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Abstract—An agent usually holds a very large num-
ber of beliefs. Hopefully, efficient belief changes
should be performed only in the part of its relevant
states at a time. Parikh showed that AGM belief
change operations do not always respect his relevance
criterion. Kourousias and Makinson showed that they
will do so if the given belief set K is in canonical form
K′. However, even when K is closed under classical
consequence, K′ will be a belief base and usually is not
closed under classical consequence. In this paper, we
first show that there are two alternative approaches
to guarantee the relevance criterion. They are con-
structed by replacing the family K⊥x with the family
K⊥′x and K⊥∗x respectively. The latter is general
enough to generate all the relevance-respecting belief
change operations definable on K itself.

Keywords: Belief change, relevance criterion, AGM

model.

1 Introduction

Belief revision is a topic of much interest in theoretical
computer science and logic, and it forms a central prob-
lem in research into artificial intelligence (infer to [6,12]).
Its notable methodology is AGM model, formulated by
Alchourron, Gardenfors and Makinson in 1985 [1]. In the
logic of belief revision, a belief state (or database) is often
represented by a set of formulae. Agent’s belief change is
a canonical example in research of belief revision.

An agent in the world usually holds a very large number
of beliefs and receives new information from the exterior
world. Thus it may be inconsistent when new information
is added into its beliefs. In order to deal with the contra-
dictions, some original beliefs must be given up accord-
ingly. What was given up is the motivation about why we
introduce belief revision. Many works about belief revi-
sion have proposed many useful methods to deal with it.
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The AGM model provides a milestone work in belief re-
vision. But it is possible to give up (or change) almost all
original beliefs in AGM model. Recently some researches
formulated that relevant beliefs should be affected only
when beliefs are changed. For example, Parikh proposed
that a belief change operator which respects his relevance
criterion protects any irrelevant formulae in 1999 [10]. In
that case, belief revision only changes locally in original
belief. We will discuss the local change based on splitting
of a set of formulae, carved up a theory into disjoint pieces
about different subject matters(letters), formulated by
Parikh in 1999 [10].

In order to deal with the local change, Parikh defined
splitting of any set of formulates and the irrelevant for-
mula in belief change over a language with a finite set of
elementary letters in 1999 [10]. Kourousias and Makinson
showed that every set K of formulae has a unique finest
splitting and extended the definition of irrelevant formu-
lae to an infinite language in 2007 [5]. Meanwhile, Parikh
formulated a criterion for relevance in belief change and
proved that the update operator in AGM does not satisfy
it generally [10]. Many researches have been conducted
to attack this issue syntactically by exploring some pos-
tulates to ensure the relevance criterion. These works are
carried out by Parikh [10], Chopra, Georgatos and Parikh
[3], Chopra and Parikh [4], Peppas, Chopra and Foo [11].
Kourousias and Makinson showed that the partial meet
operations over canonical form K

′
of belief set K satisfies

the relevance criterion [5].

In this paper, we will not begin with normalizing the
belief set. But we will rebuild K ⊥ x, set of maximal
subset A of belief set K such that A 0 x in [1]. We
choose two subsets, denoted by K ⊥′ x and K ⊥∗ x,
of K ⊥ x such that K ⊥ x 6= ∅ iff K ⊥′ x 6= ∅ and
K ⊥ x 6= ∅ iff K ⊥∗ x 6= ∅. Then we construct the partial
meet contraction operator ÷′ and ÷∗ by replacing K ⊥ x
with K ⊥′ x and K ⊥∗ x respectively. The operators ÷′
and ÷∗ satisfy AGM postulates and relevance criterion
formulated by Parikh. The converse holds too for ÷∗. So
that a representation theorem is obtained according to
AGM.

The rest of the paper is organized as follows: In section
2, we recall many preliminaries for the paper. In section
3, two partial meet contraction ÷′ and ÷∗ protecting
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relevance criterion are constructed and the representation
theorem for the latter is given. In section 4, we compare
our approach with those of a number of related works.

