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Continuation-ratio Model for Categorical Data:
A Gibbs Sampling Approach

Wan Kai, Pang *

Abstract—In this paper we discuss the continuation-
ratio model for ordinal data. This particular type
of model is to model the probability of one particu-
lar category given the categories proceeding this one.
It can be shown that estimation of the continuation-
ratio model parameters can be done efficiently by us-
ing the techniques in fitting the binary data mod-
els. In this way, one does not have to estimate the
cut-point parameters as in the cumulative probability
models. A Bayesian approach with the use of Gibbs
sampler is adopted in this paper. The adaptive re-
jection sampling method proposed by Gilks and Wild
is used. The adaptive rejection sampling (ARS) algo-
rithm is an efficient and direct method to sample from
complicated log-concave densities often found in many
Gibbs sampling scheme. We applied this model to
analyse data obtained from experiments about quality
of telephone connection conducted by British Telecom
(BT) Laboratory. The final results are satisfactory.

Keywords: Continuation-ratio Model; Ordered Cate-
gorical Data, Markov Chain Monte Carlo; Adaptive

Rejection Sampling.

1 Introduction

A frequently used method of response in many scientific
experiments is a three, four or five-point scale, graded,
for example, subjectively from ’Excellent’ to 'Bad’. In
theory a preferable model for this kind of data would be
one which takes into account the categorical nature of
the response. The response is not continuous but rather
discrete with only four/five possible values. More in-
formation is contained within the ordered structure of
the categories. The categories are not separate, indepen-
dent possibilities; they are strictly increasing (decreasing)
from 'Bad’ to ’Excellent’. Also relevant is the fact that
these categories are not fixed but rather arbitrary cut-
points of some underlying continuum. This underlying
continuum is the unmeasurable subjective response.

As a result of these considerations, it is the probability
of a response falling into a certain category (m;) which
is the focus of the modelling procedure. Associated with
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this are the cumulative probabilities (y), the probabili-
ties of the response falling in certain category or below
it. Models for ordered categorical data had been stud-
ied by many researchers (either in a frequentist domain
(McCullagh (1977, 1978), Stram et. al (1988), Jansen
(1990), Agresti and Lang (1993)) or in a Bayesian ap-
proach (Albert and Chib (1993)). The popular models
are proportional-odds model (cumulative logit model),
cumulative probit model and the cumulative complemen-
tary log-log model. These models model the cumulative
probability up to certain level of category and they are
based on the generalized linear model settings with an ap-
propriate link functions. Models for the cumulative prob-
ability of category j, v; = Pr(Y; < j), can be founded in
the monograph by Agresti (1996).

The model which is discussed in this article is the
continuation-ratio model. This is defined as follows

(Agresti (1996))
logit [P;(Cat = j | Cat > j)] = a; — x;3 (1)

where o is the cut-point parameter for category j. This
model is particularly flexible in the number of ways it may
be rewritten to ease interpretation. Thus the following
are all equivalently the continuation-ratio model:

.
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Similarly there are the continuation-ratio complemen-
tary log-log and continuation-ratio probit models when
the link function is the complementary log-log and pro-
bit respectively. The continuation-ratio link models do
not have the same appeal to an underlying continuum
as in the case with the cumulative link models. All
continuation-ratio link models define strict stochastic or-
dering but they are not, in general, invariant to the col-
lapsing of the contiguous categories.
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2 Relationship between Continuation-
ratio Model and Model for Binary
Data

It is easy to show that the likelihood function for
continuation-ratio link models can be split into »—1 inde-
pendent binomial likelihood functions. To demonstrate,
consider the case of an ordinal response having four cat-
egories (r =4). The likelihood L for the ijth observation
is proportional to

Lo mlitxali xnliy xali,(9)
where ¥;;,, = 1 if the ordinal response y;; = h and y;; =0
otherwise. Since Zi:l i = 1, this is also the joint
likelihood for one observation from each of the three in-
dependent binomial distributions,

(1) Bin(l,wijyl)

