
 
 

 

  
Abstract— In this paper, we systematically explore an 

itemset-based extension approach for generating candidate 
sequence which contributes to a better and more 
straightforward search space traversal performance than 
traditional item-based extension approach. Based on this 
candidate generation approach, we present FINDER, a novel 
algorithm for discovering the set of all frequent sequences. 
FINDER is composed of two separated steps. In the first step, all 
frequent itemsets are discovered and we can get great benefit 
from existing efficient itemset mining algorithms. In the 
second step, all frequent sequences with at least two frequent 
itemsets are detected by combining depth-first search and 
itemset-based extension candidate generation together. A 
vertical bitmap data representation is adopted for rapidly 
support counting reason. Several pruning strategies are used to 
reduce the search space and minimize cost of computation. An 
extensive set of experiments demonstrate the effectiveness and 
the linear scalability of proposed algorithm. 
 

Index Terms— Frequent sequence mining, data mining 
algorithms, frequent pattern, sequence database.  
 

I. INTRODUCTION 
The sequences mining task, which discovers all frequent 

subsequences from a large sequence database, is an important 
data mining problem. It has attracted considerable attention 
from database practitioners and researches because of its 
broad applications in many areas such as analysis of sales 
data, discovering of Web access patterns in Web-log dataset, 
extraction of Motifs from DNA sequence, analysis of medical 
database, identifying network alarm patterns, etc. 

In the last decade, a number of algorithms have been 
proposed to deal with the problem of mining sequential 
patterns from sequence database. Most of them are based on 
Apriori property which states that any sub-pattern of a 
frequent pattern must be frequent. These Apriori-like 
algorithms utilize a bottom-up candidate generation-and-test 
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method and a breadth-fist search space traverse strategy. In 
each candidate generation step, algorithm iteratively generate 
all candidate k-sequences from all frequent (k-1)-sequences. 
Because each candidate k-sequences  has one more item than a 
frequent (k-1)-sequences, this candidate generation method 
can be considered as an item-based extension approach. In 
other words, all these algorithms deal with the problem of 
mining sequential patterns using an item-based viewpoint. 
The main bottleneck of these algorithms is that huge number 
of candidate sequences could be generated and the cost of 
candidate generation, test and support counting is very 
expensive. In fact, a lot of candidate sequences are infrequent 
or not exist in database. Furthermore, some algorithms require 
multiple full database-scans as the longest frequent sequence 
and the cost of I/O is very expensive, some approaches use 
very complicated internal data structures to maintain database 
in memory which add great space and computation overhead.  

In this paper, we systematically explore an itemset-based 
extension approach for generating candidate sequence which 
contributes to a better and more straightforward search space 
traversal performance than traditional item-based extension 
approach. The general idea is outlined as follow: A candidate 
sequence can be generated by adding one frequent itemset 
into the end of a frequent sequence instead of adding one item 
into a frequent sequence each time. Since any candidates with 
infrequent itemsets are not generated, the number of 
candidates is reduced efficiently. This idea is derived from 
Aprioriall [1], the first sequence mining algorithm which uses 
itemset, not item, to generate candidate sequence.  

Based on this candidate generation approach, we present a 
novel algorithm, called FINDER (Frequent Sequence MIning 
usiNg Itemset-baseD Extension AppRoach), for discovering 
the set of all frequent sequences. FINDER is composed of two 
separated steps. In the first step, all frequent itemsets are 
discovered and we can get great benefit from existing efficient 
itemset mining algorithms [3][5]. In the second step, all 
frequent sequences with at least two frequent itemsets are 
detected by combining depth-first search and itemset-based 
extension candidate generation together. For rapidly support 
counting reason, we adopt vertical bitmap data representation 
proposed in SPAM [2]. In addition, FINDER can reduce the 
search space and minimize cost of computation efficiently by 
using several pruning strategies. 

