguish two kinds of patterns to make clear the 
definition of outlier. One is known and of certainty, the other 
is unknown and of some certainty or uncertainty. The latter is 
like the classic “black swan” problem [5, 12], if and only if a 
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Fig. 1: Example Sequence S1 
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Fig. 2: Regression line for S1 

 
black swan is discovered, it won’t be an outlier then. To the 
former, outlier problem is “yes or no” problem; while to the 
latter, it is probability problem. Since even to former, we can 
measure outliers by a degree away from normal ones, we may 
generalize outlier problem to pattern and degree problem. 
That is, when we talk about outlier, we can’t separate it from 
a specified pattern and a deviant degree. In application, the 
accuracy of outlier degree is up to the accuracy of expression 
of the chosen patterns. 

 

IV. RELATIVE DEVIATION DEGREE (RDD) 
 

We present our RDD algorithm by a simple example, 
then generalize it.  
Problem 1: Given a time series data S1 as Fig. 1, suppose 
data match linear model, find out outliers. 
S1 = (3.1, 2.9, 2.85, 3, 3.05, 2.9, 3.2, 5.2, 8.5, 5.4, 5.3, 5.1, 3.1, 
3.05, 3, 2.99, 3, 3.02, 3.2) 
 

By classic LS regression, we get a line y=3.79-0.001x; 
and by robust LTS regression, line y=2.907+0.007x, as 
shown in Fig. 2. Now based on the above definition, we 
present our novelty RDD algorithm. 

 
Given a time series data S = d1d2……dN,  denote point 

(i,di) by pi, and ∠pjpipk  by ∠jik. 
 

Relative Deviant Degree Algorithm 1 
 
Input: time series data S 
Output: outliers of S 
 
•  Specify a similarity function sim(pk,(pi,pj))= 

exp(-∠jik^2/50), denoted by      
•  Specify an offset function off(pk,(pi,pj)): distance of k to 

line Lij, denoted by        
for ( i from 1 to N ) { 
 
    Xi =              Yi =                
     
} 
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    for( i, j from 1 to N,  j ≠ i )  
         wij = Xi × Yj                 
  
  
  RDDk = -ln                                     
 
 

       if RDDk > c then output k   
Notes 

•  Similarity function is used to evaluate the similar 
degree of point k related to the system of i and j, 
which is the pattern “line” in this case.  

•  Offset function calculates the real distance between 
k and system of i and j. 

•  wij is the weight of system of ij, denotes the relative 
effective degree.  

•  Relative deviant degree combines two aspects of 
views from similarity and real distance. 

•  c is the threshold, can be identified by the same way 
as [7]. 

 
By our algorithm, to problem 1 we get RDD measure to each 
element in Table 1. Points at 8, 9, 10, 11 and 12 are identified 
as outliers.  

 
Though RDD algorithm has commons in form with robust 
regression, our algorithm differs from robust one at the point 
that we approach from the inside structure of the pattern and 
stress on the whole effect, thus with more balance. Note that 
RDD algorithm is same as robust regression, can be possible 
with a highest breakdown point (50%). Now we modify our 
algorithm 1 to a general form. First, we introduce definition 
of view V. 
Definition 2:  Given a time series data S, a sub-series of S is 
also a time series where each element of it is an element of S. 
We denote e S when e is a sub-series of S. p
Definition 3: A view of S, Vα, is a set of sub-series of S of 
same length α , that is Vα = { e| e p  S, |e|= α } 
 
Algorithm 1’ 

 
  

V. CURVE-TYPE OUTLIER 
In this section, we extend RDD algorithm to curve type. In 

real application, curve-pattern data are general. So we give 
following problem. 

Table 1:  RDD values for sequence S1 
Position 1 2 3 4 5 
RDD 0.001 0.025 0.061 0.018 0.031 

Position 6 7 8 9 10 
RDD 0.067 0.138 17.956 27.693 23.879

Position 11 12 13 14 15 
RDD 18.482 14.609 0.021 0.003 0.005 

Position 16 17 18 19  
RDD 0.006 0.008 0.010 0.002  
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Fig. 3: Example curve-type sequence 

 
Problem 2: 

Given a sequence S of length N, {d1, d2, … dN }, which 
matches pattern “curve”, find outliers. 

An example is shown in Fig. 3. 
 

