

Abstract— In this paper, we systematically explore an

itemset-based extension approach for generating candidate
sequence which contributes to a better and more
straightforward search space traversal performance than
traditional item-based extension approach. Based on this
candidate generation approach, we present FINDER, a novel
algorithm for discovering the set of all frequent sequences.
FINDER is composed of two separated steps. In the first step, all
frequent itemsets are discovered and we can get great benefit
from existing efficient itemset mining algorithms. In the
second step, all frequent sequences with at least two frequent
itemsets are detected by combining depth-first search and
itemset-based extension candidate generation together. A
vertical bitmap data representation is adopted for rapidly
support counting reason. Several pruning strategies are used to
reduce the search space and minimize cost of computation. An
extensive set of experiments demonstrate the effectiveness and
the linear scalability of proposed algorithm.

Index Terms— Frequent sequence mining, data mining
algorithms, frequent pattern, sequence database.

I. INTRODUCTION
The sequences mining task, which discovers all frequent

subsequences from a large sequence database, is an important
data mining problem. It has attracted considerable attention
from database practitioners and researches because of its
broad applications in many areas such as analysis of sales
data, discovering of Web access patterns in Web-log dataset,
extraction of Motifs from DNA sequence, analysis of medical
database, identifying network alarm patterns, etc.

In the last decade, a number of algorithms have been
proposed to deal with the problem of mining sequential
patterns from sequence database. Most of them are based on
Apriori property which states that any sub-pattern of a
frequent pattern must be frequent. These Apriori-like
algorithms utilize a bottom-up candidate generation-and-test

Manuscript received November 21, 2007. This work was supported in
part by National Natural Science Foundation of China under grant No.
90612016 and grant No. 60473095.

Ma Zhixin is with the School of Information Science and Technology,
Lanzhou University, Lanzhou,730000, China, (e-mail:
mazhx@lzu.edu.cn).

† Corresponding author. Xu Yusheng is with the School of
Information Science and Technology, Lanzhou University, Lanzhou,
730000, China, (phone: 86-13389310278; fax: 86-931-8912778;
e-mail: xuyusheng@ lzu.edu.cn).

Tharam S. Dillon is with School of Information System, Curtin
University, Perth, Australia, (e-mail: tharam.dillon@cbs.curtin.edu.au)

Chen Xiaoyun is with the School of Information Science and
Technology, Lanzhou University, Lanzhou, 730000, China, (e-mail:
chenxy@lzu.edu.cn)

method and a breadth-fist search space traverse strategy. In
each candidate generation step, algorithm iteratively generate
all candidate k-sequences from all frequent (k-1)-sequences.
Because each candidate k-sequences has one more item than a
frequent (k-1)-sequences, this candidate generation method
can be considered as an item-based extension approach. In
other words, all these algorithms deal with the problem of
mining sequential patterns using an item-based viewpoint.
The main bottleneck of these algorithms is that huge number
of candidate sequences could be generated and the cost of
candidate generation, test and support counting is very
expensive. In fact, a lot of candidate sequences are infrequent
or not exist in database. Furthermore, some algorithms require
multiple full database-scans as the longest frequent sequence
and the cost of I/O is very expensive, some approaches use
very complicated internal data structures to maintain database
in memory which add great space and computation overhead.

In this paper, we systematically explore an itemset-based
extension approach for generating candidate sequence which
contributes to a better and more straightforward search space
traversal performance than traditional item-based extension
approach. The general idea is outlined as follow: A candidate
sequence can be generated by adding one frequent itemset
into the end of a frequent sequence instead of adding one item
into a frequent sequence each time. Since any candidates with
infrequent itemsets are not generated, the number of
candidates is reduced efficiently. This idea is derived from
Aprioriall [1], the first sequence mining algorithm which uses
itemset, not item, to generate candidate sequence.