2 Preliminaries

In this section we review the preliminaries for the pa-
per. We always assume a propositional logic with set of
infinite or finite letters including the zero-ary truth >
among the primitive connectives. We use lower case let-
ters a, b, ..., x, y, z, α, β, ... to range over formulae of clas-
sical propositional logic. Sets of formulae are denoted by
upper case letters A,B, ..., X, Y, ..., reserving L for the
set of all formulae, E for the set of all elementary letters
(alias propositional variables) of the language. For any
formula α, we write E(α) to mean the set of the elemen-
tary letters occurring in α; similarly for sets of formulae.
Let F ⊆ E, L(F ) stands for the sub-language generated
by F , i.e. the set of all formulae x with E(x) ⊆ F .
Classical consequence is written as ` when treated as a
relation over 2L × L, classical consequence operation is
written as Cn when treated as an operation on 2L into
itself. The relation of classical equivalence is written a`.
We say that set K of formulae is belief set if it is closed,
i.e., K = Cn(K). To lighten notation, v(A) = 1 is short
for: v(α) = 1 for all α ∈ A, while v(A) = 0 abbreviates:
v(α) = 0 for some α ∈ A.

Let K be any set of formulae.

For any belief set K, K ⊥ x is the set of all maximal
subsets A of K such that A 0 x. In other words, A ∈
K ⊥ x iff

(1) A ⊆ K,

(2) A 0 x,

(3) any ϕ ∈ K \A, A,ϕ ` x.

And γ is any function such that for every formula x,
γ(K ⊥ x) is a nonempty subset of K ⊥ x, if the latter
is nonempty, and γ(K ⊥ x) = {K} otherwise. Such a
function is called a selection function for K. We say that
γ is transitively relational over K iff there is a transitive
relation ≤ over 2K such that for all x /∈ Cn(∅), ≤ marks
off γ(K ⊥ x) in the sense the following identity, which
we call the marking off identity, holds:

γ(K ⊥ x) = {B ∈ K ⊥ x : B′ ≤ B for all B′ ∈ K ⊥ x}.
The operation ÷ defined by putting K÷x =

⋂
γ(K ⊥ x)

for all x is called the partial meet contraction over K
determined by γ.

Note that the concept of partial meet contraction in-
cludes, as special cases, those of maxichoice contraction
and full meet contraction. The former is partial meet con-
traction with γ(K ⊥ x) a singleton; the latter is partial

meet contraction with γ(K ⊥ x) the entire set (K ⊥ x).

The following two lemmas in [1] are very important in
belief revision.

Lemma 2.1([1]). Let÷ be a function defined for belief
set K and a formula x. ÷ is a partial meet contraction
operation over K iff ÷ satisfies AGM postulates (÷1) −
(÷6) for contraction over K.

Lemma 2.2([1]). Let K be any belief set, and ÷ a
partial meet contraction function over K, determined by
a selection function γ. Then ÷ is a transitive relation over
K if and only if ÷ satisfies AGM postulates (÷1)− (÷8).

Lemma 2.3([1]). Let K be any belief set. Then K ⊆
Cn((K ∼ x) ∪ {x}).
Many matters relate each other in the world, but only
partial relations between matters are essential. So that
Parikh proposed the concept of splitting for belief set(set
of formulate). It allows us carve up a belief set into dis-
joint pieces about different subject matters.

Definition 2.4(Splitting [5]) Let E = {Ei}i∈I be any
partition of the set E of all elementary letters of the lan-
guage. we say that E is a splitting of set K of formulae
iff

⋃{Cn(K) ∩ L(Ei)}i∈I ` K, equivalently, iff there is
a family set {Bi}i∈I of formulae with each E(Bi) ⊆ Ei

such that
⋃{Bi}i∈I a` K.

Generally, people often hope to split a belief set as fine
as possible such that essential relation matters is in same
piece possibly.

Definition 2.5(Fineness of a Partition[5]). Fol-
lowing customary terminology, we say that a partition
E = {Ei}i∈I of all elementary letters set E of the lan-
guage is at least as fine as another partition F = {Fj}j∈J

of E, and we write E 6 F, iff every cell of F is the union
of cells of E. Equivalently, RE ⊆ RF, where RE (resp.
RF) is the equivalence relation over E associated with E
(resp. F).

Parikh showed that there is an unique finest splitting of
K for finite language [10] and Kourousias and Makin-
son proved the result for any language [5]. They are the
base of irrelevant formulate and relevance criterion over
a language with set of infinite letters [10].

Theorem 2.6([5]). Every set K of formulae has a
unique finest splitting.