Though we might divide curve into several lines, it is not a 
satisfactory solution. By analysis to character of curves, we 
find that each smooth curve can be expressed by several 
ordered sets. We thus develop a dynamic programming 
algorithm to detect the order of curve type data, which can be 
traced to the problem of longest increasing subsequence. We 
first give definitions, then present our algorithm. 

 
Definition 4:   Given a smooth curve, except for boundary 
points, each extremum point is called a “turn point”; the 
number of extremum points is called turns. We denote 
maximum point by sign “＋”,  and minimum point by sign  
“－”. If a sequence S has t turns and the 1st one is a 
maximum/minimum points, then it is denoted by [＋/－, t ]. 
 
We then introduce a new problem, longest k-turn 
subsequence problem. 
 
Problem 3: Given a curve-pattern series data S of length N, 
with k turns, and a specified view, searching a longest 
subsequence having k turns. 
 
We give a simple specified view, passing a specified point i, 
and following algorithm. 
 
Algorithm 2: 
denote best[i][t], the longest subsequence from point 1 to 
point i with t turns;  
P[i][t], predecessor point of i in the longest t-turn 
subsequence best[i][t]. 
 
Input: time series data S 
Output: the longest t-turn subsequence starting from point 1.

Input: time series data S 
Output: outliers of S 
•  Let  Vα be an evaluating view,  e ∈ Vα. 
•  Given a similarity function sim: S×Sα -> [0,1], denoted

by       
•  Given an offset function off: S×Sα ->      ,  denoted 

by       
•  According to the dimension of  Vα, define different 

weight we and RDDk by sim and off  functions. 
for any element e in Vα 

calculate we 
calculate RDDk 
if RDDk > c  then  output k 
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Func route(S ) 
   Initialize best to an array of 0’s, and T to k. 
   for (t from 1 to T ) 
     for (i from t +1 to N ) 
        for( j from t to i-1) 
        { 
          if (d[i], d[j], d[P[j][t]] is a monotonic sequence)  

best[i][t]=max(best[i][t], best[j][t]+1)
           else 

best[i][t]=max(best[i][t], 
best[j][t-1]+1)   

         } 
 
Return best[][T] 
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Fig. 4: Synthetic sequences without outliers 
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Algorithm 3 return the longest t-turn subsequence passing 
any point i. 

A                                              B  Algorithm 3: 
Fig. 5: RDD values for synthetic sequences of Fig.4 Input: time series data S 

Output: the longest t-turn subsequence passing point i. 
•  Dividing the whole series data into two parts, S1: di, 

di-1,… d1; and S2: di, di+1,di+2, …, dN. 
•  Work out best1[][t] in S1 and best2[][t] in S2 on 

each t 
•  Combine them to identify the longest best[][T] 

 
O(N ) time (1+α α >0), and in condition of parallelity, it 
decreases to O(N ).  

Robust simple regression, e.g. LTS, requires sorting of 
the squared residuals, which takes O(NlogN ) operations [14]. 
Considering operations needed by whole subsamples in data, 

, total operations is O(N3logN ).  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
N
2 

 Now we give solution to problem 2.  
Algorithm 4: Algorithm 2 can be done in O(N2T ) time. And for the 

longest increasing subsequence problem is known to be 
solvable in time O(N log N ) [3], we may improve algorithm 2 
to a quicker state in some way.  

Input: time series data S 
Output: outliers of S 
•  Specify a curve pattern [sign, t] 
•  similarity function denoted by            , offset function 

denoted by          
 [1] To any di , work out a subset P(S)i with t turns , sign 

and maximum length by algorithm 3. 
[2] To dk ∈  P(S)i ,            = 1,          = 0; 

 dk  P(S)i ,        = 0,  calculate      by 
interpolation. 

∉

[3] Calculate RDDk by algorithm 1’ 
 

     with weight wi =               
 

 
and RDDk = - ln                                          

 
 

    [4] if RDDk  > c  then output k 

Note:  To any series sets, since outliers deviate from others, it 
may disturb the order of sets. So we can use a kind or kinds of 
order to descript the pattern.  Definition 2 and corresponding 
algorithms hold true to any kinds of order.   
 

VI.  COMPLEXITY AND EXPERIMENTS 
 

To Algorithm 1, for each point should be evaluated by 
any other two ones, time consumption is O(N3 ) when number 
of data is N. But since each evaluating pairs are isolated, this 
algorithm is of parallelity, which makes it possible to be run 
in O(N ).  Correspondingly,  algorithm 1’  can  be  done  in  

Algorithm 4 can be done in O(N3T ) time and in O(N2T ) 
time in parallelity.  

i
ksim

i
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i
ksim i

koff

∑ i
ksim

Following experiments are based on algorithm 4. 
Original sine data are got from function y=sin(x/47*2*PI); 
parabola data is from y=(x-24)^2.  x is an integer in [0,47]. 
We first observe data without outliers (Fig.4) and then with 
outliers (Fig. 6). 