The rest of the paper is organized as follows: Section 2 
introduces the basic concepts related to the sequence mining 
problem. Section 3 discusses the related work. Section 4 
presents our itemset-based extension approach in detail. In 
Section 5, we describe FINDER algorithm with pruning 
strategies and vertical bitmap data representation. An 
experimental study is presented in Section 6. We conclude in 
Section 7 with a discussion of future works. 
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II. PROBLEM STATEMENT  
Let I={i1, i2, … ,im}be a set of m distinct items comprising the 

alphabet. An itemset e = {i1,  i2, … , ik} is a non-empty 
unordered collection of items . Without loss of generality, we 
assume that items of an itemset are sorted in lexicographic 
order and denoted as ( i1i2… ik). A sequence s ={e1, e2, … ,en} is 
an ordered list of itemsets and denoted as (e1- e2- …  -en), where 
ei is an itemset. An item can occur at most once in an itemset of 
a sequence, but can occur multiple times in different itemsets 
of a sequence. The number of instances of items in a sequence 
is called the length of sequence. Let |ei| refer to the number of 
items in itemset ei, a sequence with length l is called l-sequence, 
where l= ? |ei| and 1=i=n. For example, C-AB-A is a 4-sequence. 

A sequence s1=(a1- a2- …  -am) is said to contained in 
another sequence s 2=(b1- b2- …  -bn) if and only if ∃ i1, i2,…, i m, 
such that 1=i1<i2<… <im=n, and a1 ⊆ bi1, a2 ⊆ bi2, … , am ⊆ bim. If 
s1 is contained in s2, s1 is a subsequence of s2 and s2 is a 
supersequence of s1. This relationship is denoted by s1 ⊆ s2. 
For example, the sequence A-C is a subsequence of (AB-CD). 
On the other hand, the sequences (C-A) and (AC) are not 
subsequence of (AB-CD).  

The database D for sequence mining consists of a collection 
of input-sequences. Each input-sequence has a unique 
identifier called sequence-id (sid) and each itemset in a given 
input-sequence also have an unique identifier called 
itemset-id (eid).  

  Given a sequence database D, the support count of a 
sequence s, denoted asδs,D( ) , is the total number of 
input-sequences in D which contain s. The support of s, 
denoted as support(s), is the fraction of sequences in D that 
contain s. If the symbol |D| denotes the number of sequences 
in D, support(s) =δ s,D( ) /|D|. Given a user-specified 
threshold min_sup, we say that a sequence s is frequent if 
support(s) is greater than or equal to min_sup. A maximal 
frequent sequence is a frequent sequence and none of its 
supersequences is frequent.  

Given a database D of input-sequences and a user-specified 
threshold min_sup, the problem of sequence mining is to find 
all the frequent sequences in the database.  

 

III. RELATED WORKS 
Since the problem of frequent sequence mining was first 

introduced in [1], a large amount of studies have been done 
toward the development of efficient algorithms for solving this 
problem and its variations. Agrawal and Srikant [1] presented 
three algorithms : AprioriAll, AprioriSome and DynamicSome 
for solving this problem. Note that these three algorithms 
utilize itemset to generate candidate sequence, but this idea is 
not adopted in later sequence mining algorithms . In [11], the 
same authors generalized definitions of sequence mining to 
include time constrains, sliding time window, and user defined 
taxonomy. They also proposed GSP algorithms which 
outperformed AprioriAll by up to 20 times. GSP is a 
multi-phase iterative algorithm and requires multiple passes 
over database. At pass k , the set of candidate k-sequences are 
checked against the database and frequent k-sequences are 

determined. Then the set of candidate (k+1)-sequences for 
next pass are generated by joining the set of candidate 
k-sequences with itself. This process will continue until no 
candidate is generated. GSP is seemed as one of most 
important algorithms for mining sequential patterns.  

Mannila et al. [7] presented a problem of mining frequent 
episodes which are essentially mining frequent subsequences 
in a single long input sequence where each itemset of 
sequence consists of one item. They further extended their 
framework in [8] to discover generalized episodes. Kao et al. [6] 
proposed MFS which combine sampling technique and 
maximal sequence together. Since a set of long frequent 
sequences (local maximal sequences) is found in a small 
sample database early, MFS can mine frequent sequences in 
original database efficiently by applying supersequence 
frequency based pruning. Tan and Dillon et al. [13] presented 
SEQUEST which uses a Direct Memory Access Strips 
(DMA-Strips) structure to efficiently enumerate candidate 
subsequence. This structure or model guided method is 
derived from TMG approach used for tree mining [4][12].  

