

Abstract—An important issue in Human Resource

Management is the assignment of transfer postings to employees
in a large organization that has offices and worksites at multiple
locations. It is customary in such organizations to transfer a
subset of employees at periodic intervals. This practice lends
significance to the Staff Transfer Problem (STP), which can be
viewed as a type of Constraint Satisfaction Problem (CSP).
Deterministic methods for solving the STP are demonstrably
inferior to local search methods. In our earlier investigations we
found that Simulated Annealing (SA) performed the best among
local search techniques. But our recent computer experiments
indicate that an improved GSAT formulation implemented
using tabu lists can outperform SA in many situations.

Index Terms— Constraint Satisfaction, Simulated Annealing,
Satisfiability, Tabu Search, Staff Transfer

I. INTRODUCTION

A transfer is a lateral movement of an employee in an
organization not involving a change in rank. In many large
organizations that maintain offices and worksites at multiple
locations, it is customary to transfer a subset of employees at
periodic intervals from one office or worksite to another.
Examples of such organizations are the armed forces,
government departments, commercial banks, and
construction firms. Transfers play a major role in human
resource flow in organizations, and the satisfactory
assignment of transfer postings to employees is an important
issue in Human Resource Management [4,5].

The Staff Transfer Problem (STP) [1] can be formulated as
a Constraint Satisfaction Problem (CSP). The variables take
values that correspond to transfer postings of employees. A
typical constraint enforces the requirement that the total
number of employees assigned to a transfer posting should not
exceed the specified number of vacancies. The objective is to
find transfer postings for a given subset of employees that
satisfy all the constraints.

The constraints here are not binary but involve a number
of variables. The constraints are of two types, strict and
desirable. A strict constraint must be satisfied; for example,
an employee can only be transferred to a location where there
is a vacancy for a job the employee can perform. A solution
that satisfies all strict constraints is a feasible solution. A
desirable constraint should be satisfied if possible. For
example, it is desirable that senior employees get priority over

S. Acharyya, West Bengal University of Technology, Kolkata, India,

email1: srikalpa8@yahoo.co.in, email2: sriyankar.acharyya@wbut.ac.in
A. Bagchi, Indian Institute of Science Education and Research, IIT

Kharagpur Extension Centre, Kolkata, India, email: bagchi@iimcal.ac.in

their juniors in the assignment of transfer postings. The
quality of a feasible solution is determined by the degree to
which desirable constraints are satisfied. The objective is to
find feasible solutions of high quality.

The transfer policy that is adopted in an organization
must be both fair and systematic to be acceptable to
employees. When the transfers involve a large number of
employees, it is typically quite difficult to find suitable
alternative positions for everyone. Some preliminary results
are reported in [2]. More detailed results comparing various
CSP techniques and showing the superiority of Simulated
Annealing (SA) over other methods are reported in [3]. In
earlier investigations, when the Staff Transfer Problem (STP)
was partially converted to a Satisfiability Problem (SAT), its
performance was inferior to that of a Simulated Annealing
(SA) formulation. In this paper we explain how the STP can
be fully expressed in SAT. The resulting implementation of
GSAT with a tabu list outperforms SA. This approach is
interesting for two reasons:

i) We do not need to assign costs to the constraints. In
SA, the search is directed by the cost function.

ii) Constraints are directly converted to clauses. We get
feasible solutions of high quality when all the clauses
are satisfied.

Sec 2 below describes the Staff Transfer Problem (STP),
and Sec 3 presents some solution methods. Experimental
results are provided in Sec 4. Sec 5 summarizes the paper and
discusses some unsolved issues.

II. PROBLEM DESCRIPTION

There is a set of E employees who are to be transferred. The
organization has other employees who are not being
transferred. At any office or worksite, the number of
vacancies is the difference between the number of sanctioned
positions and the number of employees who are not being
transferred. An employee can perform only certain types of
jobs. An employee has a seniority level, which is determined
by factors such as the level of the current position in the
organizational hierarchy, the date of joining the current
position, and the date of birth. There is a set LOC of locations.
A location corresponds to an office or a worksite. There is a
set J of job categories. Typical job categories are electrician,
typist and manager. For each pair (loc,j), loc in LOC and j in
J, the number of vacancies vacancy(loc,j) is known. This
number includes the chain vacancies that arise as a result of
the E transfers. It can be zero, indicating that job type j does
not exist at location loc or that there is no vacancy for job type
j at location loc.

