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Abstract—This paper formally defines similarities

as tolerance relations, which are reflexive and sym-

metric binary relations. An abstract set with a simi-

larity is called a tolerance space. The training data set

in a learning task is a given database of independent

identically distributed random pairs (Xi, Yi), where

each Xi is a record and Yi is its label: Yi ∈ {0, 1}. The

goal of the learning is to design a classifier of which

the error probability is near to the theoretical limita-

tion, the Bayes error. The learning process consists

of finding a similarity of feature vectors ψ(Xi)’s and

the learning result is a representative data clustering

on the tolerance space of feature vectors. The infor-

mation about a record X derived from the represen-

tative clustering is the set of representatives similar

to the feature vector ψ(X). The percentage of the

records of class 1 in the intersection of these repre-

sentative clusters is used to estimate the conditional

probability of Y = 1. This paper defines a θ-classifier,

which assigns the record to class 1 if the conditional

probability is larger than the threshold θ. If the clus-

tering is a partition, the threshold θ = 1

2
minimizes

error probability in the training data set. In general,

an optimal θ-classifier has a different threshold. The

experiments show the trade-off between the number

of clusters and the error probabilities of the optimal

θ-classifiers.

Keywords: similarity, tolerance-space, representative-

clustering, pattern-recognition, classification

1 Introduction

Pattern recognition is about guessing or predicting the
unknown nature of an observation, a discrete quantity
such as black or white, abnormal or normal, one or zero,
sick or healthy, real or fake. Usually, an observation is
a collection of numerical measurements such as an im-
age or a vector of weather data ([3, 9]). Formally, an
observation is a d-dimensional vector x. The unknown
nature is a class, which is denoted by y and takes values
in a finite set C = {0, 1, 2, ...,M}. The task is to create
a function g : Rd −→ C. The value g(x) represents the
guess of y, given x. The function g is called a classifier.
The classifier errs on x if g(x) 6= y. In a probabilistic
setting (e.g., [3]), we consider a random pair (X,Y ) on
Rd × C, of which a distribution describes the frequency
of encountering particular pairs in practice. The proba-
bility of error for a classifier g is L(g) = P (g(X) 6= Y ). A
best possible classifier g∗ which has the minimal proba-

bility of error is called Bayes classifier or Bayes rule. The
minimal probability of error is called the Bayes error.

In the two-class problem C = {0, 1}, the Bayes classifier
is defined by g∗(x) = 1 iff η(x) > 1/2, where η(x) is the
posterior probability η(x) = P (Y = 1|X = x). In most
cases, the distribution of (X,Y ) and the Bayes classifier
g∗ are unknown. To design a classifier is based on a
given database of pairs (Xi, Yj), 1 ≤ i ≤ n. Such a task
is called a supervised learning. Many classification rules
have been proposed (e.g., [3, 9]). For example, the k-
nearest neighbor rule gn(x) takes a majority vote over the
Yi’s in subset of k pairs (Xi, Yi) from the given database
that have the smallest values ‖Xi − x‖.

Similarities or dissimilarities play a central role in the
pattern recognition, implicitly or explicitly. For example,
the k-nearest neighbor rule uses the Euclidean distance
to measure similarities. Most similarity measures are re-
flexive and symmetric. That is, each x is not dissimilar to
itself and the similarity measure of two x’s is independent
of the order of x.

This paper introduces a probabilistic model for the two-
class pattern recognition on an abstract space Ω based
on a formally defined similarity, called a tolerance rela-

tion and denoted by ξ. The similarity ξ is a reflexive and
symmetric binary relation on Ω. The pair Ωξ = (Ω, ξ)
is called a tolerance space. Zeeman [19] introduced toler-
ance relation to describe the imperfection of human sight.
A representative system of a tolerance space was studied
in [17]. More references on tolerance relation are in [13].

