

Abstract— A visualization program based on a new technique

for volume rendering and accelerating visualization of large
datasets is presented. The method keeps track of previous
moves and uses the application and viewer’s specifications to
produce areas called layers. The layers help to predict next
moves and the objects that have to be selected for future use. By
gathering statistics about different objects a unique shape layer
is obtained that is used to select different objects and put them
in the groups to be rendered with different resolutions. The
technique used simplifies the implementation, requires smaller
memory footprint, and accelerates production of high
resolution visualization at interactive rate.

Index Terms—Large dataset, multi-resolution techniques,
object selecting methods, visualization software.

I. INTRODUCTION
Direct volume rendering [1]-[4] has become a standard

technique for visualizing 3D datasets. This technique maps
the data in the volume and projects it to 2D images. The
direct volume rendering techniques using 3D texture
mapping and hardware can visualize volumes of moderate
sizes at interactive frame rates. While the available texture
memory in the high–end graphics hardware is limited to only
several hundred megabytes, simulation applications can
produce terabytes of data.

As visualization is an interactive process, sometimes
rendering a lower resolution of data is sufficient for the user
to get enough information about the area based on its
distance. It is useful to first render the data at a lower
resolution and then as the user navigates through the data and
requests further details in local regions of interest, if the
rendering resources are available, different portions of the
data are retrieved and rendered at their higher resolution. The
capability to visualize data at different resolutions allows
user to focus on specific area of interest and to spend more
time and hardware resources for higher quality data for that
area. Techniques have been introduced to provide
hierarchical data representations for 3D volumetric data in
[3]-[5] and for multi-resolution encoding and rendering of
large scale in [6].

Level of detail based visualization techniques as proposed
in [7] allow rendering of the same objects using several

Manuscript received November 8, 2007. This work was supported in part

by NASA Langley Research Center Grant No. NOC-03033 under the
Chesapeake Information Based Aeronautic Consortium (CIBAC).

N. Fallah is with the University of Maryland Eastern Shore, Prince Anne,
MD 21853 USA.

A. Eydgahi is with the Department of Engineering and Aviation Sciences,
University of Maryland Eastern Shore, Princess Anne, MD 21853 USA
(Phone: 410-651-7559; fax: 410-651-6486; e-mail: aeydgahi@umes.edu).

different triangle meshes of variable complexity. Thus, the
mesh complexity can be adjusted according to the object’s
relative position from the viewer, its visual importance in the
rendered scene, and with respect to the available rendering
power to guarantee stable interactive frame rates [8].
Although numerous ideas have been implemented on mesh
simplification for geometric approximation [9]-[10], fewer
approaches have been taken to address the problem of
view-dependent simplification [8] for real-time rendering
and performance optimization.

In this paper, a program based on a new technique [11] to
predict and cover more general and comprehensive datasets
is presented. The method utilizes a level of detail technique
which has been optimized for urban area visualization and
requires minimum amount of necessary memory.

II. THE TECHNIQUE USED

The method consists of three different types of objects. A
prefixed is added to each type to distinguish between these
objects. The first objects are Geo-Objects which have to be
shown on screen. Geo-Objects simulate the real word objects
and keep different information about each object such as
shape, color, and location. The two other types of objects are
Container-Objects and Linker-Objects. These two types
construct the platform for data structure by pointing to each
other and to relevant Geo-Objects. These objects are
responsible to keep the integrity of the Geo-Objects.

The three different objects are shown in figure 1. The white
objects represent Geo-Objects which are rendered and are
shown on screen at the same time. Dark gray represent
Container-Objects which points to Geo-Objects in their area.
When a special area needs to be shown on screen, that
container and the related Geo-Objects are loaded into
memory to render. The bright gray represents Linker-Objects
which links different containers. These objects are being used
to find neighbors of a container when they need to be
selected.

Each Container-Object refers to a specific geographic area
and points to a group of Geo-Objects belonging to the same
geographic location. These objects have to attach to each
other in order to construct the dataset using
Container-Objects. Each Container-Object by using
Linker-Objects connects to all other Container-Objects
around it. Container-Objects have pointer to point to all
necessary Linker-Objects that are around it. Linker-Objects
are pointing to Container-Objects that are next to them and
other Linker-Objects. Connecting Container-Objects using
this technique helps the algorithm to find nearby Geo-Objects
in least amount of time.

Software for Visualizing Volume Rendering of
Large Datasets

Navid Fallah and Ali Eydgahi

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Figure 1: Different types of objects

Container-Objects have size-limit based on hardware and

software specifications and requirements. By adding each
Geo-Object to a specific location, the relevant
Container-Object for that area points to that Geo-Object.
When the size of the Geo-Objects that are being pointed with
Container-Object exceeds the size-limit for that
Container-Object, the Container-Object has to be broken
down to smaller pieces and cover the same area with more
Container-Objects to keep the balance. This feature is
necessary to improve the memory performance and keep the
access time as short as possible.

As a Container-Object breaks down, new Linker-Objects
joins the new Container-Objects and other Container-Objects
that are nearby. Separating these two responsibilities,
maintain Geo-Objects with Container-Objects and
establishes the links between these objects, which improves
the memory and CPU performance while updating and
maintaining the objects.