An employee who is due for transfer submits options for
T > 2 destinations, each represented by a (loc,j) pair. The job
types in the transfer options correspond to jobs that the

A SAT Approach for Solving the Staff Transfer
Problem

S. Acharyya, A. Bagchi,

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

employee can perform. The parameter T has a typical value of
3. The options are arranged by preference, the first option
having the highest preference for the employee, the second
the next highest, and so on.

For convenience, we assume that the employees to be
transferred are numbered 1 through E in decreasing order of
(rank, seniority). Thus employee 1 has the highest rank and is
senior-most, and employee E has the lowest rank and is
junior-most. Let vac be the total number of vacancies. Then
vac = E*(1+extra), where extra gives the total number of
positions lying vacant prior to the transfers, expressed as a
fraction of E. It is possible that extra = 0, in which case the
chain vacancies are the only vacancies. To avoid problems in
implementation arising out of the chain vacancies, we assume
that all E transfers take effect at the same instant of time. Let
us call each (loc,j) pair a bucket. The buckets are numbered 1
through B. The number of vacancies in bucket k = (loc,j) is Mk
= vacancy(loc,j).

As already mentioned, constraints are either strict or
desirable. There are three strict constraints:
SC1: Each of the E employees must be assigned a new

posting. A new posting is a (loc,j) pair that differs
from the original (loc,j) pair in at least one
coordinate.

SC2: An employee can only be transferred to one of the T
options specified by the employee.

SC3: For each (loc,j) pair, the total number of persons
transferred to (loc,j) must not exceed vacancy(loc,j).

The problem can be formulated mathematically as
follows. An ExTxB matrix A = [aijk] is given, where aijk = 1 if
transfer option j of employee i is bucket k, and 0 otherwise.
We have to determine the ExT solution matrix X = [xij], where
xij = 1 if employee i is assigned transfer option j, and 0
otherwise. An employee is assigned exactly one new transfer
option. The solution is feasible if the number of employees
transferred to any bucket k does not exceed the number of
vacancies Mk. This condition can be expressed as follows:

ΣΣ xijaijk < Mk for 1 < k < B
where the summations are over 1 < i < E, 1 < j < T. A

feasible solution satisfies all the three strict constraints
mentioned above.

There are two desirable constraints:
DC1: Among the T options, an employee should be

assigned an option of as high a preference as
possible.

DC2: When two employees contend for the same transfer
posting, the employee who is senior should get
priority over the employee who is junior.

DC1 can be expressed by the condition
Σ xij > Σ xij+1 for 1 < j < T,

where the summation is over 1 < i < E. This says that more
employees should be assigned an option of preference j than
an option of preference j+1.

DC2 is satisfied if seniority violations can be avoided.
Such a violation occurs when there is a senior employee who
wants a particular (loc,j) posting with a certain preference, a
posting of higher preference being currently unavailable to
him (or her). But a junior employee who wants the same
posting with an equal or lower preference is assigned the
posting instead. This can be stated more formally as follows:
A seniority violation occurs if there exist employees k1 and k2,
where k1 < k2, and integers r, s and t, 1 < s < r < t < T, such that:

i) the junior employee k2 is assigned a transfer option (loc,j)
that has preference r for k2;

ii) the senior employee k1 is assigned an option of
preference t > r;

iii) k 1 has specified the same (loc,j) pair assigned to k2 as an
option with preference s < r.
The condition for no seniority violation, of an employee i

assigned option j, by a junior employee q assigned option r is
ΣΣΣΣΣΣ xijaipkxqraqrk = 0

where the summations are over 1 < i < q < E, 1 < p,r < j < T,
and 1 < k < B. In explanation, we note that: i) the junior-most
employee cannot suffer a seniority violation; ii) it must be the
case that j > 1, for if employee i gets the first transfer option
then no seniority violation can occur; and, iii) q must get an
option r < j to violate the seniority of i. Stated in this form, the
Staff Transfer Problem is just a CSP and not an optimization
problem, since there is no objective function to optimize.