In the tolerance space, the neighborhood of an element x
is ξ(x) = {u ∈ Ω : ξ(x, u)}, the set of all elements similar
to x. Let Fξ be the Borel field generated by all such
neighborhoods. The probabilistic model is constructed on
the measurable space (Ωξ,Fξ). The pattern recognition
problem is represented by a random pair (X,Y ), X ∈ Ω
and Y ∈ {0, 1}. A classifier is a measurable function
g : Ω −→ {0, 1}, which errs on X if g(X) 6= Y . Bayes
rule is extended to this model, which is based on the
posterior probability η(x) = P (Y = 1|X ∈ x), where x is
the minimal measurable set containing x. Bayes error is
also defined.

This paper designs classifiers based on a training data set,
a database of pairs (Xi, Yi), where 1 ≤ i ≤ n, the record
Xi ∈ Ω, and the class label Yi ∈ {0, 1}. We assume that
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the sequence (X1, Y1), ..., (Xn, Yn) is a sequence of inde-
pendent identically distributed (i.i.d.) random pairs. Let
Ωn = {Xi|1 ≤ i ≤ n}. A data pre-processing is formally
represented by a function ψ : Ωn −→ Φ. The image of
the function Φm = ψ(Ωn) is the feature vector set of the
training data set. The cardinality |Φm| is usually much
smaller than |Ωn| for computational purpose.

For each feature vector x ∈ Φm, we store the frequen-
cies of Y in the training data set in n0(x) and n1(x),
which are the numbers of records of class 0 and class 1
in ψ−1(x) ⊆ Ωn, respectively. On the training data set,
the conditional probability Y = 1, given ψ(X) = x, is

ηΦm
(x) = n1(x)

n0(x)+n1(x) . The Bayes error based on this con-

ditional probability should near the original Bayes error.
Otherwise, the data pre-processing should be redesigned.

On Φm, we define a similarity ξ and consider the toler-
ance space (Φm)ξ, on which we apply the data cluster-
ing introduced in [16] and find a representative system
Rξ = {R1, R2, ..., Rk} of the space.

Each feature vector in Φm is similar to at least one Ri.
For each i, the cluster represented by Ri is its neighbor-
hood ξ(Ri). Such a data clustering is not a partition
in general. Two clusters may have non-empty intersec-
tion. Rξ is minimal if there is no smaller representative
system. Maak [12] introduced the concept of minimal
representative system to approximate the mean value of
some functions on abstract groups. In this paper, we use
a minimal representative system to represent a pattern
learned from the training data set.

Consider a random pair (X,Y ). Given the value of X , we
derive information about X from the representative sys-
tem Rξ. We find the representatives similar to the feature
vector ψ(X), denoted by NX = {R′

1, ..., R
′
k′}, and con-

sider their intersection, denoted by FX . Let t0 and t1 be
the record numbers of class 0 and class 1 in the subset
ψ−1(FX) of the training data set, respectively. On the
training data set, the conditional probability of Y = 1,
given ψ(X) ∈ FX , is η(X) = t0

t0+t1
. We use this condi-

tional probability to estimate the posterior probability of
any record X .

The θ-classifier (θ ∈ [0, 1]) is defined by gθ(X) = 1 iff
η(X) > θ. If the clustering Rξ is a partition, then θ = 1

2
minimizes the error probability (e.g., [15]). In general, we
need to find an optimal threshold θ0 for the minimal error
probability. The error probability of gθ0

on the training
data set is a performance indicator. The similarity ξ need
to be adjusted if the error probability does not near the
Bayes error based on conditional probability ηΦm

. This
paper does not consider other criteria, such as false pos-
itive. The experiments in the paper show that the error
probability of the θ0-classifier for the testing data set can
be well predicted for proper similarities.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews tolerance space and data clustering. Sec-
tion 3 introduces the probabilistic model of pattern recog-
nition. Section 4 introduces the supervised learning and
θ-classifiers. Section 5 describes the experiments. Section
6 is the conclusion.

2 Tolerance Space and Representative

Clustering

In this section, we define a similarity formally. Let Ω be
an abstract set of elements.

Definition 2.1 A tolerance relation ξ on Ω is a binary
relation with two conditions: (x, x) ∈ ξ for any x ∈ Ω
(reflexivity), and (x, y) ∈ ξ ⇒ (y, x) ∈ ξ (symmetry).

