
 
 

 

 
Abstract —Co-training is one of the major semi-supervised 

learning methods which can induce classifiers from only small 
number of labeled data and sufficient number of unlabeled data. 
To perform successfully, co-training requires splitting the 
features in original data and constructing views.  However, it is 
not so easy to construct good views which satisfy the following 
conditions for successful performance of co-training: (1) each of 
views includes good attributes for classification, and (2) the views 
are sufficiently independent each other. Additionally, some of the 
recent researches pointed out that co-training can not perform 
successfully even if the views satisfy the requirements for good 
performance. We investigate the relationship among the some 
evaluation criterion for feature splits and the performance of 
co-training through the well-designed experiments. In this paper, 
the experimental results and future works for designing ideal 
artificial feature splits are reported.  
 

Index Terms—co-training, feature splits, dependency, 
semi-supervised learning.  
 

I. INTRODUCTION 
Co-training is one of the major semi-supervised learning 

methods which induce classifiers from only small number of 
labeled data and sufficient large number of unlabeled data [2], 
[5], [20]. Because co-training does not require human efforts to 
classify the data, the method is applied to various classification 
learning tasks such as Web page categorization and spam mail 
filtering.  

One of the requirements that co-training performs 
successfully is as follows: (1) each feature split includes good 
attributes for classification, and (2) the feature splits are 
sufficiently independent. 

For example, Blum and Mitchell [2] used words in the body 
of the pages and the words in hyperlinks of other documents 
referring to that particular page for as natural feature splits. 
Co-training performs successfully with their adopted natural 
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feature splits. However, in many case, it is not so easy to find 
such a good natural feature splits which satisfy the 
requirements for successful performance of co-training. 

Some of the researches are conducted to design ideal 
artificial feature splits. However, the method or criteria to 
design the ideal artificial feature splits has not been proposed. 
Additionally, the relationship between the performance of 
co-training and the characteristics of feature splits has not been 
investigated sufficiently. Feger et al. [8] reported that 
co-training shows good performance even if the feature splits 
are not independent enough. 

Final goal of our research is to develop the method or criteria 
to design ideal artificial feature splits for co-training. As a basic 
study to achieve the goal, we investigate the relation between 
the characteristics of feature splits and performance of 
co-training through well-designed experiments. The 
characteristics of feature splits are evaluated with some 
measures. In this paper, the experimental results and feature 
works for designing ideal artificial feature splits are reported. 

II. CO-TRAINING AND VIEWS 

A.  Co-training Algorithm 
The algorithm of co-training [2] is shown in Table 1. 
Co-training is a semi-supervised learning method which can 
induce high accuracy classifiers from small labeled and large 
unlabeled data set. 

First, the features in the original data set are split into two 
feature sets V1 and V2, which are called views. As mentioned 
above, the views should be satisfied the requirements for 
successful performance of co-training. Two classifiers C1 and 
C2 are learned with using one view of the labeled set L. Here, 
the two classifiers C1 and C2 are slightly different because 
they are induced with different views though the classifiers 
are learned from the same data set L and same learner. 

Next, all of the examples in unlabeled examples pool U’ are 
classified by the classifier C1 and C2 respectively. The 2p+2n 
examples, which are consisted of p positive and n negative 
examples with most confidently by C1 and C2, are add with 
predicted label to the labeled data set L. The U’ are replenish 
with examples randomly selected from unlabeled data set U. 

By iterating such process, the number of labeled examples L 
is increased by the self-labeled examples. As a result, the 
prediction accuracy of the classifiers is improved.  

In the framework of co-training, the class of test examples is 
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predicted by the two classifiers. The confidence of the 
predicted class is calculated by multiplying the probabilities 
output by C1 and C2. The class with the highest probability is 
the predicted class by the co-training classifiers.  

 
TABLE 1 

CO-TRAINING ALGORITHM 
 Inputs: 

• L: a small set of labeled example 
• U: a small set of unlabeled example 
• V1, V2: two sets of describing the example 

 
Algorithm: 
Create a pool U’ by randomly choosing u examples from U 
 

Loop k iterations 
Learn Classifier C1 from L based on V1 
Learn Classifier C2 from L based on V2 

 
C1 predicts the class of example from U’ based on 

V1 and chooses the most confidently predicted p 
positive and n negative examples E1 

C2 predicts the class of example from U’ based on 
V2 and chooses the most confidently predicted p 
positive and n negative examples E2 

E1 and E2 are removed from and added with their 
labels to L 

Randomly chose 2p+2n examples from U to 
replenish U’ 

End 
 
Outputs:  

 Two Classifiers C1 and C2. The confidence of the 
predicted class is calculated by multiplying the 
probabilities outputted by C1 and C2. 