We can view the Staff Transfer Problem, with seniority
violations ignored, as a problem in which a complete
matching of maximum weight must be found in a weighted
bipartite graph [7]. Let an instance of the Staff Transfer
Problem be given in which all bucket sizes are unity. We
construct a bipartite graph G = (V1 U V2, E’), where V1 is the
set of vertices on the north side, V2 the set of vertices on the
south side, and E’ is the set of edges. V1 and V2 are assumed to
be disjoint. In our case, V1 represents the set of employees and
V2 the set of buckets. An edge from a vertex v1 of V1 to a
vertex v2 of V2 indicates that v2 is a transfer option of
employee v1. We assign to each edge a positive integer weight
that depends on the employee, the bucket, and the preference
of the transfer option. This weight reflects the value of this
particular option to the organization and to the employee. A
transfer option that is a first preference has a higher weight
than one that is a second preference, and so on. Since the
buckets have unit size, our objective here is to find a matching
that is complete for V1 and maximizes the sum of weights of
the selected edges. This problem can be solved in time that is
polynomial in the size of the input. Now, suppose there is a
bucket that has a size k > 1. In V2 we split this big bucket into
k smaller buckets each of unit size. If the big bucket happens
to be a transfer option with weight w for employee v1, we join
v1 to each of the k smaller buckets with edges of weight w. As
a result we are again left with a complete matching problem.
Since bucket sizes are constant integers supplied as input, the
solution can still be obtained in time that is polynomial in the
size of the input.

When seniority violations must be resolved, it becomes
much harder to assign transfer options to employees in a
satisfactory manner. It is not yet known whether the Staff
Transfer Problem becomes NP-complete in this case.

The Staff Transfer Problem models an idealized
situation. In practice, an organization might want to impose
additional conditions on the transfer options of employees or
change some of the assumptions. For example, the number T
of transfer options need not be the same for all employees.
The organization could decide how many transfer options an
employee would be entitled to submit. Assuming an employee
is allowed to submit options freely, it is advantageous to
submit as few options as possible, since this means the
employee is more likely to get a desired posting. If the
organization wants to impose some degree of control over the
transfers, it could itself supply one of the transfer options,

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

perhaps the one of highest preference, and the employee could
be requested to submit the remaining options. There are many
other possibilities.

III. SOLUTION METHODS

A satisfactory analytical solution procedure for the
problem, even in its idealized form, has not yet been found.
We are thus forced to use heuristic methods. In our earlier
work [2,3] it was shown that Simulated Annealing
outperformed other heuristic and deterministic methods.
Here, apart from using Simulated Annealing, we have tried to
solve randomly generated problem instances using GSAT(L).
The implementations given below consider only the basic
version of the problem consisting of: i) the strict constraints,
and ii) the desirable constraint DC2.

A. Satisfiability

 The Staff Transfer Problem (STP) can be viewed as a SAT.
One way to express the STP in terms of logical satisfiability is
as follows. Let the T transfer options of employee k be (loc1,j1),
(loc2,j2), ..., (locT,jT). Then employee k must be assigned a
transfer posting at one of these T destinations. This can be
mathematically expressed by the logical proposition

X(k,loc1,j1) U X(k,loc2,j2) U ... U X(k,locT,jT)
where X(k,loci,ji), 1 < i < T, are logical variables that
correspond to positive literals. The literal X(k,loci,ji) is true if k
is assigned bucket (loci,ji), and is false otherwise. There are as
many such propositions as there are employees. We refer to this
set of clauses as the first set.
 Another set of clauses arise out of the size restrictions on
the (loc,j) buckets. Suppose m’ employees k1, k2, ..., km’, have
all given bucket (loc,j) as the transfer option. If m’ > M =
vacancy(loc,j), bucket(loc,j) could become overfull. To prevent
the bucket from becoming overfull, for every subset { k'1, ...,
k'M, k'M+1 } of size M+1 of the set { k1, k2, ..., km’ }, we generate
a clause of the form

~X(k'1,loc,j) U ~X(k'2,loc,j) U ... U ~X(k'M+1,loc,j)
We refer to this set of clauses as the second set. The number

of such clauses for this particular bucket is C(m’,M+1), the
number of combinations of m’ objects taken (M+1) at a time.

Seniority violations can be incorporated in our scheme as
follows. Suppose a seniority violation has occurred between
employees k1 and k2, where k1 < k2. Then, as stated before,
there exist integers r, s and t, 1 < s < r < t < T, such that: i) the
junior employee k2 is assigned a transfer option (loc,j) which
has preference r for k2; ii) the senior employee k1 has specified
the same (loc,j) pair as an option with preference s < r; iii) k1
is assigned an option of preference t > r. We can express this
constraint as a clause

~X(k1,loc1,j1) U ~X(k2,loc2,j2)
where option t corresponds to (loc1,j1) and option r

corresponds to (loc2,j2). To generate all such clauses, the
transfer options of all the E employees must be examined and
potential seniority violations identified. We refer to this set of
clauses as the third set. Many such clauses would be generated
in a typical problem instance.