Based on this candidate generation approach, we present a
novel algorithm, called FINDER (Frequent Sequence MIning
usiNg Itemset-baseD Extension AppRoach), for discovering
the set of all frequent sequences. FINDER is composed of two
separated steps. In the first step, all frequent itemsets are
discovered and we can get great benefit from existing efficient
itemset mining algorithms [3][5]. In the second step, all
frequent sequences with at least two frequent itemsets are
detected by combining depth-first search and itemset-based
extension candidate generation together. For rapidly support
counting reason, we adopt vertical bitmap data representation
proposed in SPAM [2]. In addition, FINDER can reduce the
search space and minimize cost of computation efficiently by
using several pruning strategies.

The rest of the paper is organized as follows: Section 2
introduces the basic concepts related to the sequence mining
problem. Section 3 discusses the related work. Section 4
presents our itemset-based extension approach in detail. In
Section 5, we describe FINDER algorithm with pruning
strategies and vertical bitmap data representation. An
experimental study is presented in Section 6. We conclude in
Section 7 with a discussion of future works.

Mining Frequent Sequences Using Itemset-Based Extension

Zhixin Ma, Yusheng Xu†, Tharam S. Dillon, Chen Xiaoyun

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

II. PROBLEM STATEMENT
Let I={i1, i2, … ,im}be a set of m distinct items comprising the

alphabet. An itemset e = {i1, i2, … , ik} is a non-empty
unordered collection of items . Without loss of generality, we
assume that items of an itemset are sorted in lexicographic
order and denoted as (i1i2… ik). A sequence s ={e1, e2, … ,en} is
an ordered list of itemsets and denoted as (e1- e2- … -en), where
ei is an itemset. An item can occur at most once in an itemset of
a sequence, but can occur multiple times in different itemsets
of a sequence. The number of instances of items in a sequence
is called the length of sequence. Let |ei| refer to the number of
items in itemset ei, a sequence with length l is called l-sequence,
where l= ? |ei| and 1=i=n. For example, C-AB-A is a 4-sequence.

A sequence s1=(a1- a2- … -am) is said to contained in
another sequence s 2=(b1- b2- … -bn) if and only if ∃ i1, i2,…, i m,
such that 1=i1<i2<… <im=n, and a1 ⊆ bi1, a2 ⊆ bi2, … , am ⊆ bim. If
s1 is contained in s2, s1 is a subsequence of s2 and s2 is a
supersequence of s1. This relationship is denoted by s1 ⊆ s2.
For example, the sequence A-C is a subsequence of (AB-CD).
On the other hand, the sequences (C-A) and (AC) are not
subsequence of (AB-CD).

The database D for sequence mining consists of a collection
of input-sequences. Each input-sequence has a unique
identifier called sequence-id (sid) and each itemset in a given
input-sequence also have an unique identifier called
itemset-id (eid).

 Given a sequence database D, the support count of a
sequence s, denoted asδs,D() , is the total number of
input-sequences in D which contain s. The support of s,
denoted as support(s), is the fraction of sequences in D that
contain s. If the symbol |D| denotes the number of sequences
in D, support(s) =δ s,D() /|D|. Given a user-specified
threshold min_sup, we say that a sequence s is frequent if
support(s) is greater than or equal to min_sup. A maximal
frequent sequence is a frequent sequence and none of its
supersequences is frequent.

Given a database D of input-sequences and a user-specified
threshold min_sup, the problem of sequence mining is to find
all the frequent sequences in the database.

III. RELATED WORKS
Since the problem of frequent sequence mining was first

introduced in [1], a large amount of studies have been done
toward the development of efficient algorithms for solving this
problem and its variations. Agrawal and Srikant [1] presented
three algorithms : AprioriAll, AprioriSome and DynamicSome
for solving this problem. Note that these three algorithms
utilize itemset to generate candidate sequence, but this idea is
not adopted in later sequence mining algorithms . In [11], the
same authors generalized definitions of sequence mining to
include time constrains, sliding time window, and user defined
taxonomy. They also proposed GSP algorithms which
outperformed AprioriAll by up to 20 times. GSP is a
multi-phase iterative algorithm and requires multiple passes
over database. At pass k , the set of candidate k-sequences are
checked against the database and frequent k-sequences are

determined. Then the set of candidate (k+1)-sequences for
next pass are generated by joining the set of candidate
k-sequences with itself. This process will continue until no
candidate is generated. GSP is seemed as one of most
important algorithms for mining sequential patterns.