In [14], Zaki proposed SPADE algorithm which uses a 
vertical id-list database format for efficient joining operation 
and a lattice-theoretic approach to decompose the original 
search into small pieces so that all working id-list can be load 
into memory. Pei et al. [9] proposed PrefixSpan which utilizes a 
pattern-growth approach instead of refinement of the 
candidate generation-and-test approach. PrefixSpan 
recursively projects a sequence database into a set of smaller 
projected sequence databases and grows sequential patterns 
in each projected database by exploring only locally frequent 
fragment. A memory-based pseudo-projection technique is 
applied to reduce the number of physical projected databases 
to be generated. Ayres et al. [2] presented SPAM which 
integrates a depth-first traversal of the search space with some 
efficient pruning mechanisms . In addition, SPAM utilizes 
vertical bitmap representation for candidate generation and 
rapid support counting. Spade, PrefixSpan and SPAM are 
considered as the three fastest algorithms  that mine sequential 
patterns. 

 

IV. SEQUENCE ENUMERATION: AN ITEMSET-BASED 
EXTENSION APPROACH 

In this section, some notations are defined to simplify our 
discussion. Then, we describe the itemset-based extension 
approach and the itemset-based lexicographic tree of 
sequence lattice upon which our algorithms is based.  

A.  Some Notations and Lexicographic Tree 

Definition 1. Let e1 and e2 be two itemsets. If e1 is a subset of 
e2, then e1 is a subitemset of e2 and e2 is a superitemset of e1. 

For example, itemset (ABC) is a subitemset of (ABCD), 
itemset (ABC) is superitemset of (AB). 

Definition 2. The number of itemsets in a sequence is called 
the size of sequence. A sequence with k itemsets is called 
k’-sequence. 

 For example, each itemset is a 1’-sequence because its size 
is 1, sequence (AC-CD) is a 2’-sequence because its size is 2. 
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Note that the size of a sequence is different from the length of 
a sequence.  

Definition 3. Given sequence database D, a user-specified 
threshold min_sup, we say that an itemset e is frequent if 
support(e) is greater than or equal to min_sup. The set of all 
frequent itemsets is denoted as FE .  

Definition 4. A frequent sequence of size k  is called a 
frequent k’-sequence.  

As an example, consider the database shown in figure 1 
which has four items (A to D) and four input-sequences. The 
figure also shows all the frequent sequences with a min_sup of 
50%.  

        Example database 
s-id sequences 
001 ABC-ABD-AD 
002 ABD 
003 AB-CD 
004 A-BD-D 

Frequent sequences ( min_sup=50%) 
Frequent 1’-sequence A, AB, ABD, AD, 

B, BD, C, D 
Frequent 2’-sequence A-B, A-BD, A-D, AB-D, 

B-D, BD-D, D-D  
Frequent 3’-sequence A-B-D,A-BD-D, A-D-D 

  
Figure 1: Example database and frequent sequences 

 
Lexicographic Tree for sequences. The lexicographic 

subset tree is presented originally by Rymon [10] and adopted 
to describe the itemset lattice in most of well-known frequent 
itemset mining algorithms such as MAFIA [3]. This approach 
is extended to describe the framework of sequence lattice in 
SPAM [2]. Assume there is a partial ordering relationship, 
denoted as ≤??on sequences. Let s1 and s2 are two sequences, if 
s1 is a subsequence of s2 then s1 ≤ s2. If s1 is not a 
subsequence of s 2, then there is no relationship in this order. 
All sequences can be arranged in a lexicographic sequence 
tree whose root is null sequence labeled with ∅  and each 
node in tree represents a sequence. Each lower level k  in tree 
contains all of k-sequences which are ordered 
lexicographically. Each node is recursively generated from its 
parent node by using a sequence-extension step or an 
itemset-extension step. The sequence-extension step is the 
process of generating a sequence-extended sequence which is 
generated by adding a new itemset consisting of a single item 
to the end of its parent’s sequence. The itemset-extension step 
is the process of generating itemset-extended sequence which 
is a sequence generated by adding an item into the last itemset 
in the parent’s sequence.   