The pair (Ω, ξ) is called a tolerance space, denoted by
Ωξ. We also use ξ as a predicate: ξ(x, y) iff (x, y) ∈ ξ.
If ξ(x, y), we say that x is ξ-similar to y, or x and
y are ξ-similar. We omit ξ when there is no ambigu-
ity. On a metric space (M,d), for example, each posi-
tive real number ε > 0 defines a tolerance relation dε:
dε(x, y) if d(x, y) < ε, x, y ∈ M . Any undirected graph
can be treated as a tolerance space (and vice versa),
where Ω is the set of all vertices, and two vertices are
similar if they are the same vertex or they are adjacent
(e.g., Figure 1). Any equivalent relation ξ on Ω is a tol-
erance relation having the transitive property.

The set inclusion ⊆ is a partial ordering on tolerance rela-
tions on Ω. The collection of all tolerance relations forms
a lattice with a unique lower bound and a unique upper
bound. The lower bound is called the discrete tolerance

relation, which is {(x, x) | x ∈ Ω} (i.e., each element x
is similar only to itself). We call the corresponding tol-
erance space the discrete tolerance space, denoted by Ω0.
The upper bound is called the trivial tolerance relation,
which is Ω × Ω (i.e., any two elements are similar). The
corresponding tolerance space is called the trivial toler-

ance space, denoted by Ω∞.
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Figure 1: A tolerance space and a minimal clustering.
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For each x ∈ Ω, the set ξ(x) = {u ∈ Ω : ξ(x, u)}, consist-
ing of all elements similar to x, is called the neighborhood

of x. Let Fξ be the Borel field generated by all neigh-
borhoods. The pair (Ωξ,Fξ) is a measurable space and
each element of Fξ is called a ξ-measurable set. For ex-
ample, consider Ω = Rn, the n-dimensional Euclidean
space, and the tolerance relation ξ(x, y) iff ‖x − y‖ < ε
for a fixed given ε > 0, where ‖x − y‖ is the Euclidean
distance. Then the corresponding Fξ is the collection of
all Borel sets in Rn.

For any x ∈ Ωξ, the singleton {x} is not always ξ-
measurable (i.e., in Fξ). In Figure 1, for example, {1},
{2}, {6}, and {7} are not ξ-measurable, and the single-
tons {3}, {4}, and {5} are ξ-measurable. We define in-
distinguishable elements as follows.

Definition 2.2. Two elements x and u in Ωξ are indis-

tinguishable, denoted by x ∼ u, if they have the same
neighborhood (i.e., ξ(x) = ξ(u)).

Note that ∼ is an equivalent relation. Let x = {u | u ∼
x}, the set of all indistinguishable elements of x, which
is called the indistinguishable set of x and satisfies x =
⋂

u∈ξ(x) ξ(u) −
⋃

u6∈ξ(x) ξ(u). In Figure 1, for example,

1 = 2 = {1, 2} and 6 = 7 = {6, 7}. To avoid advanced
measure theory (e.g., [10]), we assume x is ξ-measurable
for any x ∈ Ω and is the smallest ξ-measurable set con-
taining x. This assumption is always true if Ω is a count-
able set.

A function from a tolerance space to another tolerance
space f : Ωξ −→ Φζ is called measurable if f−1(A) ∈ Fξ

for all A ∈ Fζ . A measurable function maps indistin-
guishable sets into indistinguishable sets.

Theorem 2.3. If x ∼ y in Ωξ and the function f :
Ωξ −→ Φζ is measurable, then f(x) ∼ f(y) in Φζ .

Proof. Let a = f(x). Since a is ζ-measurable and x
is the smallest ξ-measurable set containing x, the in-
verse f−1(a) is ξ-measurable and contains x. Therefore,
f(y) ∈ a and f(x) ∼ f(y).

For any real-valued measurable function f on Ωξ, f(x) =
f(u) if x ∼ u (considering the Borel sets of real numbers).
Especially, every real-valued measurable function on the
trivial tolerance space Ω∞ is a constant function.