.. . 35,2
(ii) Bin (yz‘j,z + Yij,3 + Yija, )
5,2+ Tij3 + Mij4

. Ti5,3
(iii) Bin (ymg + Yija, 7>
Tij,3 + Tij.4

A continuation-ratio link model is in this case

Link(7,1) = a1 — X80
. 35,2 ’
Link = ay—X;[3
(Wij,2+77ij,3+77ij,4> 2
. 5,3 ’
Link [ —————— = a3—x0
(%;3 + 7%34) i)

So if the continuation-ratio link model is considered to
have three levels then each level models one of the bino-
mial probabilities in the expanded likelihood. This means
that we can use the method for fitting logistic regression
models for binary data to fit continuation-ratio link mod-
els at each level without having to estimate the cut-point
parameter in each category level. Alternatively, we can
use the expanded likelihood in (??) to estimate the cut-
point parameters o, j =1,...,7 — 1 and the regression
parameter vector J for all categories. Methods for fit-
ting binary data using Gibbs sampler can be found in
Zeger and Karim (1991) and Pang (1999) and methods
for fitting ordinal data can be found in Albert and Chib
(1993). A brief description of Markov chain Monte Carlo
techniques, Gibbs sampler method and the adaptive re-
jection sampling method (ARS) is introduced in the next
section.

3 Markov Chain Monte Carlo Tech-
niques

Markov Chain Monte Carlo (MCMC) methodology pro-
vides enormous scope for realistic statistical modelling
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and has become popular recently, for Bayesian com-
putation in complex statistical models. MCMC is es-
sentially Monte Carlo integration using Markov chains.
Bayesian analysis requires integration over possibly high-
dimensional probability distributions to make inferences
about model parameters or to make predictions. How-
ever in the past Bayesian inference has been hampered
by the problem of evaluating the expectation of the pos-
terior densities by numerical integration. This problem
becomes more acute when Bayesian statisticians have
to solve high dimensional integrals. Complex numeri-
cal integration methods such as the Gaussian quadrature
and Laplace approximation (Tierney and Kadane (1986),
Shun and McCullagh (1995)) are utilized. Monte Carlo
integration draws samples from the required distribution,
and then forms sample averages to approximate expecta-
tions. The Markov Chain Monte Carlo approach draws
these samples by running a suitably constructed Markov
chain for a long time. There are many ways of construct-
ing these chains, but most of them, including the Gibbs
sampler (Geman and Geman, 1984), are special cases of
the general framework of Metropolis et al. (1953) and
Hastings (1970). Many MCMC algorithms are hybrids
or generalizations of the simplest methods: the Gibbs
sampler and the Metropolis-Hastings algorithm.

3.1 The Metropolis-Hastings Algorithm

Constructing such a Markov chain is not difficult. We
first describe the Metropolis-Hastings algorithm. This
algorithm is due to Hastings (1970), which is a general-
ization of the method first proposed by Metropolis et al.
(1953).

Let p(#) be the distribution of interest. Suppose at time
t, 0441 is chosen by first sampling a candidate point 7
from a proposal distribution ¢(. | 6;). The candidate 7 is
the accepted with probability

a(f,n) = min (1, f’

If the candidate point is accepted, the next state be-
comes 641 = n. If it is rejected, the chain does not move.
The proposal distribution can be any kind of continuous
probability density and the stationary distribution of the
chain will be p(6).

The Metropolis algorithm considers only symmetric pro-
posals, that is, ¢(0 | n) = q(n | 0). It is often convenient
to choose a proposal which generate each component of i
conditionally independently, given ;. Therefore the ac-
ceptance probability of accepting a candidate point 7 is
given by
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3.2 The Gibbs sampler

