
 
 

 

  
Abstract—In this paper, the technique of image noise 

cancellation is presented by employing cellular neural networks 
(CNN) and linear matrix inequality (LMI). The main objective 
is to obtain the templates of CNN by using a corrupted image 
and a corresponding desired image. A criterion for the 
uniqueness and global asymptotic stability of the equilibrium 
point of CNN is presented based on the Lyapunov stability 
theorem (i.e., the feedback template “A” of CNN is solved at this 
step), and the input template “B” of CNN is designed to achieve 
desirable output by using the property of saturation 
nonlinearity of CNN. It is shown that the problem of image 
noise cancellation can be characterized in terms of LMIs. The 
simulation results indicate that the proposed method is useful 
for practical application. 
 

Index Terms—CNN, LMI, global asymptotic stability, 
Lyapunov.  
 

I. INTRODUCTION 
 Cellular neural networks have been introduced by L.O. Chua 
and L. Yang [1, 2] in 1988. Due to their local connectivity, 
cellular neural networks can be applied to image processing 
and operate at a very high speed in the real time.  

The most important key point of investigating CNN is how 
to find the accurate templates “A” and “B”. In recent years, 
the problems of CNN templates design for image processing 
have received considerable attention. Genetic algorithm and 
multilayer CNN were presented to obtain templates for image 
processing in [3]. In [4], the robustness templates of CNN 
were designed by using mathematical analysis approach. A 
CNN with a particular hysteresis nonlinear cell characteristic 
was employed for image processing in [5, 6]. In practice, a 
drawback of CNN templates design is that the templates must 
be simplified to decrease the time of operation [3] or to 
analyze dynamical behavior in mathematics easily [4, 5, 7].  

Another key point of studying CNN is whether CNN 
system is stable. Recently, there have been several literatures 
proposed to deal with the stability of CNN by choosing 
various Lyapunov functions [8-11]. 

In general, the criterion of stability for different systems 
would be represented in form of LMI. In the past few years, 
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LMI has been attracted much attention for their 
computational tractability and usefulness in control 
engineering and the number of control problems that can be 
formulated as LMI problems is large and continue to grow 
[12]. The LMI can now be solved efficiently by the powerful 
MATLAB LMI Toolbox [13]. 

The new strategy of image noise cancellation is proposed 
by combining CNN and LMI. Without the need for 
simplifying the templates [3, 4, 5, 7], the proposed method 
can obtain satisfactory templates to eliminate noise 
effectively. In this paper, a given smaller size training sample 
that consists of a corrupted image and a corresponding 
desired image is presented to find the templates of CNN. A 
criterion for the uniqueness and global asymptotic stability of 
the equilibrium point of CNN is derived based on the 
Lyapunov stability theorem. Next, the input template “B” is 
obtained by employing the property of saturation 
nonlinearity of CNN. To combine the above results, it will be 
shown that the problem of templates design is characterized 
in form of a standard LMI problem. 

The rest of this paper is organized as follows. Section 2 
presents formulation and preliminaries for the image noise 
cancellation problem. In Section 3, the problem of stability 
for CNN system is discussed and the templates design of 
CNN for the image noise cancellation is characterized by 
LMIs. An example is given in Section 4 to demonstrate the 
proposed methodology. Finally, conclusion is drawn in 
Section 5. 

II. PROBLEM FORMULATION AND PRELIMINARIES 
In this paper, the space-invariant CNN system and LMI are 

utilized for image noise cancellation. The block diagram for 
the training system is shown in Fig. 1. The templates of CNN 
are trained by a given training sample with smaller size from 
LMI perspective and then the CNN with given templates is 
employed to eliminate noise from arbitrary larger corrupted 
images arbitrary larger corrupted images. 