The satisfaction of the first set of clauses ensures that
each employee is assigned a new posting. This means that
strict constraints SC1 and SC2 are satisfied. The satisfaction
of the second set of clauses ensures that there is no overfull
bucket, so strict constraint SC3 is satisfied. The satisfaction of

the third set of clauses ensures that there are no seniority
violations, so desirable constraint DC2 is satisfied. No effort
was made to satisfy desirable constraint DC1, because this
constraint is hard to state in terms of clauses.
 The greedy local search procedure GSAT initially assigns
random truth values to variables in an effort to satisfy all the
clauses [11,12]. GSAT looks for the variable with the property
that its truth-value when flipped causes the largest net decrease
in the number of unsatisfied clauses. It flips the truth-value of
this variable, and again looks for such a variable. Ties are
resolved arbitrarily. This is repeated until a satisfying
assignment is found. If no satisfying assignment is found within
a specified number of flips (maxflips), the procedure is restarted
with a new random initial truth assignment. This cycle is
repeated a specified number of times (maxtries).
 The performance of GSAT can be significantly improved
by incorporating a tabu search strategy to ensure that the same
variable is not flipped again and again [10]. The tabu list is
initially empty and is implemented as a FIFO queue. A variable
that has just been flipped is inserted into the list. The variable to
be flipped next is selected randomly [6] from among those
variables not in the tabu list that cause the largest decrease in the
number of unsatisfied clauses. As new variables get flipped and
enter the tabu list, older entries fall out of the list at the other
end. Thus some variables are prevented from being flipped for a
limited period of time, determined by the length of the tabu list.
In some applications this length plays a critical role in the
performance of GSAT. We represent GSAT with a tabu list of
length L as GSAT(L). In Procedure GSAT(L), the values of
maxflips and maxtries are selected by trial and error so that
good solutions are obtained in reasonable time. GSAT outputs
feasible solutions that are completely free of seniority
violations, so these solutions are superior to those obtained by
SA.

Procedure GSAT
{
 for (try = 1; try < maxtries; try++) {
 X = TA; /* TA gives the initial
random truth values of the variables */
 for (flip = 1; flip < maxflips; flip++) {
 if (X satisfies all clauses) return X;
 else {

determine the set of variables in X flipping which
cause the maximum decrease in the number of
unsatisfied clauses;
select a variable from this set resolving ties
arbitrarily;

 flip the selected variable;
 }
 }
 }
 announce failure; /* no satisfying truth
assignment found */
}

B. Simulated Annealing

The formulation of Procedure SA can be found in [8,9]. An
initial trial solution S is obtained by randomly assigning each
employee to one of the T buckets corresponding to the given
transfer options of the employee. As a result, some of the
(loc,j) buckets become overfull and have more than
vacancy(loc,j) employees. We must now move employees

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

from the overfull buckets to those that are still not filled up.
We randomly select an overfull bucket, randomly select an
employee from that bucket, and then place the employee
randomly in one of the buckets corresponding to the
remaining T-1 transfer options. The performance of the
algorithm improves markedly if a tabu list of employees is
maintained. The choice of the cost function plays a critical
role in the success of the method in finding a solution of good
quality. Even when there are no overfull buckets, we can
continue generating new trial solutions to find one that
satisfies more of the desirable constraints. In this case, instead
of selecting an overfull bucket, we randomly select any bucket
and proceed as above. The algorithm outputs the feasible
solution of lowest cost that it generates.

Procedure SA makes use of a number of parameters. The
values of these parameters must be finely tuned, otherwise,
inferior results are obtained. The most important issue is the
initialization of the temperature and the determination of the
rate at which it should decrease. A very high temperature such
as 106 (one million) is initially chosen. Whenever
changes/trials > tcent, the temperature is halved; if
changes/trials < tcent, the temperature is reduced slowly; the
reduction factor tempfactor typically has a value of 0.95. The
length of the tabu list can be chosen to be around 3% to 5% of
E. Small changes in the length do not have much effect on the
runtime, but the performance deteriorates if no tabu list is
used. The variable of interest is c*, which stores the cost of the
trial solution of minimum cost among all feasible solutions
found up to the current instant.