Many statistical applications of MCMC have used Gibbs
sampler, which is easy to implement. Gelfand and Smith
(1990) gave an overview, and suggested the approach
for Bayesian computation. First, probability densities
of unknown parameter 6 of interests are denoted as
p(0) = F’'(0), F(0) is the cumulative distribution func-
tion (CDF) of 6. Therefore, in the sequel, joint, condi-
tional and marginal densities appear as p(8,7n), p(6|n),
and p(n). Now the Gibbs sampling algorithm is best
described as follows: Let § = (61,09, ...,0) be a col-
lection of random variables. Given an arbitrary initial
values 0; ), ..., 0, we draw 6,V from conditional dis-
tribution p(X; | 629, ..., 6,9, then 6, from p(6, |
91(1),93(0), ...,Hk(o)) and so on up to 0,V from p(Ok |
91(1), e Hk,l(l)) to complete one iteration of the scheme.
This scheme is a Markov chain, with equilibrium distri-
bution p(@). After t such iterations we would arrive at
(Hl(t), 6, ..., Hk(t)). Thus, for t large enough, 6" can be
viewed as a simulated observation from p(8). Provided,
we allow a suitable burn-in time, #®) 9¢+1) gt+2)
can be thought of as a dependent sample from p(#).

Similarly, suppose we wish to estimate the marginal dis-
tribution of a variable ) which is a function g(61, 6s, ..., O%)
of §. Evaluating g at each of the Q(t) provides a sample
of n. Marginal moments or tail areas are estimated by
the corresponding sample quantities. Densities may be
estimated using kernel density estimates.

3.3 Sampling Methods in Gibbs Sampler

The Gibbs sampler involves sampling from full con-
ditional distributions. It is essential that sampling
from full conditional distributions is highly efficient
computationally. Rejection sampling and the ratio-of-
uniforms are two techniques for sampling independently
from a general density p(6) where p(f) is intractable
analytically.

(1) Rejection sampling method:—Rejection sampling re-
quires an envelope function G of p(#) where g(0) > p(0)
for all . Samples are drawn from density proportional
to g, and each sampled point 6 is subjected to an
acceptance/rejection test.

(2) Ratio-of-uniforms  method:~Ratio-of-uniforms
method is to introduce two variables U and V.
Let D denote a region in {U,V} space defined by
0<U <+/p(V/U). Sample a point U, V uniformly from
D. This can be done by enveloping the entire region of
D by a region A. U and V can then be generated by
rejection sampling.

(3) Adaptive rejection sampling method:—Adaptive
rejection sampling (ARS) method is proposed by Gilks
and Wild (1992). In the rejection sampling and ratio-
of-uniforms sampling methods, finding a tight envelope
function g or a envelope region A is difficult. These
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can also be very time consuming in the sampling stage.
However in many applications of Gibbs sampling, the
full conditional densities p(#) are often log-concave (that
is CE0) - ). Gilks and Wild (1992) proposed the
adaptive rejection sampling method to sample from
a complicated full conditional density which satisfies
the log-concavity condition. They showed that an
envelope function for logp(f) can be constructed by
drawing tangents to logp at each abscissae for a given
set of abscissae. An envelope between any two adjacent
abscissae is then constructed from the tangents at
either end of that interval. Secants are drawn through
logp at adjacent abscissae. The envelope is piece-wise
exponential for which sampling is straightforward. We
will use the adaptive rejection sampling method over the
rejection sampling or ratio-of-uniforms method as the
ARS is more direct and efficient in terms of sampling
from the full conditional density. One may refer to the
article by Gilks and Wild (1992) for more theoretical
details about their method. Also one may refer to the
book by Devroye (1986) or to the monograph by Gilks et
al. (1996) for more details on rejection sampling method,
ratio-of-uniforms method and the Metropolis-Hastings
method.

4 Continuation-Ratio Model to Fit The
Telephone Connection Quality Data

At the laboratories of British Telecom (BT) in Martle-
sham near Ipswich (UK), a series of experiments concern-
ing the quality of telephone connections were conducted.
One of their experiments is called conversation experi-
ment. A conversation experiment consists of a number of
pairs of subjects and each pair engages in a conversation
over the telephone. The two subjects in each pair sit in
two different cabinets; say cabinet A and B. In a conver-
sation experiment a subject engages in conversation and
then gives an opinion about the telephone connection.
The duration of conversation is determined by the sub-
jects. When the conversation is finished the subjects hang
up and are prompted by the experiment controller to give
an opinion of the transmission condition. The opinion is
typically given on a five point scale graded from ‘Bad’
to ‘Excellent’. This is an ordinal response scale. The
subjects also give a binary responses to a question on dif-
ficulty in hearing over the connection.