Mannila et al. [7] presented a problem of mining frequent
episodes which are essentially mining frequent subsequences
in a single long input sequence where each itemset of
sequence consists of one item. They further extended their
framework in [8] to discover generalized episodes. Kao et al. [6]
proposed MFS which combine sampling technique and
maximal sequence together. Since a set of long frequent
sequences (local maximal sequences) is found in a small
sample database early, MFS can mine frequent sequences in
original database efficiently by applying supersequence
frequency based pruning. Tan and Dillon et al. [13] presented
SEQUEST which uses a Direct Memory Access Strips
(DMA-Strips) structure to efficiently enumerate candidate
subsequence. This structure or model guided method is
derived from TMG approach used for tree mining [4][12].

In [14], Zaki proposed SPADE algorithm which uses a
vertical id-list database format for efficient joining operation
and a lattice-theoretic approach to decompose the original
search into small pieces so that all working id-list can be load
into memory. Pei et al. [9] proposed PrefixSpan which utilizes a
pattern-growth approach instead of refinement of the
candidate generation-and-test approach. PrefixSpan
recursively projects a sequence database into a set of smaller
projected sequence databases and grows sequential patterns
in each projected database by exploring only locally frequent
fragment. A memory-based pseudo-projection technique is
applied to reduce the number of physical projected databases
to be generated. Ayres et al. [2] presented SPAM which
integrates a depth-first traversal of the search space with some
efficient pruning mechanisms . In addition, SPAM utilizes
vertical bitmap representation for candidate generation and
rapid support counting. Spade, PrefixSpan and SPAM are
considered as the three fastest algorithms that mine sequential
patterns.

IV. SEQUENCE ENUMERATION: AN ITEMSET-BASED
EXTENSION APPROACH

In this section, some notations are defined to simplify our
discussion. Then, we describe the itemset-based extension
approach and the itemset-based lexicographic tree of
sequence lattice upon which our algorithms is based.

A. Some Notations and Lexicographic Tree

Definition 1. Let e1 and e2 be two itemsets. If e1 is a subset of
e2, then e1 is a subitemset of e2 and e2 is a superitemset of e1.

For example, itemset (ABC) is a subitemset of (ABCD),
itemset (ABC) is superitemset of (AB).

Definition 2. The number of itemsets in a sequence is called
the size of sequence. A sequence with k itemsets is called
k’-sequence.

 For example, each itemset is a 1’-sequence because its size
is 1, sequence (AC-CD) is a 2’-sequence because its size is 2.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Note that the size of a sequence is different from the length of
a sequence.

Definition 3. Given sequence database D, a user-specified
threshold min_sup, we say that an itemset e is frequent if
support(e) is greater than or equal to min_sup. The set of all
frequent itemsets is denoted as FE .

Definition 4. A frequent sequence of size k is called a
frequent k’-sequence.

As an example, consider the database shown in figure 1
which has four items (A to D) and four input-sequences. The
figure also shows all the frequent sequences with a min_sup of
50%.