We formulated the cost c as the sum of two terms: c = c1 +
c2. Here, c1 guides the procedure towards feasible solutions
and c2 reduces the number of seniority violations.

We computed c1 as follows. In S, let the number of
employees assigned to bucket (loc,j) be nemp(loc,j), and let
diff(loc,j) = nemp(loc,j) - vacancy(loc,j). Now let

c1 = w1 * Σ { diff 2(loc,j) | all buckets (loc,j) for which
diff(loc,j) > 0 }

where w1 is a weight factor, and the summation is over all
buckets. Thus only overfull buckets make a contribution to
the value of c1. The weight factor w1 should be chosen so that
the ratio of the initial values of c1 and c2 (see below) lies in the
range 0.2 to 0.3. For some hard problems a larger or a smaller
value of the ratio may be needed to ensure that a feasible
solution is found. We computed c2 as follows. For each
employee k, let totviol(k) be the number in S of employees
who are junior to k each of whom has caused k a seniority
violation. Now take

c2 = w2 * Σ { totviol(k)| 1 < k < E }
where the weight factor w2 = 2 * E2 / (nLOC+nJ), nLOC

being the size of set LOC and nJ the size of set J. The
summation is over all employees. The algorithm is not
particularly sensitive to the exact term used in the expression
for w2.

.

IV. EXPERIMENTAL OBSERVATIONS

We now summarize our experimental observations. The
methods were programmed in C in a Linux environment and
run on a Pentium-IV, 1.8 GHz, 1 GB RAM machine. Identical
problem instances were run for the two methods. We did not
run other methods because they have been already shown to

be inferior to SA [3]. We wanted to create random instances
of the STP that were realistic and indicative of real life
situations. So we kept the number E of employees to be
transferred between 500 and 2000. Specialists in Human
Resource Management informed us that more than 2000
employees are rarely transferred by any organization in one
lot. For all runs we took T = 3. Initially, the E employees to be
transferred were randomly assigned to buckets. This
information was used for computing chain vacancies. The
value of parameter extra was chosen to lie between 0% and
40% of E; it was felt that a higher vacancy rate would be
unrealistic. The parameter extra is calculated as extra =
MPOST*loc*j*0.5*100/E, where MPOST is a parameter.

TABLE 1 THE STAFF TRANSFER PROBLEM
PERFORMANCE OF SIMULATED ANNEALING AND GSAT

E LOC,
 J

PO
ST

Ex
tra
(%)

Me
thod

Sol
ved

1st
opt

2nd
opt

3rd
opt

Time
(s)

GSAT 69 209 172 119 12.12 500 15,10 1 15

SA 61 193 173 134 16.10

GSAT 55 243 206 151 16.02 600 20,10 1 16.6

SA 52 230 205 165 22.99

GSAT 70 289 242 169 24.53 700 20,10 1 13.7

SA 51 276 237 187 36.68

GSAT 52 303 261 186 12.65 750 25,10 1 16.6

SA 46 287 262 201 19.17

GSAT 54 362 315 223 42.03 900 30,10 1 16.6

SA 49 347 309 244 58.17

GSAT 47 414 342 244 38.89 1000 30,10 1 15

SA 46 390 340 270 80.37

GSAT 96 429 343 228 16.32 1000 30,10 2 30

SA 92 388 342 270 52.60

SAT 94 508 413 279 24.35 1200 40,10 2 33.3

SA 86 462 407 331 98.55

GSAT 95 532 424 294 27.67 1250 40,10 2 32

SA 95 481 422 347 100.99

GSAT 96 650 514 336 169.72 1500 40,10 2 26.6

SA 88 590 508 402 123.11

Additional vacant positions were created for each value of
extra and randomly assigned to buckets. For each employee,
T transfer options were also randomly created. Transfer
options to buckets having no vacancies were not permitted.
No restrictions were imposed on which jobs an employee
could perform, it being felt that such restrictions were unlikely
to affect the runtime. 100 problems were generated for each
set. We determined the number of problems solved in a set
and the average runtime in seconds. We also computed, per
problem instance, the average numbers of employees who

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

were assigned their first, second and third transfer options.
The averages were taken over solved instances. The methods
were compared on the basis of three criteria: i) the number of
problems solved in each set of 100; ii) the runtime averaged
over solved problems, iii) the quality of the solution obtained,
quality being determined by the extent to which desirable
constraints were satisfied.