 

B. Feature Splits and Views 
Feature splits and the views are key factor which determines   

the performance of the co-training.  
Blum and Mitchell [2] stated the two requirements for 

successful co-training. First requirement is that the two views 
should be sufficiently strong. In other words, the learner can 
learn the high prediction accuracy classifier using each view 
individually. Second one is that the two views should be 
conditionally independent given the class. They proved the 
requirements theoretically and experimentally.  
Nigam and Ghani [13] investigated the effect of dependence 

between the views to the performance co–training. They found 
that the co-training performs better on truly independent views 
than random views through their experiment. This effect was 
also confirmed by Chan et al. [4]. 
On the other hands, Feger et al. [8] reported the prediction 

accuracy of classifiers by co-training does not become better 
even if the views are truly independent. They concluded that 
the relation between the characteristics of views and the 

performance of co-training should be investigated more in 
detail. 

Though many researches are conducted on characteristics of 
feature splits and the performance of co-training, the method or 
criteria of designing optimal artificial feature splits has not 
been proposed. The former researches suggest that there is 
another feature splits’ requirement from ones Blum and 
Mitchell stated. Thus, we investigated on the requirements 
through the experiments. 

III. EVALUATION MEASURE OF FEATURE SPLITS 
The characteristics of feature splits are evaluated with the 

following measurements. 
 

A. Measure for dependence between two attributes 
To evaluate the class-conditional dependence of two views, 

Feger et al. adopted the Mutual Information (MI) , and we 
followed them. 
The mutual information MI(X,Y) of two features X and Y 

is depends on their entropy H and defined as follows 
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Here, H(X) is entropy of X and MI(X,Y) is mutual 
information between the feature X and Y. If the two features 
are truly independent, MI(X,Y)=0. 

The class-conditional mutual information, CondMI(X,Y) 
is defined as follows [7]. 
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Here z=c means that the class z is c. If the feature splits X 
and Y are truly independent each other, the 
class-conditional mutual information, CondMI(X,Y) 
becomes 0. 

B. Measure for dependence of two views 
As mentioned above, the dependence between the features X 

and Y can be evaluated by the class-conditional mutual 
information CondMI(X,Y). Based on class-conditional 
mutual information, the dependence of inter-views V1 and V2 
and intra-view Vi is evaluated as follows.  
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1) Dependence inter-views 
The dependence of inter-views V1 and V2 is defined by 

the summation of class-conditional mutual information of 
the features A1 and A2 which belong to the views V1 and V2 
respectively. 
 

∑ ∑
∈ ∈

=
11 22

),(
),(

21

21

VA VA

AACondMI
VVInterCMI

 

 
The InterCMI is “lost” mutual information when the 

feature splits are constructed from the features in the data 
set. The smaller value of InterCMI is, the dependence 
inter-views are also smaller.  
 
2) Dependence intra- view 

The dependence intra-view Vi is defined with the 
summation of class-conditional mutual information of the 
features X and Y which belong to the same view Vi  as 
follows. 
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This IntraCMI is sum of the mutual information between the 
features in the same view. The larger value of IntraCMI is, 
the dependence intra-view is also larger. 

 

C. Measure of strength of feature splits 
One of the requirements for views, strength of feature splits 

means that how the learner can learn the high prediction 
accuracy classifier using the view individually. We measure 
the strength of feature splits by the prediction accuracy of the 
classifier induced using the view from the all of examples. 

IV. EXPERIMENTS 

A. Experimental Setup 
1) Learning Algorithms 

To investigate the relation between the feature splits and 
the performance of co-training, we conducted the following 
experiments. 

As learners, we use naïve-Bayes (NB) [11], Radial Based 
Function Neural Networks (RBF NN) [12], [15]. They are 
also used by Feger et al. [8]. These learners often adopted as 
basic learner of co-training. They are also used as one of the 
major application, text classification [3], [4]. 

In this experiment, we use the learning algorithms 
implemented in WEKA [17]. All of the parameters of 
learning algorithms are default ones. The learning 
parameters of co-Training are also default ones which are 
used in Blum et al. [2]. 