 
Figure 1. The training system 
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The system structure of a cell of the space-invariant CNN 
is depicted in Fig. 2, where U is the input image with size M 
by N, Y is the output image with size is equal to input image, 
xij is the state of cell (i,j), uij is the pixel of input image at ith 
row and jth column, yij is the pixel of output image at ith row 
and jth column, z is the threshold, A is the feedback template, 
and B is the input template. 
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Figure 2. The system structure of cell (i,j) 

 
The dynamical behavior of cell (i,j) is represented as 

follows [7] 
)()()()()( tztUBtYAtxtx ijijijij +⊗+⊗+−=&  

))(())(( txftxy ijijij =                                                           (1) 

where the symbol “ ⊗ ” denotes the summation of dot 
products, and 

jitxtxtxftxy ijijijijij ,)1)(1)((5.0))(())(( ∀−−+==           (2) 

After repacking, the dynamical behavior of a 
space-invariant continuous time CNN can be described by 
the following equation 
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, where [ ]Tnxxx L21=x  is the sate vector (n=MN), 

{ }ijâˆ =A  is the feedback matrix, { }ijb̂ˆ =B  is the input matrix, 

[ ]Tnn xyxyxy ))(())(())(())(( 2211 ⋅⋅⋅=⋅ Lxy  is the 

output vector, [ ]Tnuuu L21=u  is the input vector, 

[ ]Tzzz L=z  that would be ignored in this method is 
the threshold vector, and 

itxtxtxftxy iiiii ∀−−+== )1)(1)((5.0))(())((            (4) 
Remark: The templates “A” and “B” are different from the 
feedback matrix Â  and input matrix B̂  respectively, but 
their relation is quite close [7]. 

In this paper, the templates are trained by a corrupted 
image (be represented as the static input vector u ) and a 
corresponding desired image (be represented as the output 
vector ∗y  that we want at steady state). According to above 
description, it is obvious that (3) can be rewritten as 
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where [ ] uΒu ˆˆˆˆˆ 21 == T
nuuu L  is independent on time. 

In order to simplify the proof of the stability of CNN, we 
will shift the equilibrium point T

nxxx ][ 21
∗∗∗∗ = Lx  of 

(5) to the origin. Let ∗−= iii xtxts )()( , system (5) can be 
represented as 
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where [ ]Tnsss L21=s  is the state vector, 
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itststs iiiii ∀≤   )),(()())((2 φφ  
or 

))(()())(())(( tttt TT sΦssΦsΦ ≤                                         (7) 
The following lemma that will be frequently used in the 

derivation of our main result is so-called Schur Complement 
Lemma. 
Lemma 1 [14]: Given constant matrices M, L, and R of 
appropriate dimensions where M and R are symmetric and 
R>0, then 0<+ RLLM T  if and only if 
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III. MAIN RESULT AND PROOF 
According to the training system (see Fig. 1), we will first 

derive a criterion for the uniqueness and global asymptotic 
stability of the equilibrium point of the CNN based on the 
Lyapunov stability theorem (i.e., “A” template of CNN is 
solved). Afterward using the mathematical analysis approach, 
“B” template of CNN is designed to achieve desirable output 

∗y  at steady state. 
Theorem 1: Consider the training system in Fig. 1 and the 

dynamical behavior of CNN (3), if the training sample that 
consists of a bipolar corrupted image and its corresponding 
desired bipolar image is given and the following LMIs are 
existence, then the templates of the CNN for the image 
reconstruction would be solvable 
 (i) 0ˆˆ >−− TAA                                                               (9) 
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  i=1,2,3,…,MN                                                           (10) 
where { }ijâˆ =A , { }ijb̂ˆ =B , iu that depends on the corrupted 

image of training sample and ∗
iy that depends on the 

corresponding desired image of training sample is the given 
binary output vector at steady state. 
Note: The image is coded such that -1 corresponds to black 
pixels and +1 to white ones. 
Proof: 
First, herein the proof of the criterion for the uniqueness and 
global asymptotic stability of the equilibrium point of the 
CNN shall be accomplished. In order to prove the global 
asymptotic stability of the origin of (6), we choose the 
following positive definite Lyapunov functional according to 
[8-11]: 
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where α  is a positive constant. 
The time derivative of ))(( tV s  along the trajectories of (6) is 
obtained as 