Any function from a set to a tolerance space defines a
tolerance relation on the domain. Suppose that f : Ω −→
Φζ is a function from an arbitrary set Ω to a tolerance
space Φζ . We define a tolerance relation ξζ on Ω: ξζ(x, u)
for x, u ∈ Ω if f(x) and f(u) are ζ-similar in Φζ . Then
the function f : Ωξζ −→ Φζ is measurable. For example,
in a data pre-processing f : Ω −→ Φ, f(x) is the feature
vector of x. Each similarity on the feature vectors defines
a similarity on the original data set Ω.

We review the data clustering in a tolerance space Ωξ

[16]. Here we assume that Ωξ is finite. Each x ∈ Ω is
called a representative of its neighborhood ξ(x). A set
of elements {r1, ..., rk} is called a representative system

of the tolerance space Ωξ if the corresponding neighbor-
hoods cover the whole space Ω. A representative system
{r1, ..., rk} is minimal if there is no other representative
system with less than k members. In this paper, we call
such a minimal representative system a minimal represen-

tative clustering. Note that the clustering in this paper
is not crisp in general and two clusters may have non-
empty intersection. Such a property is important in the
uncertainty study of AI [18] and is different from many
clustering algorithms (e.g., [8]).

To search for a minimal representative clustering is in-
tractable in general. We introduce a heuristic search
[16] which uses a concept of density. The density func-
tion on Ω is the number of elements in ξ(x): den(x) =
|ξ(x)|. According to den(x), we sort the elements of
Ω: x1, x2, ..., xm, so that den(x1) ≥ den(x2) ≥ ... ≥
den(xm). To search for a representative system, choose
the neighborhood ξ(x1) first. Then choose the next neigh-
borhood ξ(xi) (according to the density order) which is
not covered by previously chosen neighborhoods. Repeat
the process until the whole space is covered. Finally,
scan the chosen neighborhoods backwards and delete the
neighborhood which is contained in the union of other al-
ready collected neighborhoods. In this paper, we use such
a sub-minimal representative system to approximate a
minimal representative clustering. Figure 1 shows a min-
imal representative clustering computed by the heuristic
method.

3 Bayes Classifier and Bayes Error

Pattern recognition is about guessing or predicting the
unknown nature of an observation, a discrete quantity
such as black or white, one or zero, sick or healthy, ab-
normal or normal. An observation is a collection of in-
formation about an object, such as an image, a vector of
weather data, or an internet message. Note that about
the object the information of an observation is not al-
ways complete and has some degree of uncertainty. The
observation usually is represented by a vector of several
components and each component may be numerical or
categorical. Formally, we use x to denote an observation
and Ω to denote the space of all possible observations.
The unknown nature of the observation is called a class.
It is denoted by y and takes values in a finite set. For
simplicity, this paper considers only two possible classes
(e.g., normal and anomaly), denoted by 0 and 1. In pat-
tern recognition, one creates a function g : Ω −→ {0, 1}
which represents one’s guess of y given x. The map-
ping g is called a classifier. The classifier errs on x when
g(x) 6= y. In the following, we introduce a probabilistic
model. First we define a probability measure on a toler-
ance space as follows.
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Definition 3.1 A probability measure on a tolerance
space Ωξ is a probability measure µ on the measurable
space (Ωξ,Fξ). The triple (Ωξ,Fξ, µ) is a called a prob-
ability space of Ωξ.

Given a probability space (Ωξ,Fξ, µ), each measurable
function f : Ωξ −→ Φζ defines a probability measure µζ

on (Φζ ,Fζ) as follows. For any measurable set A ∈ Fζ ,
µζ(A) = µ(f−1(A)). The triple (Φζ ,Fζ , µζ) is a proba-
bility space. For example, the function f is a feature se-
lection and any probability measure on the original data
is transformed to the feature vectors.