Our observations on the experiments are as follows
The Staff Transfer Problem is a difficult problem. The

run times are high when E is large. In the earlier
implementations (see [2,3]), SA was the best method. But
here GSAT(L) generally outperforms SA. Table 1 illustrates
the comparative performance of SA and GSAT(L). We see
that in most cases GSAT(L) outperforms SA. It solves more
instances and runs faster. If we compare the average number
of options (1st, 2nd and 3rd) assigned to the employees then
also the performance of GSAT(L) is slightly better than that
of SA. Of course, not every randomly generated problem
instance has a feasible solution. When extra = 0, it is quite
possible that a problem does not have a feasible solution.
From our experimental results it appears that this is rarely the
case. Problem instances were all generated randomly. If the
transfer scheme described here is used in real life, the transfer
options submitted by employees is likely to exhibit bias in
favor of certain postings and against certain other postings.
This would make the data less random, and the problems
could become harder to solve using randomized CSP
techniques. One way to resolve this difficulty might be the
following. The organization could generate an extra transfer
option for each employee, and this could be the option of least
preference. If this last option is allocated properly among
employees, an acceptable solution would always be found.

V. CONCLUSION

In this paper, the Staff Transfer Problem is viewed as a CSP. It
is converted to a SAT, and experiments indicate that the
greedy local search technique GSAT(L) that makes use of
tabu search solves problem quite efficiently. In most of the
instances it outperforms SA, which was earlier considered the
best. But GSAT(L) has a limitation. The number of clauses
increases rapidly with increase in the size of the problem.
In a machine with 1 GB RAM we could not run instances
having more than 1500 employees.

 Some interesting issues remain open. The first
concerns the formulation of an analytic solution procedure for
the STP. If the problem can be suitably expressed in the
language of Mathematical Programming, we can compare the
runtime and the quality of solution obtained by an analytical
procedure with that obtained by GSAT(L). The second relates
to the NP-completeness of the Staff Transfer Problem when
seniority violations are taken into account. The difficulty level
of the problem suggests that it is NP-complete, but this has not
yet been proved formally.

REFERENCES

[1] Acharyya S, The Satisfiability Problem: A Constraint Satisfaction

Approach, Ph D Thesis, Computer Science & Engineering., University
of Calcutta, 2001

[2] Acharyya S, Bagchi A, “Staff Transfers in a Large Organization: A
Constraint Satisfaction Approach”, Proc KBCS-98, International

Conference on Knowledge-Based Computer Systems, Mumbai, India,
1998, pp 51-63

[3] Acharyya S, Bagchi A, “Constraint Satisfaction Methods for Solving
the Staff Transfer Problem”, OPSEARCH, vol 42, no 3, September
2005, pp 179-198

[4] Beer M et al , Human Resource Management, A General Manager’s
Perspective: Text & Cases, The Free Press, 1985

[5] Dessler G, Human Resouce Management (17th Ed), Prentice Hall India,
1997

[6] Fukunaga A S, ”Variable Selection Heuristics in Local Search for
SAT”, Proc AAAI-97, American Association for Artificial Intelligence,
1997, pp 275-280

[7] Papadimitriou C H, Steiglitz K, Combinatorial Optimization:
Algorithms and Complexity, Prentice Hall, 1982

[8] Johnson D S, Aragon C R, McGeoch L A, Schevon C, “Optimization
by Simulated Annealing: An Experimental Evaluation, Part II, Graph
Coloring and Number Partitioning”, Operations Research, vol 39,
1991, pp 378-406.

[9] Reeves C R, Modern Heuristic Techniques for Combinatorial
Problems, Orient Longman, 1993

[10] Mazure B, Sais L, Gregoire E, “Tabu Search for SAT”, Proc AAAI-97,
American Association for Artificial Intelligence, 1997, pp 281-285

[11] Selman B, Kautz H, Cohen B, “Noise Strategies for Improving Local
Search”, Proc AAAI-94, American Association for Artificial
Intelligence, 1994, pp 337-343

[12] Selman B, Levesque H J, Mitchell D J, “A New Method for Solving
Hard Satisfiability Problems”, Proc AAAI-92, American Association
for Artificial Intelligence, 1992, pp 440-446

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