The theorem says that there was a unique way to think of
K as being composed of disjoint information about cer-
tain subject matters. The following parallel interpolation
theorem, proposed by Kourousias and Makinson in 2007,
was used to proved the theorem 2.6. We will use it in
proof of our results.
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Theorem 2.7(Parallel interpolation theorem[5]).

Let A =
⋃{Ai}i∈I where the letter sets E(Ai) are

pairwise disjoint, and suppose
⋃{Ai}i∈I ` x. Then there

are formulae bi such that each E(bi) ⊆ E(Ai) ∩ E(x),
Ai ` bi, and

⋃{bi}i∈I ` x.

Parikh defined the irrelevant formulae in a belief change
when the set of elementary letters was finite [10]. Kourou-
sias and Makinson extended the definition for a language
with set of infinite letters [5].

Definition 2.8 (Irrelevant formulae in a belief change

[5]). Let K be any consistent set of formulae, with
x a formula that is a candidate for contracting from K
or integrating into K by a process of revision. Let E =⋃{Ei}i∈I be the unique finest splitting of K. We say
that a formula y ∈ K is irrelevant to the contraction
or revision of K by x (briefly: y ∈ K is irrelevant to
x modulo K) iff E(y) is disjoint from

⋃{Ej}j∈J , where⋃{Ej}j∈J is the subfamily of cells in E that share some
elementary letter with E(x). We denote the set of the
irrelevant formulae to x modulo K by IK,x and simply as
Ix in contexts where the identity of K is clear. Formally,

Ix = {y ∈ K|E(y)∩⋃
j∈J{Ej} = ∅ where Ej ∩E(x) 6= ∅

for all j ∈ J}
The relevance criterion may be put as follows: whenever
an element y of K is irrelevant to x modulo K, then it
remains an element of the result of contracting or revising
K by x. In other words, Ix ⊆ K ÷ x or Ix ⊆ K ∗ x.

We recall some basic notions about essential formulae in
[9]. A formula y is an essential formula of x iff x a` y and
for every formula z with z a` x satisfied E(y) ⊆ E(z).
It is clear that the essential formula of a formula is not
unique. But the essential formulae of a formula have the
same elementary letters by the least letter-set theorem
[9].

3 Partial Meet Contraction Based on
Splitting

In this section, we will not begin with normalizing the
belief set, but we will reduce K ⊥ x, set of maximal
subset A of belief set K such that A 0 x in [1]. We
choose two subsets, denoted by K ⊥′ x and K ⊥∗ x,
of K ⊥ x such that K ⊥ x 6= ∅ iff K ⊥′ x 6= ∅ and
K ⊥ x 6= ∅ iff K ⊥∗ x 6= ∅. Then we construct the partial
meet contraction operator ÷′ and ÷∗ by replacing K ⊥ x
with K ⊥′ x and K ⊥∗ x respectively. The operators ÷′
and ÷∗ satisfy AGM postulates and relevance criterion.
The converse holds too for ÷∗. So that a representation
theorem is obtained according to AGM.

3.1 Contraction operator based on the finest
splitting

Let E = {Ei}i∈I be the finest splitting of a belief set K.
Let Ki = K∩L(Ei) for all i ∈ I and K

′
=

⋃{Ki}i∈I . As
[1], we define K ⊥′ x to be set of maximal subset A of K
such that A 0 x and

⋃
i∈I(A ∩ L(Ei)) is maximal subset

of
⋃

i∈I(K ∩ L(Ei)) such that
⋃

i∈I(A ∩ L(Ei)) 0 x. i.e.

K ⊥′ x = {A ∈ K⊥x| ⋃{A ∩ L(Ei)}i∈I is a maximal
subset of K

′
such that

⋃{A ∩ L(Ei)}i∈I 0 x}
Let γ

′
to be any function such that for every formula x,

γ
′
(K ⊥′ x) is a nonempty subset of (K ⊥′ x) when the

latter is nonempty, and γ
′
(K ⊥′ x) = {K} in the limiting

case that (K ⊥′ x) is empty. Such a function is called a
selection function based on splitting for K.

Then the operation ÷′ defined by putting K ÷′ x =⋂
γ
′
(K ⊥′ x) for all x is called the partial meet con-

traction based on splitting over K determined by γ
′
.