Let ξ be a tolerance relation on Ω and (Ωξ,Fξ, µ) a prob-
ability space. If there is no ambiguity, we omit the ξ in
our notation. Let (X,Y ) be a random pair taking their
respective values from Ω and {0, 1}. The random pair
may be defined by a pair (µ, η), where µ is the probabil-
ity measure of X and η is the regression of Y on X . That
is, for any A ∈ F , P (X ∈ A) = µ(A), and for any x ∈ Ω,
η(x) = P (Y = 1|X ∈ x). Note that η is measurable and
η(x) = η(y) if x and y are indistinguishable.

A classifier is a measurable function g : Ω −→ {0, 1}.
Here we treat {0, 1} as a discrete tolerance space. The
probability of error L(g) = P (g(X) 6= Y ) is called the
error of g, which is the integration of a conditional prob-
ability:

L(g) = P (g(X) 6= Y ) =

∫

Ω

P (g(X) 6= Y |X ∈ x)dµ(x)

Definition 3.2 The Bayes classifier is defined as follows

g∗(x) =

{

1 if η(x) > 1/2,
0 otherwise.

The error L(g∗) is called the Bayes Error. Similarly to
the classical Bayes rule [3], we can prove

Theorem 3.3 The Bayes classifier minimizes the error;
that is, for any classifier g, L(g∗) ≤ L(g).

The Bayes error L(g∗) is the theoretical limitation of
the performance of any designed classifier g. Note that
L(g∗) = 0 if η(x) ∈ {0, 1} for all x ∈ Ω. The goal of
this paper is to construct a classifier to approximate the
Bayes error as near as possible.

4 Optimal θ-Classifier

Training Data Set The Bayes classifier g∗ depends
upon the tolerance space Ωξ and the distribution of
(X,Y ). In most cases, both the tolerance relation ξ and
the distribution are not given so that both Bayes classi-
fier and Bayes error are unknown. To design a classifier
is usually based on a given database of pairs (Xi, Yi),
1 ≤ i ≤ n. The database may be the result of experimen-
tal observations. It could also be obtained through an ex-
pert or teacher who filled in the Yi’s after having seen the

Xi’s. To find a classifier with a small error is hopeless un-
less there is some assurance that the (Xi, Yi)’s jointly are
some representatives of the unknown distribution. Here,
we assume the data (i.e., (X1, Y1), ..., (Xn, Yn)) is a se-
quence of independent identically distributed (i.i.d.) ran-
dom pairs with the same distribution as that of (X,Y ).
To construct a classifier on the basis of X1, Y1, ..., Xn, Yn

is called learning, supervised learning, or learning with a

teacher. The given database is called the training data

set. In this section, we introduce a process of construct-
ing such a classifier using similarities on the training data
set.

EachXi in the training data set usually consists of several
components, each of which may be numerical or categori-
cal. We also assume that the class of Xi is binary; that is,
Yi ∈ {0, 1}. Let Ωn be the set of all Xi’s: Ωn = {Xi|1 ≤
i ≤ n}. Note that |Ωn| ≤ n because it is possible that
Xi = Xj for different i and j. For each t ∈ Ωn, consider
two counts: f0(t) = |{i | 1 ≤ i ≤ n,Xi = t, Yi = 0}|
and f1(t) = |{i | 1 ≤ i ≤ n,Xi = t, Yi = 1}|. Note that
∑

t∈Ωn
(f0(t) + f1(t)) = n. Then on the training data set

(as a discrete space), the conditional probability of Y = 1,

given X = t, is ηn(t) = f1(t)
f0(t)+f1(t)

. Let the correspond-

ing Bayes classifier and Bayes error (on Ωn) be denoted
by g∗n and Ln(g∗n), respectively. Note that Ln(g∗n) = 0 if
Xi 6= Xj for any i 6= j. The Bayes error Ln(g∗n) is the
theoretical limitation of the learning. If the Bayes error
is too large, the performance of the learning result will
be poor. Usually, larger data set or more information for
each X is needed.