For identifying and selecting proper objects that need to be
processed a layer is used. The layer is obtained from
probability of viewers changing their directions. Different
statistics and characteristics of movement such as speed and
probability of turning to different directions are employed to
generate layers. The layer is used to predict the viewer’s next
position and consequently enables the algorithm to deal with
the objects that are affected by the move. This improves the
performance, reduces the delay time, and makes it feasible
for the real-time visualization of objects.

There are two methods to generate the layers. The first one
is to provide the probabilities while defining a new object as
viewer. The second approach is to use the same probability
for all directions as default. In this case, the program keeps
track of movements and collects necessary statistics to
generate probabilities and make corrections on the layers
shape.

The distance between the viewer and Geo-Objects around
it creates layers with different sizes. Combining layers with
different sizes produces a base layer which is used by the
algorithm to determine proper resolution for each
Geo-Object using multi-resolution and level of detail
concepts.

The interior layer in the base layer selects the Geo-Objects
that have to be shown on screen and have to be rendered by
an program. Other layers select the Geo-Objects that do not

need to be rendered but have to be cached into memory for
later use. This technique speeds up the rendering process for
next move when interior layer covers the Geo-Objects. The
interior layer can contain several sub-layers depending on
specification of an environment. The program can render
Geo-Objects in each sub-layer with different resolution and
spend more time for Geo-Objects that are closer to viewer.
Using this special shape helps to render or cache Geo-Objects
into the memory more accurately by reducing the effort for
caching the Geo-Objects that are less likely to be visited by
viewer.

The process of data handling consists of two phases. The
startup phase and update phase which includes add or delete
of Geo-Objects to/from an existing dataset. The startup phase
starts with an empty Container-Object which covers all the
demanded area. Geo-Objects are being added to the container
till the container reaches the size-limit. The size-limit of the
container depends on the software and hardware
specifications such as the rendering device, graphic card, and
main memory. When the container reaches the size-limit, it is
broken down to four new containers which each covers
one-fourth of the old container area. This process continues
until all the Geo-Objects have been added to the containers.
Since each break produces 4 new containers, frequently
breaking is not necessary and it improves the performance.

Those containers that have less than one-eighth of
size-limit must be combined with their neighbors to make a
new container. This assures that storage and memory spaces
are not wasted. If all four containers have one-eighth of
size-limit, by combining them the new container will have
half of the size-limit.

The containers are numbered in specific order to speed up
the access time to objects. The specific order of numbering
helps to find any Container-Object in the area and its related
containers, such as its neighbors or children’s of the same
container, in case the containers have to be merged. The
merge is necessary when the four containers from the same
parents have less than one-eighth of size-limit.

The numbering process for the first break is shown in
figure 2. In this process, containers are numbered using two
digits where the first digit is the number of main container.
For example, by breaking container number 3 to four new
containers, they are numbered as 30, 31, 32, and 33. This
number specifies the relevant container in reverse method.

Figure 2: Numbering containers after being

For example, having container numbered 321, 3 means in

the first break this container was a part of a container in
South-East of the data set, 2 means that in second break this
object was part of the container in South-West of the old 3
container, and finally, 1 means in the last break this container
is in North-East of the old 32 container. By using this

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

numbering method, any container or Geo-Object can be
identified very fast and finding the neighbors of a container is
achieved just by changing a digit in this string of digits.

The other advantage of this numbering is that each digit
can be represented only by 2 bits. For example, container
numbered 230131 can be stored in 12 bits. Bitwise
instructions can be used to manipulate these numbers and to
extract container information such as location and neighbors
which reduce the calculation time.

III. THE SOFTWARE

The program is implemented in Java and consists of
RLMain, RLFrame, DataSetCreator, DataSetViewer,
RLImageApplet, and RLColorApplet classes. In this software,
the rendered images are shown on screen and rendering phase
can be added as an extension.

The DataSetCreator class creates the dataset based on the
described method and uses images as its input. This class puts
the images in proper container and keeps images with three
different resolutions.

The DataSetViewer class shows the dataset made by
DataSetCreator class. This class shows images in the dataset
with random resolution for sample and quick demonstration
of the dataset produced by DataSetCreator. It also uses other
classes to implement other functionality of the proposed
method.

The RLImageApplet class uses the dataset produced by
DataSetCreator class to implement the selecting phase of the
method. This class is a Java applet and selects containers,
puts them in different resolution areas, and displays them on
screen based on their proper resolution. There are three
different resolution areas in the program. A rectangle
simulates the screen position on dataset and the area
surrounded with the rectangle to clearly demonstrate the
method. The probability area has two layers. The first layer is
internal layer which selects the objects that are close to
viewer. The objects in this area have to be rendered with the
best resolution. The second layer selects the objects to be
rendered with lower resolution as they are far from the
viewer. These layers also select extra objects which are not in
screen area and user is not able to see them. These extra
objects are cached for future use to reduce the delay for later
moves. Depending on the size of probability areas, some
objects that have to be shown on screen may not be selected
by any layer. In this case, the objects have to be selected as a
new area and to be rendered with lower resolution.

