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Abstract—We discuss in this paper the feature ex-
traction and signal reconstruction of air and bone con-
duction voices in the time domain by applying the in-
dependent component analysis (ICA). The basis func-
tions of the air and bone conduction voices extracted
by applying ICA are shown first, and then the quality
of the signal reconstruction by using several of those
basis functions is investigated from the signal com-
pression viewpoint.
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1 Introduction

A voice signal has various features both in the time do-
main and in the frequency domain. The voice signal can
be expressed compactly with a small amount of informa-
tion if those features are grasped precisely and used effec-
tively. Compact expression of voice signal is important
in communication from the data compression viewpoint.

Here we consider an air conduction voice and a bone con-
duction voice. The air conduction voice is recorded by
a normal condenser microphone. The bone conduction
voice is recorded by a bone conduction microphone, which
eliminates surrounding noise and enables communication
by voice in extremely noisy environments [1], [2]. It de-
tects the vibration of bones such as jaws and converts its
vibration to voice.

The sparse coding and the independent component anal-
ysis (ICA) are well known as feature extraction meth-
ods using only observed signals. The sparse coding is a
method to represent an image signal by using a few basis
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functions extracted from natural images [3], [4]. This is
based on the perceptual system of the mammalian visual
cortex. The ICA is closely related to the sparse coding.
This is a statistical method to estimate underlying fea-
tures of the observed signal [5]-[7].

In this paper, the basis functions are first extracted from
the air conduction voice and from the bone conduction
voice with use of ICA. A voice signal in a short time
interval is then reconstructed by using the basis functions
extracted, and discussions are given from the point of
signal compression.

2 Feature Extraction and Signal Recon-
struction of Voice Signal by ICA

2.1 Representation of Voice Signal

A voice signal can be approximated as a stationary signal
in a short time interval (tens of milliseconds) though it is
regarded as non-stationary in a long time interval [8]. So
the voice signal x in a short time interval can be repre-
sented as a linear sum of the basis functions ai as follows
[9]:

x =
N∑

i=1

siai, (1)

where si are the coefficients for each basis function ai,
and N is the number of the basis functions. x and ai are
given by:

x = (x1, . . . , xM )T
, (2)

ai = (ai1, . . . , aiM )T
, (3)

where M is a dimension of x sampled in the short time in-
terval, and T is a transpose operation. In the case where
M < N , it is called the overcomplete representation [10],
[11]. Here, for simplicity, we assume that M=N .

2.2 Feature Extraction

(1) can be expressed in the matrix form as follows:

x = As, (4)
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Figure 1: A sample pair of air and bone conduction voices employed for the simulation. These two voices are the
Japanese word “hachinohe” spoken by a male speaker. (a) Air conduction voice. (b) Bone conduction voice.

where A and s are given by:

s = (s1, . . . , sN )T
, (5)

A = (a1, . . . ,aN ) . (6)

The basis functions ai and the coefficients si are statisti-
cally determined from a set of short voice signal x which
is cut out from a long voice signal at random. As ai and
si are estimated only by using x, this is considered to be
a blind signal separation (BSS) problem. The ICA is a
statistical method to solve the BSS problem by applying
a linear transformation to x:

y = Wx, (7)

where y is the separated signal, and W is called an un-
mixing matrix of size N ×N . W is determined by learn-
ing so that the components of y become statistically in-
dependent of each other.

In the major ICA algorithm, the learning rule of W is de-
rived by applying the natural gradient method as follows
[12], [13]:

∆W = η
(
I − φ(y)yT

)
W , (8)

where ∆W is an updated value of W , η is a learning
rate, and φ(y) is given by:

φ(y) = (φ(y1), . . . , φ(yM )). (9)

The nonlinear function φ(yj) is often described by the
following sigmoid type function [14]:

φ(yj) = −1 +
2

1 + exp(−yj)
. (10)

2.3 Signal Reconstruction

When x is sphered (uncorrelated and with unit vari-
ances), W can be limited only to orthogonal matrices.
W T is then an estimation of A. Also the coefficients
s=(s1, . . . , sN ) are calculated as follows:

s = Wx. (11)

The reconstructed voice signal can be obtained by sub-
stituting W T and (11) to (1).

3 Simulation Results

We have performed computer simulations using an air
conduction voice and a bone conduction voice. Fig. 1
shows the sample voice signals used for the simulation.
These two voices are the Japanese word “hachinohe” spo-
ken by a male speaker recorded by a normal condenser
microphone (air conduction voice) and by a bone conduc-
tion microphone (bone conduction voice).