))](()())[((2))(())((2  

))((ˆ))((2)(ˆ))((2)()(2

))((ˆ))((2  

)())((2)(ˆ))((2)()(2))((

ttttt

tttttt

tt

tttttttV

TT

TTTT

T

TTTT

sΦssΦsΦsΦ

sΦAsΦsAsΦss

sΦAsΦ

ssΦsAsΦsss

−−−

++−=

+

−+−=

αα

α

α

α&

       (12) 

According to (7), we can write 

))((ˆ))((  

))((ˆ))(()(ˆ))((2)()(2

))((ˆ))((2)(ˆ))((2)()(2))((

tt

tttttt

tttttttV

TT

TTTT

TTTT

sΦAsΦ

sΦAsΦsAsΦss

sΦAsΦsAsΦsss

α

α

α

+

++−=

++−≤&
    (13) 

The inequality (13) can be rewritten as 
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, then the time derivative of ))(( tV s is also negative definite. 
Using the Lemma 1 (Schur Complement Lemma), the 

inequality (15) holds if and only if 
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By choosing 
2

1

λ
λα > , where 1λ  is the maximum eigenvalue 

of AA ˆˆ
2
1 T  and 2λ  is the minimum eigenvalue of TAA ˆˆ −− , 

(16) can be simplified as 
0ˆˆ <+ TAA     or    0ˆˆ >−− TAA                                         (17) 

In the above, we have demonstrated that (17) is the 
criterion of the global asymptotic stability of the origin of (6). 
Now, the uniqueness of the equilibrium point 0s =∗  is  
 

proved by contradiction method. Consider the equilibrium 
equation of (6) 
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where ∗s  is the equilibrium point. From (18), it is clearly that 
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According to (7), equation (20) can be expressed as the 
following inequality 

0)()ˆˆ)(( ≥+ ∗∗ sΦAAsΦ TT                                                (21) 
Consider the criterion for the global asymptotic stability of 
CNN (17), it implies that 

0)()ˆˆ)(( <+ ∗∗ sΦAAsΦ TT                                                (22) 
because equation (21) contradicts with equation (22), the 
equilibrium point 0=∗s  of (6) is unique. Thus, (5) has a 
unique equilibrium point for every û . 

So far, the criterion of uniqueness and global asymptotic 
stability of the equilibrium point of CNN has been derived 
above. In other words, the template “A” is obtained already 
according to (9). Now, we will design template “B” of CNN 
to achieve desirable output ∗y at steady state. From the 
training system in Fig. 1 and the dynamical behavior of CNN 
in (5), the equilibrium equation of (5) is shown as 
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Where 

u  : The input vector that depends on the bipolar corrupted 
image of training sample. 

∗y : The output vector at steady state that depends on the 
corresponding desired image of training sample. 

Â : The feedback matrix that can be obtained by (9). 
Β̂ : The input matrix that should be calculated at this step. 

 
By using the property of saturation nonlinearity (4), (23) is 

rewritten as the following inequalities 
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i=1,2,3,…,MN 
Rearranging (24), we obtain 
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i=1,2,3,…,MN        i.e., the inequality (10) holds. 
 
Combination of (17) and (25) forms the main result in this 

chapter, and it will be employed to eliminate noise from other 
corrupted images. 
 

IV. EXAMPLE 
In this section, an example is presented to illustrate the 

effectiveness of the proposed methodology. Herein we will 
use the different bipolar training samples (with smaller size 
16 by 16) to train the templates of CNN based on theorem 1. 
Then the CNN with given templates would be employed to 
eliminate noise from other corrupted images (with larger size 
128 by 128). 

Firstly, the bipolar training sample (see Fig. 3) that 
consists of a corrupted image with 5% noise and its 
corresponding desired image is utilized to train the templates 
of CNN. 