Data Pre-processing Before designing a classifi-
cation scheme, a data pre-processing is commonly ap-
plied to the training data set, such as data cleaning,
data integration, data granulation, feature extraction,
data transformation, and data reduction (e..g, [8, 9]).
Formally, we use a function to represent the data pre-
processing, ψ : Ωn −→ Φ. For convenience, we call
each sample X a record and ψ(X) the feature vector of
X . All possible feature vectors form the set Φ. Usu-
ally the function ψ is not one-to-one. For the frequency
of Yi, we store two integers for each feature vector x:
n0(x) = |{i | 1 ≤ i ≤ n, ψ(Xi) = x, Yi = 0}| and
n1(x) = |{i | 1 ≤ i ≤ n, ψ(Xi) = x, Yi = 1}|. That is,
n0(x) and n1(x) are the numbers of records of class 0
and class 1 in ψ−1(x) ⊆ Ωn, respectively. Let the image
of Ωn be denoted by Φm = ψ(Ωn) (⊂ Φ). Usually, the
size of Φm is much smaller than that of Ωn for the compu-
tational purpose. Note that

∑

x∈Φm
(n0(x) + n1(x)) = n.

Consider Φm as a discrete space. For each x ∈ Φm, the
conditional probability of Y = 1 on the training data

set, given ψ(X) = x, is ηΦm
(x) = n1(x)

n0(x)+n1(x) . Let the

corresponding Bayes classifier and Bayes error (on Ωn)
be denoted by g∗Φm

and Ln(g∗Φm
), respectively. The fea-

ture vector ψ(X) may not contain all information of X
and it is always true that Ln(g∗n) ≤ Ln(g∗Φm

). The data
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pre-processing simplifies the computation, still the Bayes
error Ln(g∗Φm

) should be near to Ln(g∗n). If the difference
between the two errors is too large, the pre-processing ψ
should be re-designed.

Representative Classification Scheme On Φ
we define a suitable tolerance relation (i.e., similarity),
denoted by ξ. To define similarity depends on each in-
dividual task and there are many methods to measure
similarities or dissimilarities (e.g., [9]). Here we simply
assume ξ is given. Consider representative clustering on
the tolerance space (Φm)ξ and let Rξ = {R1, R2, ..., Rk}
be a sub-minimal representative system computed by the
algorithm introduced in Section 2.

Deciding whether an event is surprising is one of the
tasks in statistics [6, 7]. Here we also define a concept of
surprising records with respective to the tolerance space
(Φm)ξ. The tolerance relation ξ is first transformed to the
training data set. Two records Xi and Xj in the training
data set are similar if the corresponding feature vectors
ψ(Xi) and ψ(Xi) are similar. A record t ∈ Ωn is called
a surprise if t is not similar to any other record in Ωn

and there is only one i for which Xi = t. Let x = ψ(t).
Then t is a surprise iff ψ−1(x) = {t}, the neighborhood
ξ(x) = {x} is a singleton in the tolerance space (Φm)ξ,
and n0(x) + n1(x) = 1. Therefore, the feature vector of
a surprise is always in Rξ.

Let the numbers of the surprises of class 0 and class 1
be denoted by αξ and βξ, respectively, which are in-
dependent of the choice of Rξ. Finally, we use L =
(Φm, Rξ, αξ, βξ) to represent the result computed
above, which is called a representative classification

scheme.

θ-Classifiers Consider the random pair (X,Y ). Given
the value of X , we design classifiers of X based on a rep-
resentative classification scheme L = (Φm, Rξ, αξ, βξ)
as follows. We find the representatives (in Rξ) similar to
the feature vector ψ(X), denoted by NX = {R′

1, ..., R
′
k′}.

First consider the case that NX is not empty. Let the
intersection of the clusters of these representatives be

FX =
⋂k′

i=1 ξ(R
′
i), which is the set of all feature vec-

tors (in Φm) similar to all representatives in NX . If
FX = ∅, then it is replaced by the union of the clusters:

FX =
⋃k′

i=1 ξ(R
′
i). The set FX is a piece of information

about X derived from L, from which we compute poste-
rior probability of Y .