                                                                                       φ                                                                                                                    level   0 

                                                        A                                                                              B                                                                                    1 

A-A                A-B                     AB                                                 B-A                        B-B                                                 2 

  
 
 A-A-A   A-A-B   A-AB        A-B-A   A-B-B      AB-A    AB-B                                 B-A-A   B-A-B    B-AB    B-B-A  B-B-B             3 

 
A-A-AB   A-AB-A  A-AB-B   A-B-AB  AB-A-A  AB-A-B  AB-AB  AB-B-A  AB-B-B   B-A-AB     B-AB-A  B-AB-B  B-B-AB      4 
 
 

A-AB-AB                          AB-A-AB     AB-AB-A    AB-AB-B     AB-B-AB                              B-AB-AB                                  5 
 
 
                                                                        AB-AB-AB                                                                                                                          6 

         sequence-extension 
            itemset-extension 

 
Figure 2: example of the lexicographic sequence tree 
 

For example, Figure 2 shows the complete lexicographic 
sequence tree for two items, A and B, given that the maximum 

size of a sequence is three.  

B.  Enumeration sequences using itemset-based extension 
approach 

Definition 5 . Given a k’-sequence s1 and a (k+1)’-sequence 
s2. If s2 can be generated by adding an itemset e to the end of 
sequence s1, we say that s2 is an itemset-based extension 
sequence of s1, denoted as s 2 = s1 ⊕e.  For example, sequence 
(AB-C-BD) is an itemset-based extension sequence of (AB-C). 

From this definition, each sequence can be considered as an 
itemset-based extension sequence. So, we can enumerate all 
sequences in lattice and organize lexicographic sequence tree 
by using an itemset-based extension approach. First, all 
itemsets are generated from the set of items and kept in an 
itemset-list by lexicographical order. The root of tree is null 
sequence labeled with φ and each node in tree represents a 
sequence. Each lower level k  contains nodes of all 
k’-sequences. The level 1 of tree contains nodes of all itemsets 
(1’-sequences) in itemset-list. In level k , each node is an 
itemset-based extension sequence of its parent node in level 
(k-1). All these nodes of k’-sequence are generated by 
iteratively adding an itemset from itemset-list to the end of its 
parent node in level (k-1). We refer to lexicographic sequence 
tree organized in this itemset-based extension manner as 
itemset-based lexicographic sequence tree (abbr. 
itemset-based tree). Theoretically, an itemset-based tree is 
infinite. But in practice, it is finite because the maximal size of 
sequences in an input database is limited. 

For example, given the maximum size of a sequence is three, 
figure 3 shows the complete itemset-based tree for two item A 
and B. The root is null sequence and the itemset list is {A, AB, 
B}. The level 1 of tree contains all 1’-sequences: (A), (AB) and 
(B). Node of sequence (A-AB) in level 2 is generated by 
adding itemset (AB) to the end of its parent node (A) in level 1, 
node of sequence (A-AB-B) in level 3 is generated by adding 
itemset (B) to the end of its parent node (A-AB) in level 2. 

 
                                                                                                φ                                                              Itemset List:  {A, AB, B}                 level  0 

                                                        A                                                                AB                                                 B                                                     1 

A-A                                 A-AB                   A-B             AB-A         AB-AB           AB-B       B-A        B-AB           B-B                              2 

  
 
 A-A-A   A-A-AB   A-A-B    A-AB-A   A-AB-AB   A-AB-B   …   AB-AB-A   AB-AB-AB   AB-AB-B ……  B-B-A   B-B-AB   B-B-B      3 
  

Figure 3: example of the lexicographic sequence tree 
 
Contrasting figure 2 with figure 1, itemset-based tree is more 

straightforward than lexicographic sequence tree. It gives us a 
new and simple viewpoint to analyzing the problem of 
sequence mining.  

V. THE FINDER ALGORITHM 

A. Basic Idea of FINDER 

Since all frequent sequences in a database can be 
considered as two types: frequent itemset (frequent 
1’-sequenc) and frequent sequence with at least two frequent 
itemsets (frequent k’-sequence, k>1), the problem of frequent 
sequences mining can be divided into two sub-problems: one 
is to find all frequent itemsets, the other is to find all frequent 
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k’-sequences where k>1. The first sub-problem is equal to the 
problem of mining frequent itemset and can be solved by using 
existing efficient frequent itemset mining approaches. 

Like most of exiting algorithms, FINDER also uses the 
candidate generation and test approach to solve the second 
sub-problem. If all frequent itemsets are known, the 
itemset-based extension approach can be used to enumerate 
candidate sequences. The general idea is outlined as follow: A 
candidate k’-sequence is generated by adding one frequent 
itemset into the end of a frequent (k-1)’- sequence. We refer to 
this approach as itemset-based extension candidate 
generation. Based o n this approach, the second sub-problem 
can be seemed as a process of generating and test candidate 
sequences by traversing the itemset-based tree discussed 
above. 