Immediately, we have that K ⊥′ x ⊆ K ⊥ x by the above
definitions. Our first lemma shows that these two sets are
equivalent for non-emptiness. As in [1], we build partial
meet contraction by section function γ over K ⊥′ x.

Lemma 3.1 K ⊥ x 6= ∅ iff K ⊥′ x 6= ∅.
Proof. It is enough to show that K ⊥ x 6= ∅ im-
plies K ⊥′ x 6= ∅ since the inverse implication is obvious.
Suppose K ⊥ x 6= ∅. It is clear that 0 x. There is a
maximal subset A

′
of K

′
=

⋃{K ∩ L(Ei)}i∈I such that
A
′ 0 x. By K

′ ⊆ K and compactness, there is a max-
imal subset A of K such that A

′ ⊆ A and A 0 x, i.e.,
A ∈ K ⊥ x. By the definition of K ⊥′ x, it is suffi-
cient to show that

⋃{A ∩ L(Ei)}i∈I is a maximal subset
of K

′
such that

⋃{A ∩ L(Ei)}i∈I 0 x. Otherwise, there
must exist α ∈ K

′
such that α /∈ ⋃{A ∩ L(Ei)}i∈I and⋃{A ∩ L(Ei)}i∈I

⋃{α} 0 x. Consequently, A
′ ⋃{α} 0 x

by A
′ ⊆ ⋃{A∩L(Ei)}i∈I . It conflicts with the maximal-

ity of A
′
.

It is evident that K ÷′ x =
⋂

γ
′
(K ⊥′ x) is a special

AGM partial meet contraction since K ⊥′ x ⊆ K ⊥ x.
So that it satisfies all properties of AGM operator.

The following lemma shows that any partial meet con-
traction ÷′ based on splitting satisfies the relevance cri-
terion. Hence we show that full meet contraction re-
spect to relevance criterion, i.e. Ix ⊆ K ∼′ x, since
K ∼′ x ⊆ K ÷′ x.

Lemma 3.2. Let E = {Ei}i∈I be the finest splitting
of belief set K and K ∼′ x =

⋂
(K ⊥′ x) full meet

contraction based on splitting. Then Ix ⊆ K ∼′ x.

Proof. For any y ∈ Ix, i.e., y ∈ K is a irrel-
evant formula to x modulo K. Then

⋃{Ki}i∈I\J =⋃{K ∩ L(Ei)}i∈I\J ` y since
⋃{Ki}i∈I ` K , paral-
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lel interpolation theorem and (
⋃{Kj}j∈J) ∩ E(y) = ∅,

where
⋃{Ej}j∈J is the subfamily of cells in E that share

some elementary letter with E(x). Hence we show that,
for all i ∈ I\J , if α is any formula of Ki then α ∈ K ∼′ x.

Suppose for some i ∈ I\J , α ∈ Ki but α /∈ K ∼′ x,
i.e, there exists A ∈ K ⊥′ x such that α /∈ A. We
have α /∈ ⋃{A ∩ L(Ei)}i∈I 0 x. Hence we show that⋃{A ∩ L(Ei)}i∈I ∪ {α} 0 x by α ∈ Ki ⊆ Ix. It is a
contradiction to A ∈ K ⊥′ x.

By lemma 2.1 and lemma 3.2, the following theorem is
clear.

Theorem 3.3. Let E = {Ei}i∈I be the finest splitting
of belief set K. If ÷′ is a partial meet contraction op-
eration over K determined by γ′ then ÷′ satisfies AGM
postulates (÷1) − (÷6) for contraction and also satisfies
the relevance criterion over K.

Corollary 3.4. Suppose the same conditions as for
Theorem 3.3, If ∗′ is a partial meet revision operation
over K determined by γ′ then ∗′ satisfies AGM postulates
(∗1) − (∗6) for revision and also satisfies the relevance
criterion over K.

Proof. By the definition of revision from contraction
using the Levi identity, K

′ ÷′ ¬x ⊆ K
′ ∗x. Since E(x) =

E(¬x), the preceding theorem tells us that α ∈ K
′ ÷′ ¬x

for every α ∈ Ix, and we are done.

Note. The following example shows that neither con-
verse of the above two theorems holds.