 Example database
s-id sequences
001 ABC-ABD-AD
002 ABD
003 AB-CD
004 A-BD-D

Frequent sequences (min_sup=50%)
Frequent 1’-sequence A, AB, ABD, AD,

B, BD, C, D
Frequent 2’-sequence A-B, A-BD, A-D, AB-D,

B-D, BD-D, D-D
Frequent 3’-sequence A-B-D,A-BD-D, A-D-D

Figure 1: Example database and frequent sequences

Lexicographic Tree for sequences. The lexicographic

subset tree is presented originally by Rymon [10] and adopted
to describe the itemset lattice in most of well-known frequent
itemset mining algorithms such as MAFIA [3]. This approach
is extended to describe the framework of sequence lattice in
SPAM [2]. Assume there is a partial ordering relationship,
denoted as ≤??on sequences. Let s1 and s2 are two sequences, if
s1 is a subsequence of s2 then s1 ≤ s2. If s1 is not a
subsequence of s 2, then there is no relationship in this order.
All sequences can be arranged in a lexicographic sequence
tree whose root is null sequence labeled with ∅ and each
node in tree represents a sequence. Each lower level k in tree
contains all of k-sequences which are ordered
lexicographically. Each node is recursively generated from its
parent node by using a sequence-extension step or an
itemset-extension step. The sequence-extension step is the
process of generating a sequence-extended sequence which is
generated by adding a new itemset consisting of a single item
to the end of its parent’s sequence. The itemset-extension step
is the process of generating itemset-extended sequence which
is a sequence generated by adding an item into the last itemset
in the parent’s sequence.

 φ level 0

 A B 1

A-A A-B AB B-A B-B 2

 A-A-A A-A-B A-AB A-B-A A-B-B AB-A AB-B B-A-A B-A-B B-AB B-B-A B-B-B 3

A-A-AB A-AB-A A-AB-B A-B-AB AB-A-A AB-A-B AB-AB AB-B-A AB-B-B B-A-AB B-AB-A B-AB-B B-B-AB 4

A-AB-AB AB-A-AB AB-AB-A AB-AB-B AB-B-AB B-AB-AB 5

 AB-AB-AB 6

 sequence-extension
 itemset-extension

Figure 2: example of the lexicographic sequence tree

For example, Figure 2 shows the complete lexicographic
sequence tree for two items, A and B, given that the maximum

size of a sequence is three.

B. Enumeration sequences using itemset-based extension
approach

Definition 5 . Given a k’-sequence s1 and a (k+1)’-sequence
s2. If s2 can be generated by adding an itemset e to the end of
sequence s1, we say that s2 is an itemset-based extension
sequence of s1, denoted as s 2 = s1 ⊕e. For example, sequence
(AB-C-BD) is an itemset-based extension sequence of (AB-C).

From this definition, each sequence can be considered as an
itemset-based extension sequence. So, we can enumerate all
sequences in lattice and organize lexicographic sequence tree
by using an itemset-based extension approach. First, all
itemsets are generated from the set of items and kept in an
itemset-list by lexicographical order. The root of tree is null
sequence labeled with φ and each node in tree represents a
sequence. Each lower level k contains nodes of all
k’-sequences. The level 1 of tree contains nodes of all itemsets
(1’-sequences) in itemset-list. In level k , each node is an
itemset-based extension sequence of its parent node in level
(k-1). All these nodes of k’-sequence are generated by
iteratively adding an itemset from itemset-list to the end of its
parent node in level (k-1). We refer to lexicographic sequence
tree organized in this itemset-based extension manner as
itemset-based lexicographic sequence tree (abbr.
itemset-based tree). Theoretically, an itemset-based tree is
infinite. But in practice, it is finite because the maximal size of
sequences in an input database is limited.

For example, given the maximum size of a sequence is three,
figure 3 shows the complete itemset-based tree for two item A
and B. The root is null sequence and the itemset list is {A, AB,
B}. The level 1 of tree contains all 1’-sequences: (A), (AB) and
(B). Node of sequence (A-AB) in level 2 is generated by
adding itemset (AB) to the end of its parent node (A) in level 1,
node of sequence (A-AB-B) in level 3 is generated by adding
itemset (B) to the end of its parent node (A-AB) in level 2.

 φ Itemset List: {A, AB, B} level 0

 A AB B 1

A-A A-AB A-B AB-A AB-AB AB-B B-A B-AB B-B 2

 A-A-A A-A-AB A-A-B A-AB-A A-AB-AB A-AB-B … AB-AB-A AB-AB-AB AB-AB-B …… B-B-A B-B-AB B-B-B 3

Figure 3: example of the lexicographic sequence tree

Contrasting figure 2 with figure 1, itemset-based tree is more

straightforward than lexicographic sequence tree. It gives us a
new and simple viewpoint to analyzing the problem of
sequence mining.