Figure 4 shows the high level structure of FINDER algorithm 
which is composed of three main steps: 1) Finding the set of all 
frequent items (1-sequences) F1. 2) Finding the set of all 
frequent itemsets (1’-sequences) FE. 3) Finding all frequent 
k’-sequences, where k>1, by using procedure DFS. 

F I N D E R  (m i n _ s u p , D )  
 
( 1 )    F i n d i n g  F 1 ; 
 / /     F 1 is  t h e  s e t  o f  a l l  f r e q u e n t  i t e m s ; 
( 2 )    F i n d i n g  E L ;   
/ /      E L  is  t h e  s e t  o f  a l l  f r e q u e n t  e v e n t s;  
( 3 )    F S = EL ;   
/ /      F S  i s  t h e s e t  o f  a l l  f r e q u e n t  s e q u e n c e s ; 
( 4 )    f o r    e a c h  e v e n t  e i ∈ E L   d o  
( 5 )         D F S (e i,  EL )  

 
Figure 4: pseudo-code of FINDER 

The pseudo-code of procedure DFS with no pruning is 
shown in figure 5. It  repeats depth-first search recursively on 
each n’s itemset-based extension sequence. Notice that this 
recursive process is finite because the maximal size of 
sequences in an input database is limited. 
 

D F S ( n, EL )    
/ /  without pruning s t ra tegies  
 
( 1 )   for   each  event  ei ∈ E L   do  
( 2 )           s=  n ⊕ e i ;   
(3)            if   suppor t(s) ≥ min_sup  then  
(4)                  F S=  FS ∪ {s};  
(5)           DFS (s,  EL )  

 
Figure 5: pseudo-code of procedure DFS with no pruning 

B. Pruning Strategies 

Assume that the database to be mined has k  frequent 
itemsets and the maximal size of sequence in database is m. 
DFS without pruning must generate and test all mk candidate 
sequences. It is obvious that DFS without pruning is not 
practical. So, we must explore some pruning strategies to 
reduce the search space and generate as small a set of nodes 
containing all frequent sequences as possible while searching 
the itemset-based tree. 

Definition 6. In the itemset-based tree, each node n is 
associated with one itemset list, denoted by EL, which is the 
set of frequent itemsets that are considered for a possible 
itemset-based extension of node n. All itemsets in EL are kept 
in lexicographic order. 

Definition 7. Given a node n and its itemset list 

EL={e1,e2,…,ek}. An itemset ei is said to be a frequent 
extension itemset of n if ei∈EL and support(n ⊕ ei)=min_sup. 
An itemset ej is said to be an infrequent extension itemset of n 
if ej ∈ EL and support(n ⊕ ej)<min_sup. The frequent 
extension itemsets list (abbr. FEL) of n is the set of all n’s 
frequent extension itemsets. 

Theorem 1. Given a node n and its itemset list 
EL={e1,e2,…,ek}. If n is not frequent, then all n’s itemset-based 
extension sequences (n ⊕ ei) are not frequent. 

Proof.  Note that each n’s itemset-based extension 
sequence is a supersequences of n. since all supersequences 
of an infrequent sequence are not frequent, all n’s 
itemset-based extension sequences are not frequent. 

Pruning strategy 1 (abbr. PS1). In the itemset-based tree, if a 
node n is not frequent, then all its children are not frequent and 
can be trimmed off. 

Theorem 2. Given a node n and its EL={e1,e2,…,ek}. If ei is a 
frequent extension itemset of n and ej ⊆ ei, then ej is a frequent 
extension itemset of n. 

Proof.  If ej ⊆ ei, then (n ⊕ ej) is a subsequence of (n ⊕ ei). 
Since all subsequences of a frequent sequence are frequent, 
(n ⊕ ej) is a frequent sequence and ej is a frequent extension 
itemset of n. 

Pruning strategy 2(abbr. PS2). Given a node n and its 
EL={e1,e2,…,ek}. Each ei∈EL is checked iteratively. If one 
frequent extension itemset ei is found, we scan the rest 
itemsets in EL and find each ej which is a subset of ei. Since ej 
is a frequent extension itemset, sequence (n ⊕ ej) can be 
inserted into the set of all frequent sequences directly without 
further testing. 