Example: Let K = Cn({p, q, r}), x = p ∧ q and K ÷ x =
Cn(p ↔ q, r). It is clear that Cn(r)∩L(r) = Ix ⊆ K ÷x
and K ÷ x satisfies AGM postulates (÷1) − (÷8). But
there is no γ′ such that

⋂
γ′(K ⊥′ x) = Cn(p ↔ q, r).

In next subsection, we will weaken the semantics of par-
tial meet contraction based on splitting to gain a repre-
sentation theorem.

3.2 Contraction operator based on rele-
vance

In this subsection, we weaken the semantics of partial
meet contraction based on splitting. Our method does
not require on every part of the finest splitting of belief
set. Now, it only depends on two parts, the relevance and
irrelevance, of elementary letters of the language. We will
define K ⊥∗ x such that K ⊥′ x ⊆ K ⊥∗ x ⊆ K ⊥ x.

Given belief set K and x ∈ K. Let E = {Ei}i∈I be the
finest splitting of K. For any A ⊆ K such that A =
Cn(A), we define Ex =

⋃{Ei|i ∈ I&Ei ∩ E(x) 6= ∅},
Ar

x = A∩L(Ex) and Ai
x = A∩L(E\Ex) where x is some

essential formula of x. It is clear that Ki
x = Ix.

Similarly, we define K ⊥∗ x to be set of maximal subset

A of K such that A 0 x and Ar
x∪Ai

x is a maximal subset
of Kr

x ∪Ki
x such that Ar

x ∪Ai
x 0 x. i.e.

K ⊥∗ x = {A ∈ K ⊥ x|Ar
x ∪ Ai

x is a maximal subset of
Kr

x ∪Ki
x such that Ar

x ∪Ai
x 0 x}

Let γ∗ be a function such that for every formula x,
γ∗(K ⊥∗ x) is a nonempty subset of (K ⊥∗ x) when
the latter is nonempty, and γ∗(K ⊥∗ x) = {K} in the
limiting case that (K ⊥∗ x) is empty. Such a function is
called a selection function based on relevance for K.

Then the operation ÷∗ defined by putting K ÷∗ x =⋂
γ∗(K ⊥∗ x) for all x is called the partial meet con-

traction based on relevance over K determined by γ∗.

By the way identical to lemma 3.1, we can prove the fol-
lowing lemma which shows that the two sets are equiva-
lent for non-emptiness. A partial meet contraction over
K was built as [1] by section function γ∗ on K ⊥∗ x. Its
proof is similar to that of lemma 3.1.

Lemma 3.5 K ⊥ x 6= ∅ iff K ⊥∗ x 6= ∅.
Lemma 3.6 A ∈ K ⊥ x and Ix ⊆ A iff A ∈ K ⊥∗ x
where x is some essential formula of x.

Proof. Right to left. For any A ∈ K ⊥∗ x, by the
definition of K ⊥∗ x, we have A ∈ K ⊥ x and Ar

x ∪ Ai
x

is a maximal subset of Kr
x ∪Ki

x such that Ar
x ∪ Ai

x 0 x.
Then Ix ⊆ Ai

x ⊆ A since any α ∈ Ix = Ki
x satisfies

Ar
x ∪Ai

x ∪ {α} 0 x.

For the converse. Suppose A ∈ K ⊥ x and Ix ⊆ A. It
is suffices to show that Ar

x ∪ Ai
x is a maximal subset of

Kr
x ∪Ki

x such that Ar
x ∪ Ai

x 0 x. Then we only need to
show that Ar

x is maximal subset of Kr
x such that Ar

x 0 x
since Ki

x = Ix ⊆ A, i.e., Ki
x = Ix = Ai

x.

Let α ∈ Kr
x with α /∈ Ar

x. It is clear that α /∈ A if and
only if α /∈ Ar

x whenever α ∈ Kr
x. So α /∈ A by α /∈ Ar

x.
By A ∈ K ⊥ x and α ∈ Kr

x ⊆ K then A ∪ {α} ` x, i.e.,
A ∪ {α} ` x. Hence A ` α → x. Using the interpolation
theorem, there exists ϕ ∈ L(E ∩ E(α → x)) ⊆ L(Ex)
such that A ` ϕ ` α → x. So that ϕ ∈ Ar

x and ϕ∪α ` x.
Furthermore, Ar

x ∪ α ` x, i.e., Ar
x ∪ α ` x. Therefore Ar

x

is a maximal subset of Kr
x such that Ar

x 0 x.