In the subset ψ−1(FX) of Ωn, the number of records of
class 0 is t0 =

∑

x∈FX
n0(x) and the number of records

of class 1 is t1 =
∑

x∈FX
n1(x). On the training data set,

the conditional probability of Y = 1, given ψ(X) ∈ FX , is
t1

t0+t1
. For any random sample (X,Y ), we use this value

to predict the conditional probability, which is denoted
by ηL(X) = P (Y = 1| L) = t1

t0+t1
. Next if NX = ∅,

that is, ψ(X) is not similar to any of the representatives

in Rξ, then we say that the record X is an unknown

surprise (w.r.t. L). If αξ + βξ > 0, then the conditional
probability is estimated as ηL(X) = P (Y = 1| L) =

βξ

αξ+βξ
. If αξ + βξ = 0, then we say that the conditional

probability of unknown surprises is not predictable, that
is, ηL(X) is undefined. Note that all unknown surprises
have the same predicted conditional probability and will
be classified to one class; therefore, the similarity should
be modified if there are too many surprises in the training
data set.

In the following we introduce a simple non-randomized
classifier using a threshold, without considering any loss
function. Let θ, 0 < θ < 1, be a real number, then we
define the following classifier:

Definition 4.1 The θ-classifier is defined as follows

gθ(X) =







1 if ηL(X) > θ,
0 if ηL(X) ≤ θ,
unknown if ηL(X) is undefined.

The error of gθ on the training data set can by computed,
denoted by LL(θ) = Ln(gθ), which satisfies Ln(g∗n) ≤
Ln(g∗Φm

) ≤ LL(θ). The error LL(θ) is an indicator of
the performance of the classifier gθ. If the representative
clustering Rξ is a partition of Φm, the error LL(θ) reaches
its minimum at θ = 1

2 . In the special case that ξ is
the discrete tolerance relation (i.e., each element in Φm

is a representative in Rξ), this error is the Bayes error:
Ln(g∗Φm

) = LL(1
2 ). In the other extreme case that ξ is

the trivial tolerance relation (i.e., there is only one cluster
in Rξ), the information derived from L is the numbers of
records of class 1 and class 0 in the training data set.
Therefore, the classifier will classifies all records to class
1 or 0, depending on the fact that the record number of
class 1 in the training data set is larger or not. In general,
Rξ is not a partition and g 1

2

does not have the minimal
error.

Definition 4.2 The gθ0
is called an optimal θ-classifier

if
LL(θ0) ≤ LL(θ), 0 < θ < 1.

Since Φm is finite, an optimal θ-classifier can be com-
puted. If the error LL(θ0) (on the training data set) is
too far away from the Bayes error Ln(g∗Φm

), new similar-
ities should be considered. This paper considers only the
probability of error and does not consider other criteria,
such as false positive. The experiments in the next sec-
tion show that the error of the θ-classifier on testing data
set can be well predicted for proper similarities.

5 Experiments

In our experiments, we use the KDD-99 cup data set
[11]. There are 212971 records in total. There are 41
attributes, categorical (e.g., type of protocol) or contin-
uous (e.g., length of the connection). Each record is la-
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beled with normal or certain attack. The 42nd attribute
is the label, of which there are 23 different types: one is
normal and others are attacks. All attacks are classified
as anomalies in the experiments. We use 0 to represent
a normal and 1 to represent an anomaly. Our task is
to classify records based on the 41 attributes into two
classes: anomaly or normal.

Pre-Processing and Training Data Set Not
all 41 features are significant in the classification task.
The traditional statistical test of the equality of two dis-
tributions is used in this process. We select an attribute
to the feature vector if the distributions of the value
domains are significantly different for the two types of
records. We have selected 9 attributes. Each categorical
value is labeled by an integer. The values of continuous
attributes are granulated into a linearly ordered discrete
values according to their distribution. Each record t is
mapped into a feature vector ψ(t). By a few feature vec-
tors, 85.08% (139213 records in total) of total records are
classified perfectly. Those records are not used in the
experiments in order to make the error more visible.