Theorem 3. Given a node n and its EL={e1,e2,…,ek}. If ei is 
an infrequent extension itemset of n and ei ⊆ ej, then ej is an 
infrequent extension itemset of n. 

Proof.  If ei ⊆ ej, then (n ⊕ ej) is a supersequence of (n ⊕ ei). 
Since all supersequences of an infrequent sequence are not 
frequent, (n ⊕ ej) is an infrequent sequence and ej is  an 
infrequent extension itemset of n. 

Pruning strategy 3(abbr. PS3). Given a node n and its 
EL={ e1,e2,…,ek }. Each ei∈EL is checked iteratively. If one 
infrequent extension itemset ei is found, we scan the rest 
itemsets in EL and trim off all itemsets which are superitemsets 
of ei. 

Theorem 4. Given node m and node n, if n is an 
itemset-based extension sequence of m, then the frequent 
extension itemsets list of n is the subset of the frequent 
extension itemsets list of m. 

Proof. Let FLLm and FELn be the frequent extension itemsets 
list of m and n respectively. Note that m is a subsequence of n 
since n is an itemset-based extension sequence of m. For each 
ei ∈ FELn, (n ⊕ ei) is a frequent sequence. Since m is a 
subsequence of n, then (m ⊕ ei) is a subsequence of (n ⊕ ei). 
Since all subsequences of a frequent sequence are frequent, 
(m ⊕ ei) is a frequent sequence and ei∈FELm. Thus, if n is an 
itemset-based extension sequence of m, FELn ⊆ FELm. 

Pruning strategy 4(abbr. PS4). Given a node n and its 
itemset list EL={e1,e2,…,ek}. Each ei ∈ EL is checked 
iteratively and the frequent extension itemsets list FEL is 
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generated. We can use the FEL as  n’s children’s EL. 
Since each lower node’s EL is its parent node’s FEL, the 

lower node’s EL is reduced and the total search space is 
pruned efficiently. In practice, the benefit of using PS4 is 
significant. 

Figure 6 shows the pseudo-code of procedure DFS with all 
pruning strategies discussed above. At each node n, every  
ei∈EL is checked iteratively. If support(n ⊕ ei)=min_sup, then 
use PS2 to trim the itemsets in EL . If support(n ⊕ ei)<min_sup , 
then use PS3 to trim the itemsets in EL. We use frequent 
extension itemsets list FEL to perform PS1. Because FEL 
contains only frequent extension itemsets of n, we do not 
repeat depth-first search on n’s infrequent children which can 
be seemed as being pruned by using PS1. At last, the frequent 
extension itemsets list FEL is transferred to n’s frequent 
children as their EL. 

 

DFS (n, EL ) 
// with pruning strategies  
 
(1)    FEL ={} 
(2)    for  each  event e i∈ EL  do  
(3)           if   support(n ⊕ ei) ≥ min_sup  then  
(4)                 F S=F S ∪ {n ⊕ e i};  FEL=FEL ∪ e i;  
(5)                 for each    ej∈ EL   and  j> i do  
(6)                      if   ej ⊆  e i   then  
(7)                          F S=  F S ∪ {n ⊕ e i}; 

FEL= FEL ∪ {ej};   
EL=EL -(e j};  

(8)           if   support(n ⊕ ei)< min_sup  then 
(9)                 for each   ej∈ EL  and  j> i  do  
(10 )                   if   ei ⊆  e j   then  
(11 )                      EL=EL -(e j};             
(12 )   for  each    ei∈ FEL    do   
(14)         s=  n ⊕ ei ;        

Figure 6: Pseudeo-code of DFS with pruning 
 

C.  Data representation  

For efficient support courting reason, FINDER adopts the 
vertical bitmap data representation which is  first presented by 
Ayres et al. We refer the reader to [2] for additional detail on 
the vertical bitmap. 

 

VI. EXPERIMENTAL RESULTS 
In this section, we study the performance of proposed 

FINDER algorithms by comparing it with SPADE and SPAM. 
The experiments were performed on a 1.7GHz Pentium 4 PC 
with 512MB main memory, running Microsoft Windows 2003 
server. We obtained the source code of SPADE and SPAM 
from their authors’ websites. All three algorithms are written in 
C++, and compiled using g++ with option -03. Same as SPAM, 
all synthetic datasets are generated by using the IBM 
AssocGen program [1] which takes the parameters listed in 
table 1. 