V. THE FINDER ALGORITHM

A. Basic Idea of FINDER

Since all frequent sequences in a database can be
considered as two types: frequent itemset (frequent
1’-sequenc) and frequent sequence with at least two frequent
itemsets (frequent k’-sequence, k>1), the problem of frequent
sequences mining can be divided into two sub-problems: one
is to find all frequent itemsets, the other is to find all frequent

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

k’-sequences where k>1. The first sub-problem is equal to the
problem of mining frequent itemset and can be solved by using
existing efficient frequent itemset mining approaches.

Like most of exiting algorithms, FINDER also uses the
candidate generation and test approach to solve the second
sub-problem. If all frequent itemsets are known, the
itemset-based extension approach can be used to enumerate
candidate sequences. The general idea is outlined as follow: A
candidate k’-sequence is generated by adding one frequent
itemset into the end of a frequent (k-1)’- sequence. We refer to
this approach as itemset-based extension candidate
generation. Based o n this approach, the second sub-problem
can be seemed as a process of generating and test candidate
sequences by traversing the itemset-based tree discussed
above.

Figure 4 shows the high level structure of FINDER algorithm
which is composed of three main steps: 1) Finding the set of all
frequent items (1-sequences) F1. 2) Finding the set of all
frequent itemsets (1’-sequences) FE. 3) Finding all frequent
k’-sequences, where k>1, by using procedure DFS.

F I N D E R (m i n _ s u p , D)

(1) F i n d i n g F 1 ;
 / / F 1 is t h e s e t o f a l l f r e q u e n t i t e m s ;
(2) F i n d i n g E L ;
/ / E L is t h e s e t o f a l l f r e q u e n t e v e n t s;
(3) F S = EL ;
/ / F S i s t h e s e t o f a l l f r e q u e n t s e q u e n c e s ;
(4) f o r e a c h e v e n t e i ∈ E L d o
(5) D F S (e i, EL)

Figure 4: pseudo-code of FINDER

The pseudo-code of procedure DFS with no pruning is
shown in figure 5. It repeats depth-first search recursively on
each n’s itemset-based extension sequence. Notice that this
recursive process is finite because the maximal size of
sequences in an input database is limited.

D F S (n, EL)
/ / without pruning s t ra tegies

(1) for each event ei ∈ E L do
(2) s= n ⊕ e i ;
(3) if suppor t(s) ≥ min_sup then
(4) F S= FS ∪ {s};
(5) DFS (s, EL)

Figure 5: pseudo-code of procedure DFS with no pruning

B. Pruning Strategies

Assume that the database to be mined has k frequent
itemsets and the maximal size of sequence in database is m.
DFS without pruning must generate and test all mk candidate
sequences. It is obvious that DFS without pruning is not
practical. So, we must explore some pruning strategies to
reduce the search space and generate as small a set of nodes
containing all frequent sequences as possible while searching
the itemset-based tree.

Definition 6. In the itemset-based tree, each node n is
associated with one itemset list, denoted by EL, which is the
set of frequent itemsets that are considered for a possible
itemset-based extension of node n. All itemsets in EL are kept
in lexicographic order.

Definition 7. Given a node n and its itemset list

EL={e1,e2,…,ek}. An itemset ei is said to be a frequent
extension itemset of n if ei∈EL and support(n ⊕ ei)=min_sup.
An itemset ej is said to be an infrequent extension itemset of n
if ej ∈ EL and support(n ⊕ ej)<min_sup. The frequent
extension itemsets list (abbr. FEL) of n is the set of all n’s
frequent extension itemsets.

Theorem 1. Given a node n and its itemset list
EL={e1,e2,…,ek}. If n is not frequent, then all n’s itemset-based
extension sequences (n ⊕ ei) are not frequent.

Proof. Note that each n’s itemset-based extension
sequence is a supersequences of n. since all supersequences
of an infrequent sequence are not frequent, all n’s
itemset-based extension sequences are not frequent.