The RLColorApplet class uses three different colors to
simulate the proposed method. The screen simulation and
probability areas are the same as RLImageApplet class. In this
class to simplify the demonstration, each color represents a
specific resolution area. The three colors and their
corresponding layers are:

• For the layer with the highest resolution.
• For the layer with intermediate resolution.
• For the layer with the lowest resolution.

Figure 3 shows the selected areas with RLImageApplet and
RLColorApplet. The objects enclosed within the internal
layer are rendered with the highest resolution. The objects in
second area are displayed with lower resolution. Lowest

resolution applies to the objects that are in screen rectangle
but not selected by any probability area. The images in figure
3 represent the selected areas chosen by the algorithm before
viewer moves.

Figure 3: Selected areas before viewer moves

Figure 4 shows the selected areas after forward move.
Since most of the necessary objects had been selected and
rendered for previous move, the images in this figure show
there are only few objects that need to be rendered and to be
shown on screen for new position of the viewer.

Figure 5 shows the selected areas after turning to the right.
As layers represent, there are less objects ready on the sides
other than front side of the viewer. In case of turning to the
sides, more objects have to be selected and to be rendered
with the proper resolution because it is a slower process than
moving forward. Therefore, since the probability of turning
to the sides is less than probability of moving forward, it
provides minimum delay.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Figure 4: Selected areas after forward move

IV. CONCLUSIONS

A program based on a new method which utilizes
proximity, level of details, and statistics from previous moves
to predict next position and to select necessary objects for
future use is described. This program is not dependent on the
shape and distribution of objects. It does not waste storage by
assigning extra space based on specific geographic
distribution over an area. In cases such as diamond-shape
distribution objects, where it seems half of the containers are
being wasted, memory is allocated just for the parts that
contain Geo-Objects. If a container is empty, there is no
storage and memory allocated for the relevant
Container-Object. In this case, Linker-Objects point to other
linkers and as there is no container the pointers will be null.

ACKNOWLEDGMENT
This work was supported by NASA Langley Research

Center Grant No. NOC1-03033 under the Chesapeake
Information Based Aeronautic Consortium (CIBAC).

Figure 5: Selected areas after right turn

REFERENCES
[1] J. Gao, C. Wang, L. Li, and H. Shen, “A Parallel Multiresolution

Volume Rendering Algorithm for Large Data Visualization,” Parallel
Computing, vol. 31, no. 2, pp. 185-204, 2005.

[2] I. Boada, I. Navazo, and R. Scopigno, “Multi Resolution Volume
Visualization with a Texture-Based Octree,” The Visual Computer,
vol. 17, no. 3, pp. 185-197, 2001.

[3] D. Ellsworth, L. J. Chhiang, and H. W. Shen, “Accelerating
Time-Varying Hardware Volume Rendering Using TSP Trees and
Color-Based Error Metrics,” Proc. of the 2000 IEEE symposium on
Volume visualization, Salt Lake City, UT, pp. 119-128, 2000.

[4] S. Guthe, M. Wand, J. Gonser, W. Strasser, “Interactive Rendering of
Large Volume Data Sets,” Proc. of IEEE visualization, Boston, MA,
pp. 53-60, 2002.

[5] T. Funkhouser and C. Sequin, “Adaptive Display Algorithm for
Interactive Frame Rates During Visualization of Complex Virtual
Environment,” Proc. of the 20th Annual Conference on Computer
Graphics and Interactive Techniques, Anaheim, CA, pp. 247-254,
1993.

[6] R. Pajarola and C. DeCoro, “Efficient Implementation of Real-Time
View-Dependent Multiresolution Meshing,” IEEE Transactions on
Visualization and Computer Graphics, vol. 10, no. 3, pp. 353–368,
2004.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

[7] P. Cignoni, C. Montani, and R. Scopigno, “A Comparison of Mesh

Simplification Algorithms,” Computer & Graphics, vol. 22, no. 1, pp.
37-54, 1998.

[8] P. Lindstrom and G. Turk, “Evaluation of Memory-less Simplification,”
IEEE Trans. Visualization and Computer Graphics, vol. 5, no. 2, pp.
98-115, 1999.

[9] C. Wang and H. Shen, “Hierarchical Navigation Interface: Leveraging
Multiple Coordinated Views for Level-of-Detail Multiresolution
Volume Rendering of Large Scientific Datasets,” Proc. of Ninth
International Conference on Information Visualization, Greenwich,
UK, pp. 259- 267, 2005.

[10] B. Shneiderman, “The Eyes Have it, A Task by Data Type and
Taxonomy for Information Visualizations,” Proc. of IEEE Visual
Languages, Boulder, CO, pp. 336-343, 1996.

[11] N. Fallah, and A. Eydgahi, “An Object Selecting Method for
Accelerating Volume Rendering of Large Datasets,” Proceedings of
the seventh IASTED International Conference on Visualization,
Imaging, and Image Processing, Palma de Mallorca, Spain, pp. 28-33,
2007.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