The order in which a subject hears the transmission con-
ditions is determined by an experimental design. This de-
sign can be set out as a two-way layout in which each row
corresponds to a subject and each column corresponds
to a period. In each period there is a particular level
of transmission conditions. The model is linear in two
factors; namely (i) rows (random effects), and (ii) trans-
mission conditions.

For the experiments that we analyzed, one is called E198
experiment. This experiment has an limited duration in
the conversation between the two subjects. There are 2
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pairs of 16 subjects. Each subject (row) received 8 trials.
In each trial one level of the 8 transmission conditions is
set.

Here we propose to use the continuation-ratio model to
model the E198 data set using the expanded likelihood
with one common set of regression parameters. In the
following we present the final results of our analysis. As
in simulation, 10,000 random variates are generated for
each parameter after 1000 burn-in values. The results of
the final estimates are shown in Table 1.

Table 4. Results Continuation-ratio model of E198 experiment.

para. mean S. e. s. el Po.o2s Po.g7s
Intercept | -8.9036 | 0.3304 | 0.0074 | -9.4885 | -8.3079
Cond 1 aliased - - - -
Cond 2 0.2835 | 0.4716 | 0.0106 | -0.6140 | 1.1834
Cond 3 0.3856 | 0.4910 | 0.0208 | -0.6078 | -1.3223
Cond 4 7.3293 | 0.5168 | 0.0116 | 6.3213 | 8.3255
Cond 5 0.1846 | 0.5054 | 0.0417 | -0.8195 | 1.1492
Cond 6 2.6563 | 0.4944 | 0.0301 | 1.6598 | 3.5756
Cond 7 6.4176 | 0.5043 | 0.0113 | 5.4333 | 7.3969
Cond 8 8.0449 | 0.5117 | 0.0205 | 7.0102 | 8.9981
Cut 1 aliased - - - -
Cut 2 3.3255 | 0.6902 | 0.0753 | 2.4298 | 5.9761
Cut 3 6.7925 | 0.6384 | 0.0114 | 5.4651 7.8235
Cut 4 9.3560 | 0.7098 | 0.0374 | 7.5261 | 10.7382

1: This is the standard error of the batching means.

As we can see from Table 4, the standard deviation of
batching variances are very small relatively to overall
standard deviation of the sample variances in each chain.
The number of sample points in each batch is 500. There
are 20 batches. This indicates that convergence is good in
each of the Gibbs sampling scheme. The last two columns
in each of the Tables show the usual 2.5% and 97.5%
quantile values as shown in last three chapters.

We can in fact compare our results with those obtained
by Lewis et al. (1993). They also fitted the continuation-
ratio model to the E198 data. But they only included
16 subjects in the model and the covariate sets are quite
different from the one that we used in here. In Table
** we presented partially their results. It is noted that
the estimates for the cut-points and conditions, to cer-
tain extent, are similar to our results. Lewis et al. (1993)
used GLIM software package to fit the continuation-ratio
model.
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Table 5: Results of E198 experiment by Lewis et al. (1993)*

parameter | estimate | s. e.

Intercept -12.68 1.488
Cond 1 aliased -
Cond 2 0.5848 | 0.7317
Cond 3 1.067 0.7392
Cond 4 8.924 1.043
Cond 5 0.9571 | 0.7349
Cond 6 4.427 0.7999
Cond 7 7.506 0.9487
Cond 8 10.24 1.125
Cut 1 aliased
Cut 2 3.764 0.5271
Cut 3 6.992 0.7302
Cut 4 10.27 0.8831

*:This table is extracted from Table C.1 of Lewis et al.
(1993).