 
2) Data set 

The Votes data set is used from UCI Machine Learning 
Repository [1]. The features of data set are summarized in 

Table 2.  Votes data set has two classes, and all 16 
attributes are categorical. 

 
TABLE 2 

FEATURES OF VOTES DATASET 

• Name: Votes (Congressional Voting Records) data 
sets. 

• # of Instances:  435 
• # of Attributes: 16 (All attributes  are categorical) 
• # of Class: 2 

 
3) Feature splits 

We generate a hundred of feature splits randomly. Each 
feature splits include 8 attributes which are half number of all 
16 attributes. 

 
4) The other settings 

The number of labeled data given as training data is set to 
20. The experiments are done with 10 folded cross validation. 
The experimental results, such as prediction accuracy of 
classifiers are average of 10 runs. 

 

B. Results 
1) InterCMI and performance of co-training 

First, we investigate the relationship between InterCMI 
and prediction accuracy of classifiers induced by 
co-training. The smaller InterCMI indicates that the two 
views are more independent, so it has been expected that 
the smaller InterCMI feature splits show better 
performance. We picked up top (smallest) and bottom 
(largest) 20-InterCMI feature splits respectively, and 
compare the prediction accuracy of co-trained classifiers. 

The experimental results are depicted in Fig. 1.  As 
expected, the prediction accuracy of top 20-feature splits 
shows better performance than that of bottom 20 in the 
case of RBF NN learners. In the case of NB learners, the 
prediction accuracy of top 20 almost the same as that of 
bottom 20. 
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Fig 1.  Prediction accuracy of classifiers in top and bottom 20 InterCMI 
feature splits. 
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2) Strength of feature splits and performance of 
co-training 

Next, we investigate the effect of strength of feature splits. 
The strength of feature splits are measured by the prediction 
accuracy of prediction accuracy of claccifier induced using 
the view from tha all of examples. Here, the lower prediction 
accuracy is adopted as measure from two classifiers induced 
with each views. 

We divide the top 20-InterCMI feature splits into two 
groups based on the strength of feature splits, higher and 
lower 10 feature splits groups. The experimental results are 
shown in Fig. 2.  

In the case of RBF NN learners, the higher 10 feature 
strength feature splits group shows better peformance than 
lower ones. When we adopt the NB as learners, there is not 
significant difference on the performance between higher 
and lower groups. 
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Fig 2.  Prediction accuracy of classifiers in higher and lower10 strength of 
feature splits. 

 

V. DISCUSSION 
 Blum and Mitchell stated the following two requirements 

for successful co-training, (1) two views should be sufficiently 
strong, and (2) two views should be conditionally independent 
given the class. We confirmed that these two requirements are 
not valid in some cases. 

From our experimental results, we confirmed that the two 
requirements are valid in the case of RBF NN learners, though 
the requirements does not hold true in the case of NB learners. 
These experimental results support the point that co-training 
does not perform well even though the two views are 
conditionally independent Feger reported in [8]. The artificial 
feature splits sometimes does not works well even though the 
feature splits satisfies the two requirements stated by Blum and 
Mitchell. 

For developing the method or criteria to design ideal 
artificial feature splits for co-training, more exploration of 
additional requirements and their measure should be 
conducted. 

 

VI. CONCLUSION 
In this paper, we investigate the relation between the 

characteristics of feature splits and performance of co-training 
as a basic study to develop the method or criteria to design the 
ideal artificial feature splits. 
 To confirm the effectiveness of two requirements for 
successful co-training stated by Blum and Mitchell, we 
conducted the experiments with many kinds of feature splits, 
and investigate the relationship between performance of 
co-training and the characteristic measure of feature splits. The 
experimental results show that the two requirements stated by 
Blum et al. are not valid in some cases.  
 To design the ideal artificial feature splits, some more 
explorative study of additional requirements and their measure 
is required. The following issues are our future works. 
 

• Adopting various kinds of learners: we conducted 
the experiments with naïve-Bayes and RBF neural 
networks as learners, and the performances are 
different. To clarify the difference of performance 
among learners and induce general requirements, we 
should conduct experiments with the other learners 
such as support vector machines (SVM) [6][16] 
which are adopted as learners for co-training for text 
classification problem [4][8]. 

• Experiments with real and large data sets: The 
data set we use in this paper has only 16 attributes. 
The real data sets such as text classification problem, 
always has much more attributes. Additionally, more 
unlabeled data sets are prepared. The relation ship 
between performance of co-training and feature 
splits in the case of large data sets is necessary to 
investigate for applying to the real problem. 