The lemma shows that every element in the set K ⊥∗ x
is only an element in K ⊥ x and it contains all irrelevant
formulae to x where x is an essential letter of x. The
converse holds too.

Given any A ∈ K ⊥′ x, we have A ∈ K ⊥ x and
A ∈ K ⊥ x where x is some essential formula of x. By
Lemma 3.2, we have Ix ⊆ A. Then A ∈ K ⊥∗ x by
Lemma 3.7. Hence K ⊥′ x ⊆ K ⊥∗ x. But the con-
verse does not generally holds due to the example in the
last subsection. We have weakened the semantics of the
theory in the previous subsection and will gain a repre-
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sentation theorem in this subsection.

The example still shows that K ⊥∗ x ⊆ K ⊥ x and
K ⊥ x * K ⊥∗ x usually. In other words, K ⊥′ x  
K ⊥∗ x  K ⊥ x generally.

By the lemma 3.2 and lemma 2.2, the following theorem
is clear.

Theorem 3.7. Let ÷∗ be a function defined for belief
set K and a formula x. The partial meet contraction
operation ÷∗ determined by γ∗ is a transitive relation
over K iff ÷∗ satisfies AGM postulates (÷1) − (÷8) for
contraction and also satisfies the relevance criterion over
K.

The theorem shows the semantics constructs an repre-
sentation theorem for the relevance criterion and AGM
postulates for contraction.

Corollary 3.8. Let ? be a function defined for belief
set K and a formula x. ? is the partial meet revision
operation ? determined by K ? x = Cn(K ÷∗ ¬x) ∩ {x}
iff ? satisfies AGM postulates (∗1)− (∗8) for revision and
also satisfies the relevance criterion over K.

The result shows the semantics constructs an representa-
tion theorem for relevance criterion and AGM 8 postu-
lates for revision.

4 Comparison with Related Works

In the sequent, we compare our methods with these of
Kourousias and Makinson [5], and Hansson and Wasser-
mann’s local change depending on local implication [8] as
well.

4.1 Partial meet operation over canonical
form

In [5], Kourousias and Makinson first put the given belief
set K into a canonical form K

′
. Then they constructed

partial meet contraction (or revision) over the canonical
form K

′
. However, even K is closed under classical conse-

quence, K ′ will be a belief base and it is not closed under
classical consequence usually. In the paper, we didn’t
first normalize belief set but rebuilt K ⊥ x by replacing
it with K ⊥′ x and K ⊥∗ x respectively. Then we rebuilt
partial meet contraction by select function over K ⊥′ x
and K ⊥∗ x. The first case is equal to the partial meet
contraction over canonical form K

′
on every piece belief

Ki = K ∩ L(Ei) where {Ei}i∈I is the finest splitting of
belief set K. K ÷′ x is a special kind of K ÷∗ x since
K ÷′ x ⊆ K ÷∗ x. The following lemma shows that the
partial meet contraction over normalized belief set satis-
fies relevance criterion.

Lemma 4.1([5]). Let K be any consistent belief set,
E = {Ei}i∈I the finest splitting of K, with {Bi}i∈I a

family such that K
′
=

⋃{Bi}i∈I a` K and E(Bi) ⊆ Ei

for each i ∈ I, x a formula, and K
′ − x a partial meet

contraction of x from K
′
. Then α ∈ K

′ − x if α ∈ K
′
is

irrelevant to x (modulo K
′
).

Theorem 4.2. For any partial meet contraction oper-
ator −̇ over K

′
=

⋃{K ∩ L(Ei)}i∈I where K is a belief
set, there exists a partial meet operator ÷′ over K based
on the finest splitting of K such that (K

′−̇x) ∩ L(Ei) =
(K ÷′ x) ∩ L(Ei) for each i ∈ I.

Proof. Suppose K
′−̇x =

⋂
γ(K

′ ⊥ x). Let B = {A ∈
K ⊥′ x|⋂{A ∩ L(Ei)}i∈I ∈ γ(K

′ ⊥ x)} and K ÷′ x =⋂
B. For any i ∈ I and any ϕ ∈ (K

′−̇x)∩L(Ei), ϕ ∈ A
′

for all A
′ ∈ γ(K

′ ⊥ x). It follows that ϕ ∈ A ∈ B. So
ϕ ∈ K ÷′ x and then ϕ ∈ K ÷′ x ∩ L(Ei).