Pruning strategy 1 (abbr. PS1). In the itemset-based tree, if a
node n is not frequent, then all its children are not frequent and
can be trimmed off.

Theorem 2. Given a node n and its EL={e1,e2,…,ek}. If ei is a
frequent extension itemset of n and ej ⊆ ei, then ej is a frequent
extension itemset of n.

Proof. If ej ⊆ ei, then (n ⊕ ej) is a subsequence of (n ⊕ ei).
Since all subsequences of a frequent sequence are frequent,
(n ⊕ ej) is a frequent sequence and ej is a frequent extension
itemset of n.

Pruning strategy 2(abbr. PS2). Given a node n and its
EL={e1,e2,…,ek}. Each ei∈EL is checked iteratively. If one
frequent extension itemset ei is found, we scan the rest
itemsets in EL and find each ej which is a subset of ei. Since ej
is a frequent extension itemset, sequence (n ⊕ ej) can be
inserted into the set of all frequent sequences directly without
further testing.

Theorem 3. Given a node n and its EL={e1,e2,…,ek}. If ei is
an infrequent extension itemset of n and ei ⊆ ej, then ej is an
infrequent extension itemset of n.

Proof. If ei ⊆ ej, then (n ⊕ ej) is a supersequence of (n ⊕ ei).
Since all supersequences of an infrequent sequence are not
frequent, (n ⊕ ej) is an infrequent sequence and ej is an
infrequent extension itemset of n.

Pruning strategy 3(abbr. PS3). Given a node n and its
EL={ e1,e2,…,ek }. Each ei∈EL is checked iteratively. If one
infrequent extension itemset ei is found, we scan the rest
itemsets in EL and trim off all itemsets which are superitemsets
of ei.

Theorem 4. Given node m and node n, if n is an
itemset-based extension sequence of m, then the frequent
extension itemsets list of n is the subset of the frequent
extension itemsets list of m.

Proof. Let FLLm and FELn be the frequent extension itemsets
list of m and n respectively. Note that m is a subsequence of n
since n is an itemset-based extension sequence of m. For each
ei ∈ FELn, (n ⊕ ei) is a frequent sequence. Since m is a
subsequence of n, then (m ⊕ ei) is a subsequence of (n ⊕ ei).
Since all subsequences of a frequent sequence are frequent,
(m ⊕ ei) is a frequent sequence and ei∈FELm. Thus, if n is an
itemset-based extension sequence of m, FELn ⊆ FELm.

Pruning strategy 4(abbr. PS4). Given a node n and its
itemset list EL={e1,e2,…,ek}. Each ei ∈ EL is checked
iteratively and the frequent extension itemsets list FEL is

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

generated. We can use the FEL as n’s children’s EL.
Since each lower node’s EL is its parent node’s FEL, the

lower node’s EL is reduced and the total search space is
pruned efficiently. In practice, the benefit of using PS4 is
significant.

Figure 6 shows the pseudo-code of procedure DFS with all
pruning strategies discussed above. At each node n, every
ei∈EL is checked iteratively. If support(n ⊕ ei)=min_sup, then
use PS2 to trim the itemsets in EL . If support(n ⊕ ei)<min_sup ,
then use PS3 to trim the itemsets in EL. We use frequent
extension itemsets list FEL to perform PS1. Because FEL
contains only frequent extension itemsets of n, we do not
repeat depth-first search on n’s infrequent children which can
be seemed as being pruned by using PS1. At last, the frequent
extension itemsets list FEL is transferred to n’s frequent
children as their EL.