When there are no outliers in data series, we can get RDD 
as Fig. 5, no point is identified as outlier: 

When outlier patches are introduced, size +1 to the x 
index 7, 8, 9, 10 in sine data and size +100 to the x index from 
37 to 41 in parabola data, we get corresponding RDD shown 
in Fig. 6. In A, points 8, 9, 10, 11 are identified; in B, angle 
order is adopted, and points 38, 39, 40, 41, 42 are detected 
rightly. 

Next, we give results to two real time series data, which 
are one day data, measured every 30 minutes from 0 to 24 
hours. One is CO2 flux data, the other is h-sat data, both 
achieved from Yucheng station, China in MODIS project by 
National Institute for Environmental Studies, Japan.  

In A of Fig. 7, besides apparent points like 9, 11, 12, 
some inner points like 22 and 27 are detected successfully; in 
B, two continuous outliers 45 and 46 are identified.  

Finally, we give a comparison to paper [9], where 
Jagadish et al presented an elegant algorithm for mining 
deviants. Their algorithm was thought fast and optimal. The 
complexity of their algorithm is O( ), where N is 
the length of sequence, Bm is a parameter chosen for buckets, 
and km a parameter chosen for number of deviants. Here we 
only discuss M1 data set, which is a time series showing the 
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total number of hours worked by people of a given age in a 
year. Parameters are: N =100, Bm=40, km=10. Their result is 
the deviant clusters searched with size between 1 and 10 
points. 
Clusters c1, c2, c3 labeled in Fig. 10 were identified. In detail, 
c1 contains points 23 to 30; c2 contains points between 48 
and 51; and c3 at point 90. Meanwhile, our result is listed in 
Table 2. RDD values of points not listed are all less than 2.9, 
among them most are less than 0.2, the outlier with minimum 
RDD is point 40. From Table 2, we can find that not only the 
three clusters are detected, but also an outlier at c4 (40). Note 
that our algorithm is O(N3T ) with T =1 and not considering 
parrellelity. Suppose km is ten percent of N, which is 
reasonable according to [9]. When N≥100, their algorithm 
takes time more than O(N3Bm ).  
Both algorithms need to specify parameters in advance. But 
our algorithm only need one parameter concerned with 
pattern, and might be removed by following study. What is 
more, from respective theoretic foundation perspective, both 
are optimal. 
 

VII.  CONCLUSION AND FUTURE WORK 
This work makes three new contributions. First, we have 

presented a supplementary definition to outlier, which lets us 
discuss outliers without vagueness.  Second, we proposed 
efficient algorithms ― RDD for identification of deviant 
points. Third, we  present  “longest k-turn  subsequence” 
problem and convert outlier problem to order-searching 
problem. 
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Experiments show the effectiveness of RDD algorithm. 

By comparison to statistical method and a deviation-based 
algorithm, we find our algorithm is faster and more accurate. 

 General speaking, our approach is based on pattern, and 
pattern is treated as relations between its elements, something 
what called structure. A relative mechanism is introduced to 
process this kind of relation, so in essence we build our 
method on equality of elements. Pattern can be divided into 
two classes: analytical pattern and non-analytical pattern. If a 
pattern can be expressed analytically, that is, relation among 
internal elements can be expressed in some form, we can use 
RDD formulation to extract outliers from normal sets. 
Non-analytical pattern will be discussed in another paper.  
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Fig. 8 (M1 data) 
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Table 2: Selected points and their RDD values for M1 data 
point 23 24 25 26 27 

RDD 6182.3 22.2 3743.5 43.8 2983.7

point 28 29 30 31 32 

RDD 3801.8 66.6 2932.1 8641.6 92.2 

point 40 41 48 49 90 

RDD 1092.6 170.4 23425.0 10246.0 7208.4

 
Above all, pattern itself can be treated as a set, a 
non-disturbed set. If there is a set which includes abnormal 
elements, these elements may disturb the orders held by a 
pattern. To the curve pattern, we will study adapted algorithm 
in our future work so that we don’t need to specify a 
parameter in advance. 
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