For the converse, note that for any i ∈ I and any ϕ ∈
(K ÷′ x) ∩ L(Ei), ϕ ∈ A for all A ∈ B. By definition
of B and ϕ ∈ L(Ei), we have ϕ ∈ γ(K

′ ⊥ x). Hence
ϕ ∈ (K

′−̇x) ∩ L(Ei).

The following theorem′s proof is similar to that of the
above theorem.

Theorem 4.3. For any partial meet contraction op-
erator ÷′ based on the finest splitting of belief set K,
there exists a partial meet operator −̇ over K

′
=

⋃{K ∩
L(Ei)}i∈I such that K

′−̇x ∩L(Ei) = K ÷′ x ∩L(Ei) for
each i ∈ I.

The two theorems show that our operator is equal to the
operator formulated by Kourousias and Makinson over
local belief Ki for all i ∈ I.

4.2 Local change

Note that our local contraction or revision depends on
splitting of K. Hansson and Wassermann, alternatively,
considered local change depending on the following local
implication [8]. Recall that, given a belief set K and a
formula α, a subset X of K is in K ⊥⊥C α if X is a
minimal subset of K such that X ` α.

Definition 4.4([8]). Let C be the inference opera-
tion. The function c is the compartmentalization func-
tion based on C if and only if, for all A,B ⊆ L: c(A,B) =⋃

(α∈A) c(α, B), where

• c(α, B) = ∅ in the limit case α ∈ Cn(∅) or ¬α ∈
Cn(∅);

• c(α, B) =
⋃

((B ⊥⊥C α) ∪ (B ⊥⊥C ¬α)\B ⊥⊥C ⊥)
otherwise.

Let C be the classical consequence operation, E =
{Ei}i∈I the finest splitting of belief set K, Ki = K ∩
L(Ei) for all i ∈ I and K

′
=

⋃{Ki}i∈I . Then
c(x, K

′
)
⋂{Kj}j∈J = ∅ for all x ∈ K, where

⋃{Ej}j∈J
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is the subfamily of cells in E that share some elemen-
tary letter with E(x). But c(x,K )

⋂{Kj}j∈J 6= ∅ for all
x ∈ K.

We secondly recall compartmentalization conception
based on inference operation C. In spite of B is a be-
lief set, the function C(c(A,B)) exhibits some expression.
But it demonstrates clearly that B is a belief base. We
recall the following definitions and theorems which de-
pend on differ inference operation(include local inference
operation).

Definition 4.5([8]). Let C be the inference opera-
tion on L and let c be the compartmentalization func-
tion derived from the classical consequence operation C.
Then for any set A, the A-localization of C is the infer-
ence operation CA such that for all sets B of formulae:
CA(B) = C(c(A,B)).

Theorem 4.6([8]).

If ÷ is a partial meet contraction operation with respect
to an operator C, then it is a kernel contraction operator
with respect to the operator C.

It does not hold in general that if÷ is a kernel contraction
operator with respect to an operator C, then it is a partial
meet contraction operator with respect to an operator C.

Since our partial meet contraction based on splitting
which satisfies the relevance criterion is a special kind
of partial contraction. it is also a kernel contraction op-
erator respect to the classical consequence operation by
theorem 16 in [7]. The converse does not holds generally.

5 Conclusions and Future Work

In the paper, we select the class of subsets K ⊥′ x (resp.
K ⊥∗ x) of K ⊥ x such that K ⊥ x 6= ∅ iff K ⊥′ x 6= ∅
(resp. K ⊥ x 6= ∅ iff K ⊥∗ x 6= ∅). Then we construct the
partial meet contraction operator ÷′(resp. ÷∗) by replac-
ing K ⊥ x with K ⊥′ x(resp. K ⊥∗ x). The operators
÷′ and ÷∗ satisfy the AGM postulates and the relevance
criterion formulated by Parikh. The converse holds too
for ÷∗. So that a representation theorem, according to
AGM, is obtained. We will discuss some representation
theorems for maxichoice contraction and full meet con-
traction in future.
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