DFS (n, EL)
// with pruning strategies

(1) FEL ={}
(2) for each event e i∈ EL do
(3) if support(n ⊕ ei) ≥ min_sup then
(4) F S=F S ∪ {n ⊕ e i}; FEL=FEL ∪ e i;
(5) for each ej∈ EL and j> i do
(6) if ej ⊆ e i then
(7) F S= F S ∪ {n ⊕ e i};

FEL= FEL ∪ {ej};
EL=EL -(e j};

(8) if support(n ⊕ ei)< min_sup then
(9) for each ej∈ EL and j> i do
(10) if ei ⊆ e j then
(11) EL=EL -(e j};
(12) for each ei∈ FEL do
(14) s= n ⊕ ei ;

Figure 6: Pseudeo-code of DFS with pruning

C. Data representation

For efficient support courting reason, FINDER adopts the
vertical bitmap data representation which is first presented by
Ayres et al. We refer the reader to [2] for additional detail on
the vertical bitmap.

VI. EXPERIMENTAL RESULTS
In this section, we study the performance of proposed

FINDER algorithms by comparing it with SPADE and SPAM.
The experiments were performed on a 1.7GHz Pentium 4 PC
with 512MB main memory, running Microsoft Windows 2003
server. We obtained the source code of SPADE and SPAM
from their authors’ websites. All three algorithms are written in
C++, and compiled using g++ with option -03. Same as SPAM,
all synthetic datasets are generated by using the IBM
AssocGen program [1] which takes the parameters listed in
table 1.

Option Description
D Number of customers
C Average transactions per customer
T Average items per transaction
S Average length of maximal pattern

Table 1: Parameters used in dataset generation

A. Comparison with SPADE and SPAM

We compared FINDER with SPADE and SPAM on several
synthetic datasets for various minimum support values. The
results of these tests are shown in Figures 8.

The figures clearly show that FINDER outperforms SPADE
by about a factor of average 1.5 on small datasets and better
than an order of magnitude for reasonably large datasets.
There are several reasons why FINDER outperforms SPADE: 1)
FINDER uses itemset-based extension approach for
generating candidate sequence which insures no candidate
with infrequent itemsets is generated, the number of
candidates is reduced efficiently. 2) Since FINDER discovers
all frequent itemsets in the first step, we can get great benefit
from existing efficient itemset mining algorithms. 3) FINDER
adopts vertical bitmap representation of data structure which
performs counting process in an extremely efficient manner.

The Figures 8 also shows that SPAM outperforms FINDER.
For each dataset, SPAM is about twice as fast as FINDER at
lower values of support and two algorithms have nearly equal
performance at higher values of support. The primary reason is
due to space requirement problem of FINDER. Assume that
the database to be mined has n different items, there would be
2n-1 different possible frequent itemsets in database. It is
obvious that keeping all bitmaps of frequent itemsets in
memory is not practical. In implementation of FINDER, only
bitmaps of each item are kept in main memory, each bitmap of
frequent itemset is generated and released dynamically.
Because same bitmap of a frequent itemset should be
generated several times, the costs of runtime are increased
accordingly.

B. Scale-up

We study the scale-up performance of algorithms as several
parameters in dataset generation were varied. For each test,
one parameter was varied and the others were kept fixed. The
parameters t hat we varied were number of customers, average
transactions per customer, average items per transaction and
average length of maximal pattern. The results of tests are
shown in Figure 9. It can be easily observed that the FINDER
scales linearly with four varying parameters.

VII. CONCLUSION
In this paper, we systematically explore an itemset-based

extension approach for generating candidate sequence. Based
on this approach, a novel algorithm for discovering the set of
all frequent sequences is presented which can reduce the
search space and minimize cost of computation efficiently by
using several efficient pruning strategies.

The itemset-based extension approach opens several
research opportunities and future work will be done in various
directions. First, we are studying how to discover maximal or
closed sequential patterns by using proposed approach.
Second, we are investigating how to apply this approach to
incremental mining of sequential patterns. In addition,
extending FINDER for parallel sequence mining is also
considered.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

a) D a t a s e t D 1 C 1 0 T 5 S 8 c) D a t a s e t D 5 C 1 5 T 1 0 S 1 0 b) D a t a s e t D 7 C 7 T 7 S 7

d) D a t a s e t D 1 5 C 1 5 T 1 5 S 1 5 f) D a t a s e t 1 8 C 1 8 T 1 8 S 1 8 e) D a t a s e t D 5 C 2 0 T 2 0 S 2 0