Option Description 
D Number of customers 
C Average transactions per customer 
T Average items per transaction 
S Average length of maximal pattern 

Table 1: Parameters used in dataset generation 
 

A. Comparison with SPADE and SPAM 

We compared FINDER with SPADE and SPAM on several 
synthetic datasets for various minimum support values. The 
results of these tests are shown in Figures 8.  

The figures clearly show that FINDER outperforms SPADE 
by about a factor of average 1.5 on small datasets and better 
than an order of magnitude for reasonably large datasets. 
There are several reasons why FINDER outperforms SPADE: 1) 
FINDER uses itemset-based extension approach for 
generating candidate sequence which insures no candidate 
with infrequent itemsets is generated, the number of 
candidates is reduced efficiently.  2) Since FINDER discovers 
all frequent itemsets in the first step, we can get great benefit 
from existing efficient itemset mining algorithms.  3) FINDER 
adopts vertical bitmap representation of data structure which 
performs counting process in an extremely efficient manner.  

The Figures 8 also shows that SPAM outperforms FINDER. 
For each dataset, SPAM is about twice as fast as FINDER at 
lower values of support and two algorithms have nearly equal 
performance at higher values of support. The primary reason is 
due to space requirement problem of FINDER. Assume that 
the database to be mined has n different items, there would be 
2n-1 different possible frequent itemsets in database. It is 
obvious that keeping all bitmaps of frequent itemsets in 
memory is not practical. In implementation of FINDER, only 
bitmaps of each item are kept in main memory, each bitmap of 
frequent itemset is generated and released dynamically. 
Because same bitmap of a frequent itemset should be 
generated several times, the costs of runtime are increased 
accordingly.       

B. Scale-up 

We study the scale-up performance of algorithms as several 
parameters in dataset generation were varied. For each test, 
one parameter was varied and the others were kept fixed. The 
parameters t hat we varied were number of customers, average 
transactions per customer, average items per transaction and 
average length of maximal pattern. The results of tests are 
shown in Figure 9. It can be easily observed that the FINDER 
scales linearly with four varying parameters. 
 

VII. CONCLUSION 
In this paper, we systematically explore an itemset-based 

extension approach for generating candidate sequence. Based 
on this approach, a novel algorithm for discovering the set of 
all frequent sequences is presented which can reduce the 
search space and minimize cost of computation efficiently by 
using several efficient pruning strategies.  

The itemset-based extension approach opens several 
research opportunities and future work will be done in various 
directions. First, we are studying how to discover maximal or 
closed sequential patterns by using proposed approach. 
Second, we are investigating how to apply this approach to 
incremental mining of sequential patterns. In addition, 
extending FINDER for parallel sequence mining is also 
considered. 
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a )  D a t a s e t  D 1 C 1 0 T 5 S 8  c )  D a t a s e t  D 5 C 1 5 T 1 0 S 1 0  b )  D a t a s e t  D 7 C 7 T 7 S 7    

d )  D a t a s e t D 1 5 C 1 5 T 1 5 S 1 5  f )  D a t a s e t  1 8 C 1 8 T 1 8 S 1 8  e )  D a t a s e t  D 5 C 2 0 T 2 0 S 2 0    
 

Figure 7: Execution times on different synthetic datasets for various minimum support values  
 
                                

 

a )  V a r y i n g  n u m b e r  o f  c u s t o m e r  
D a t a s e t  D ? C 2 0 T 2 0 S 2 0  

b )  V a r y i n g  a v e r a g e  t r a n s a c t i o n s  p e r  c u s t o m e r  
D a t a s e t  D 1 5 C ? T 2 0 S 2 0  

 

c )  V a r y i n g  a v e r a g e  i t e m s  p e r  t r a n s a c t i o n  
D a t a s e t  D 1 2 C 2 0 T ? S 2 0  

d )  V a r y i n g  a v e r a g e  l e n g t h  o f  m a x i m a l  p a t t e r n  
D a t a s e t  D 1 5 C 2 0 T 1 5 S ?  

 
Figure 8: Scale-up with varying parameters of database
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