• Exploring another measure of feature splits:  In 
this paper, we adopted the measurements of feature 
splits proposed by Fager et al. [8].  Exploration of 
effective measurement which represents the 
characteristics of feature splits is required, especially 
for the numerical attributes. 

 

REFERENCES 
[1] A. Asuncion and D. J. Newman. UCI Machine Learning Repository 

[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: 
University of California, School of Information and Computer Science, 
2007. 

[2] A. Blum and T. Mitchell, “Combining Labeled and Unlabeled Data with 
Co-Training”, In Proceedings of the eleventh annual conference on 
Computational Learning Theory (COLT’98), pp. 92-100, 1998. 

[3] A. Bouchachia, “RBF Networks for Learning from Partially Labeled 
Data”, in Proceedings of the 22nd ICML Workshop on Learning with 
Partially Classified Training Data, pp.10-18, 2005. 

[4] J. Chan, I. Koprinska, and J. Poon, “Co-training with a Single Natural 
Feature Set Applied to Email Classification”, In Proceedings of 
IEEE/WIC/ACM Conference on Web Intelligence (WI’04), 2004. 

[5] O. Chapelle , B. Scholkopf , and A. Zien,  Semi-Supervised Learning, 
MIT Press, 2006. 

[6] Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support 
vector machines, 2001. Software Available at 
http://www.csie.ntu.edu.tw/~cjlin/libsvm. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



 
 

 

[7] T. Cover, “Geometrical and statistical properties of systems of linear 
inequalities with applications in pattern recognition”, IEEE Trans. on 
Electronic Computers, Vol. EC-14, No.3, pp.326-334, 1965. 

[8] F. Feger and I. Koprinska, “Co-training Using RBF Nets and Different 
Feature Splits”, In Proceedings of 2006 International Joint Conference on 
Neural Network, pp. 1878-1885, 2006. 

[9] S. Kubo, M. Terabe, K. Hashimoto, R. Ono, “Tri-Testing: A novel 
Semi-Supervised Learning Method based on Ensemble Learning and 
Active Learning”, In Proceedings of the Sixth Mexican International 
Conference on Artificial Intelligence (MICAI'07), 2007. 

[10] M. Li and Zhi-Hua Zhou, “Tri-Training: Exploiting Unlabeled Data 
Using Three Classifiers”, IEEE Trans. on Knowledge and Data 
Engineering, Vol.17, No.11, Nov. 2005, pp.1529-1541, 2005. 

[11] T. Mitchell, Machine Learning, McGraw-Hill, 1997. 
[12] J. Moody and C. Darken, “Fast Learning in Networks of Locally-Tuned 

Processing Units”, Neural Computation 1 pp. 289-303, 1989. 
[13] K. Nigam and R. Ghani, “Understanding the Behavior of Co-Training”, in 

Proceedings of the Workshop on Text Mining at the Sixth ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining 
(KDD-2000), 2000. 

[14] K. Nigam and R. Ghani, “Analyzing the effectiveness and applicability of 
co-training”, In Proceedings of the Ninth International Conference on 
Information and Knowledge (CIKM’00), pp. 86–93, 2000. 

[15] J. Park and I. W. Sandberg, “Universal approximation using 
radial-basis-function networks”, Neural Computation, Vol.3, No. 2 (Mar. 
1991), pp. 246-257, 1991. 

[16] V. Vapnik, Statistical Learning Theory, Wiley, 1998. 
[17] I. H. Witten and E. Frank, Data Mining: Practical machine learning tools 

and techniques (2nd Edition), Morgan Kaufmann, San Francisco, 2005. 
[18] Y. Yang and J. Pedersen, “A Comparative Study on Feature Selection in 

Text Categorization”, In Proceedings of Fourteenth International 
Conference on Machine Learning, pp.412-420, 1997. 

[19] Y. Zhou and S. Goldman, “Democratic Co-Learning”, In Proceedings of 
the Sixteenth IEEE international Conference on Tools with Artificial 
intelligence (ICTAI’04), pp. 594-202 2004. 

[20] X. Zhu, “Semi-Supervised Learning Survey”, Computer Sciences TR 
1530, University of Wisconsin Madison, 2007. Available at 
http://pages.cs.wisc.edu/~jerryzhu/research/ssl/semireview.html. 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008