Figure 7: Execution times on different synthetic datasets for various minimum support values

a) V a r y i n g n u m b e r o f c u s t o m e r
D a t a s e t D ? C 2 0 T 2 0 S 2 0

b) V a r y i n g a v e r a g e t r a n s a c t i o n s p e r c u s t o m e r
D a t a s e t D 1 5 C ? T 2 0 S 2 0

c) V a r y i n g a v e r a g e i t e m s p e r t r a n s a c t i o n
D a t a s e t D 1 2 C 2 0 T ? S 2 0

d) V a r y i n g a v e r a g e l e n g t h o f m a x i m a l p a t t e r n
D a t a s e t D 1 5 C 2 0 T 1 5 S ?

Figure 8: Scale-up with varying parameters of database

REFERENCES
[1] R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proc. of

11th Int’l Conf. on Data Engineering, pp. 3–14, Mar. 1995.
[2] J. Ayres, J. Gehrke, T. Yiu, and J. Flannick. Sequential Pattern

Mining Using a Bitmap Representation. In Proc. of ACM SIGKDD
Conf. on Knowledge Discovery and Data Mining, pp. 429-435,
2002.

[3] D. Burdick, M. Calimlim, J. Gehrke. MAFIA: A maximal frequent
itemset algorithm for transactional databases. In Proc. of 17th
Int’l Conf. on Data Engineering, pp. 443-452, 2001.

[4] L. Feng, T. DILLON. Mining XML-Enabled association rule with
templates. In Proc. of 3rd Int’l workshop on Knowledge Discovery
in Inductive Databases, pp. 66-88, 2004.

[5] J. Han, J. Pei, Y. Yin. Mining frequent patterns without candidate
generation. In Proc. of the 2000 ACM SIGMOD Int’l Conf on
Management of Data, pp. 1~12, 2000.

[6] B. Kao, M. Zhang, C. Yip, and D.W. Cheung. Efficient Algorithms
for Mining and Incremental Update of Maximal Frequent
Sequences. Data Mining and Knowledge Discovery. Vol. 10, pp.
87-116, 2005.

[7] H. Mannila, H. Toivonen, and A.I. Verkamo. Discovery of
Frequent Episodes in Itemset Sequences. In Proc. of 1st Int’l Conf.

on Knowledge Discovery and Data Mining. Vol. 1, pp. 210-215,
1995.

[8] H. Mannila and H. Toivonen, Discovering Generalized Episodes
Using Minimal Occurrences. In Proc. of 2nd Int’l Conf. on
Knowledge Discovery and Data Mining. 1996.

[9] J. Pei, J. Han, B. Mortazavi-Asi, J. Wang, H.Pinto, and Q. Chen.
Mining Sequential Patterns by Pattern-growth: The PrefixSpan
Approach. IEEE Transactions on Knowlede and Data Engineering.
Vol. 16, pp. 1-17, 2004.

[10] R. Rymon. Search through systematic set enumeration. In Proc. of
3rd Int’l Conf. on Principles of Knowledge Representation and
Reasoning, pp. 539–550, 1992.

[11] R. Srikant and R. Agrawal. Mining Sequential Patterns:
Generalizations and Performance Improvements. In Proc. of 15th

Int’l Conf. on Extending Database Technology, pp. 3-17, 1996.
[12] H. Tan, T. Dillon, F. Hadzic, L. Feng, E. Chang. IMB3-Miner:

Mining Induced/Embedded Subtrees by Constraining the Level of
Embedding. In Proc. of Pacific-Asia Conference on Knowledge
Discovery and Data Mining, 2006.

[13] H. Tan, T. Dillon, F. Hadzic, E. Chang. SEQUEST: Mining
frequent subsequences using DMA Strips. In Proc. of Data Mining
& Information Engineering'06, 2006.

[14] M.J. Zaki. SPADE: An Efficient Algorithms for Mining Frequent
Sequences. Machine Learning. Vol. 40, pp.31-60, 2001.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