From the rest of the records, we choose randomly about
half of normals and half of anomalies as the training data
set, and the rest as the testing data set. Let the train-
ing data set be denoted by Dtrain and the testing data
set by Dtest. The Dtest consists of 29603 normals and
7310 anomalies, 36913 in total. Let ψ(Dtrain) be denoted
by Ftrain. The numbers of records in Dtrain and Ftrain

and the corresponding Bayes errors are shown in Table
1. Note that the pre-processing reduces the number of
the records from 36845 to 1160 (3.1% of 36845). It also
reduces the number of features from 41 to 9. The Bayes
error is raised from 0 to 0.0091.

normal 29550
anomaly 7295

total 36845
Bayes error on Dtrain 0

feature vectors 1160
Bayes error on Ftrain 0.0091

Table 1: Information about the training data set.

Tolerance Relations and θ-classifiers On fea-
tures vectors we define a generalized Hamming distance,
denote by d. For each ε > 0, we define a tolerance relation
on feature vectors: dε(f, g) if d(f, g) ≤ ε.

Consider the training process on the tolerance space
(Ftrain)dε . For a representative classification scheme Lε

= (Ftrain, Rdε
, αdε

, βdε
), we study the θ-classifier gθ.

In this paper, we introduce some results for different ε’s:
0.01, 0.5, 2.0, and 9.0. For ε = 0.01, (Ftrain)d0.01 is the
discrete space, in which all 1160 feature vectors are rep-
resentatives and the clustering is a partition. Therefore,
the Bayes classifier (on Dtrain) is an optimal θ-classifier

(i.e., θ0 = 0.5). For other two cases, the clusterings are
not partitions. The cluster numbers and computations
are significantly reduced, but errors increase. The exper-
iment result is summarized in Table 2, which shows the
trade off between the computations and errors. Further-
more, the error functions LLε

(gθ) are depicted in Figure
2 for ε = 0.5. The top one is for Dtrain and the bottom
one is for Dtest.

If ε is sufficiently large (e.g. ε ≥ 9.0), then all records
are indistinguishable. That is, the only information used
in this case about Dtrain is that there are 29550 normals
and 7295 anomalies and ηL(X) = 0.1959 for any X .
Therefore, each record will be classified as a normal.
The error of this classifier is 0.1980, but no anomalies
are classified at all.

ε |Rdε
| α β θ0 train-error

0.01 1160 236 92 0.50 0.0091
0.5 240 12 17 0.11 0.0202
2.0 38 0 0 0.60 0.1012
9.0 1 0 0 0.50 0.1980

ε unknown surprises test-error
0.01 339 0.0132
0.5 121 0.0236
2.0 19 0.1048
9.0 0 0.1980

Table 2: Information about some classification

models and optimal θ-classifiers.

6 Conclusion

This paper introduces a probabilistic classification model
on a tolerance space. Similarities are formally defined
as reflexive and symmetric binary relations. Probability
measures are constructed on the measure space generated
by neighborhoods in the space. Training data set is a
database of pairs (Xi, Yi), where each Xi is a record and
Yi is the label (0 or 1) of the record. The data pre-
processing maps the records in the training data set to
feature vectors.

The learning process includes search for similarities of
feature vectors. For each similarity, the learning result
is a representative clustering of the tolerance space of
feature vectors. The information about a given record
is the set of representatives similar to the feature vector
of the record. In the intersection of the corresponding
clusters, the percentage of records of class 1 is used to
predict the posterior probability of the given record. The
θ-classifier use θ as a threshold and classifies the record
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Figure 2: Error of θ-classifiers for ε = 0.5.

to class 1 if the posterior probability is larger than θ. An
optimal threshold is not necessarily 1

2 in general.

A concept of surprising record is introduced. The model
assigns the same posterior probability to all unknown
surprises. Therefore, the learning process should avoid
similarities with too many surprises. The experiments
demonstrate the trade-off between computations and
classification errors.

Future works include more experiments and more investi-
gation on the mathematical theory of the model, such as
the handling of surprises and other criteria of classifiers.
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