It is observed that the bone conduction voice is distorted
compared with the air conduction voice. This is because
that the bone conduction microphone detects the vibra-
tion of bones.

Table 1: Parameters employed for the ICA learning.

Dimension of basis function 64 (8ms)
Number of basis functions 64
Number of x 10,000
Learning rate η 0.0001
Nonlinear function φ(yj) −1 + 2/(1 + exp(−yj))
Number of iterations 1,000
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Figure 2: The basis functions of an air conduction voice extracted by ICA.

Figure 3: The basis functions of a bone conduction voice extracted by ICA.
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Figure 4: Voice reconstruction results. (a) Part of the Japanese word “hachinohe” of the air conduction voice of
Fig. 1 (a). (b) Reconstruction by using the air conduction voice basis functions of Fig. 2. (c) Reconstruction by
using the bone conduction voice basis functions of Fig. 3. The number of basis functions used is 6 for both cases.

Table 2: The normalized mean square error (NMSE)
of the Japanese word “hachinohe” of the air conduction
voice reconstructed by using the basis functions of the air
conduction voice and by using those of the bone conduc-
tion voice. The basis functions are selected in descending
order of contribution, i.e., the absolute value of the cor-
responding coefficient si.

NMSE
Number of Air conduction Bone conduction

basis functions basis functions basis functions
1 0.9046 0.8542
3 0.7662 0.7039
6 0.6211 0.5575
9 0.5129 0.4625
12 0.4272 0.3940

In the simulations, 100 Japanese words were used which
were recorded both by a condenser microphone (air con-
duction voice) and by a bone conduction microphone
(bone conduction voice) at the same time. Each word
is about 1 sec. long. 99 Japanese words among those
are used to extract the basis functions by ICA. The re-
maining one word is used for a signal reconstruction by
using those basis functions extracted. Table 1 shows the
parameters employed for the ICA learning.

Figs. 2 and 3 show the basis functions extracted from the
air and from the bone conduction voices, respectively.
From those figures, it is observed that the basis functions
extracted from the bone conduction voice have more pe-
riodic signals compared with those extracted from the air
conduction voice.

The accuracy of signal reconstruction by using the basis
functions of the air or of the bone conduction voice is
quantitatively evaluated by the normalized mean square

Table 3: The NMSE of the Japanese word “hachinohe”
of the bone conduction voice reconstructed by using the
basis functions of the air conduction voice and by using
those of the bone conduction voice. The basis functions
are selected in descending order of contribution, i.e., the
absolute value of the corresponding coefficient si.

NMSE
Number of Air conduction Bone conduction

basis functions basis functions basis functions
1 0.8888 0.8134
3 0.7447 0.6352
6 0.5954 0.4912
9 0.4929 0.3987
12 0.4147 0.3299

error (NMSE) defined by:

NMSE =
∑

t(x(t) − x∗(t))2∑
t x(t)2

, (12)

where x(t) is an original signal, x∗(t) is its reconstructed
signal, and t indicates a discrete time.

Table 2 shows the NMSE of the Japanese word “hachi-
nohe” of the air conduction voice reconstructed by using
the basis functions of the air conduction voice of Fig. 2
and by using those of the bone conduction voice of Fig. 3.
The NMSEs with changing the number of the basis func-
tions are shown in the table.

Worth nothing is that, even the target signal to be recon-
structed is an air conduction voice, the set of the basis
functions of the bone conduction voice gives better recon-
struction results than that of the air conduction voice.

Table 3 shows the reconstruction results of the bone con-
duction voice as opposed to the results of the air conduc-
tion voice of Table 2.
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Fig. 4 shows the Japanese word “hachinohe” of the air
conduction voice reconstructed by using the basis func-
tions of the air and of the bone conduction voices, respec-
tively. The number of basis functions used is 6.

4 Conclusions

ICA has been applied to the extraction of the basis func-
tions for expressing the air and the bone conduction
voices. We have reconstructed Japanese words by using
those basis functions extracted.

The simulation results have given an interesting fact that
the basis functions extracted from the bone conduction
voice give good reconstruction results even for the recon-
struction of the air conduction voice. This means that
the air conduction voice (recorded by the normal con-
denser microphone) can be effectively represented by the
bone conduction basis functions. It is expected from the
point of data compression that this leads to the compact
coding of the conversational voice for telecommunication.
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