5 Conclusions

In this paper, we presented the estimation results of
continuation-ratio model for a large set of simulated data
and a set of ordinal data from the telecommunication ex-
periment. For the experiment data set (BT E198 data),
we used the expanded likelihood to estimate the overall
parameters. The other way of parameter estimation is to
fit a model for each level and there are four separate mod-
els with no cut-points. However our experiences indicate
that after converting the data into binary form. That is
we let Vi; = 1if Y;; = hand Yj; = 0if Y3 > h. The
ARS estimation procedure failed to converge in each of
the four cases due to the sparseness of ‘1’ in each subject.
Similar results are encountered when we use the BUGS
program for the same data set.

The interpretations of the continuation-ratio model is dif-
ferent from the model for strictly binary data. How-
ever the estimation technique is the same. The proposed
continuation-ratio model is a model which, in general,
models any response of an ordered categorical nature.
This implies that the model would be suitable to cope
with the many other ordered categorical scales used in
historical experiments. The traditional British Telecom
method of analysis for opinion score responses has been to
perform an analysis-of-variance on the numerical scores
assigned to the categories ( 0 to 4 ). One of the as-
sumptions underlying the analysis-of-variance procedure
is that the response variable follows a Normal distribu-
tion. The opinion score is constrained to one of five val-
ues, i.e., it is a discrete response rather than a contin-
uous one. Approximating a discrete response with five
values by a Normal curve is rather a crude approach.
Also the scores attributed to different categories are ar-
bitrary. The two considerations have the consequence
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of inefficient estimation of parameters by the standard
analysis-of-variance approach.

Wolfe (1996) used continuation-ratio model to fit the
BT experimental data. He found that the residual sum
of squares of the continuation-ratio models are in gen-
eral smaller that the residual sum of squares as min-
imised in the analysis-of-variance approach. Thus the
continuation-ratio logit model fitted the data better than
the analysis-of-variance approach. The proposed residual
sum of squares (Wolfe, 1996) for the continuation-ratio
logit model (RSScr) is calculated as follows:

n

RSSCR = Z(yl - ?Jz)2 (6)

=1

with ¢; given by
r—1
§i=> it (7)
j=0

The fitted value g; is calculated by multiplying the fitted
probabilities from the continuation-ratio logit model 7
by the scores j = 0 to 4 as used in the ANOVA model for
the data, giving a fitted mean score for the continuation-
ratio logit model.

The Bayesian method of modelling the
continuation-ratio logit model wusing Markov chain
Monte Carlo (MCMC) technique provides a good al-
ternative way to model ordinal data. In the Bayesian
approach, one can identify immediately those parameters
which have significant effects by conveniently inspecting
whether zero value is contained in the (1 — ) x 100%
probability intervals.  95% probability intervals are
adopted here. Another advantage of Bayesian modelling
is that we are able to compute the predicted probabilities
of future events for given generated parameter values.
When one uses Markov chain Monte Carlo (MCMC)
technique for parameter estimation, one can also obtain
the (1 — «) x 100% probability intervals for the pre-
dicted probabilities of future events. More information
about model prediction is incorporated naturally in the
Bayesian approach. The model parameters and future
value of the observations are random variables in full
probability model under discussion.

One major contribution of this paper is by fit-
ting continuation-ratio model, we can estimate the cut-
points parameters in the cumulative logit model for or-
dinal data. Algorithms proposed by Albert and Chib
(1993), Cowles (1996) and Nandram and Chen (1996) to
find the cut-points become unnecessary. Often these al-
gorithms required more computational effort. However
there is a drawback in continuation-ratio modelling. If
there are not enough ’1’s in the converted binary data
set in any particular category (level), then the Gibbs
sampler scheme will fail in the continuation-ratio logit
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model for that level. We have to resort to estimate pa-
rameters in the expanded model in (6) where we need to
estimate each of the cut-points from the model (see Sec-
tion 5). Otherwise modelling the continuation-ratio link
models (logit, probit, complementary log-log) for ordinal
data using Gibbs sampler method is an easy alternative
over the usual cumulative probability link (logit, probit,
complementary log-log) model.
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