 
Figure 3. Training sample 

 (a) corrupted image with 5% noise (b) desired image 
According to theorem 1, we obtain the templates A5% and 

B5% as follows 
 -10.0718 7.2009 10.8975

A5%= -0.4159 -9.3977 0.8350 
 -10.3008 -7.2822 10.3225

 
 22.7446 3.5208 0.6006 

B5%= 11.8485 24.1257 10.5424
 21.6440 5.9648 1.8121 

 
Now, we consider another corrupted image with 10% 

noise and its corresponding desired image shown in Fig. 4. 
 

 
Figure 4. Training sample  

(a) corrupted image with 10% noise (b) desired image 
The corresponding templates of CNN are obtained by 

using theorem 1. 
 -2.8107 6.0507 -8.9027 

A10%= -2.0066 -9.4413 3.0729 
 9.1743 -5.8931 3.2050 

 8.1918 19.6384 18.5049
B10%= 10.4013 17.6569 9.1306 

 13.5312 23.8828 5.1621 
 

After the calculation of the templates, the LENA images 
with various noise ratios are applied to the input of CNN and 
we will obtain the reconstruction images at the output of 
CNN. When the noise ration of input image is 5%, the images 
before and after CNN processing are shown in Fig. 5. Fig. 6 
shows the results when the noise ration of input image is 
10%. 

In order to calculate the performance of the presented 
method under different levels of noise ratio, we introduce the 
reconstruction error rate as 

100%
2

ˆ~
1 1 ×

−

=
∑∑

= =

MN

yy
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i

N

j
ijij

γ                                               (26) 

where ijy~  is the pixel of the ideal image as shown in Fig. 5 (a) 

or in Fig. 6 (a), ijŷ  is the pixel of the reconstruction image at 

the output of CNN, and M and N are the horizontal and 
vertical horizons. 

Further, the reconstruction error rate will be compared 
with the noise ratio of the input corrupted image by the 
following index 

100%×
−

=
imagecorruptedtheofrationoise

imagecorruptedtheofrationoise γη         (27) 

It is obvious that the smaller γ  and larger η  are better, 
and we will compare the performance of CNN with various 
templates by these values. The γ  and the η  values for 
various templates under different levels of noise ratio are 
shown in Fig. 7 and Fig. 8 respectively. 

From the Fig. 5 and Fig. 6, they show that the 
reconstruction output images of the proposed CNN are very 
satisfactory. Further, the results in Fig. 5 and Fig. 6 also show 
that the templates trained by the training sample with higher 
noise ratio outperform the templates trained by lower noise 
ratio. In Fig. 7 and Fig. 8, they reveal that the proposed CNN 
can eliminate noise effectively and about the ninety percent 
of the noise of the corrupted images have been removed 
regardless of the noise ratio. 
 

V. CONCLUSION 
In this paper, a solution to the templates design of CNN for 

noise cancellation is proposed. It is shown that the design 
problem can be transformed into LMIs, and then it is 
straightforward to obtain the solution by the recently 
developed LMI Toolbox. Hence, we have presented an 
effective design method and computational procedures to the 
templates design for image reconstruction. In contrast to 
traditional methods (i.e., simplifying the design templates), 
the proposed one can obtain satisfactory templates to 
eliminate noise effectively, without the need for simplifying 
templates. 

From the simulated results, we find that the reconstruction 
images and the reconstruction error rate are very satisfactory. 
Thus, the new strategy provides a worthy approach for the 

(a) (b) 

(a) (b) 
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noise cancellation problem. In the future, the problem of 
robust templates design should be considered under the CNN 
system with uncertain. 
 

 
 

Figure 5. Noise ratio in 5%  
(a) Ideal image (b) Image before CNN processing (c) Image 
after CNN processing with templates A5% and B5% (d) Image 

after CNN processing with templates A10% and B10% 
 

 
 

 

Figure 6. Noise ratio in 10% 
(a) Ideal image (b) Image before CNN processing (c) Image 
after CNN processing with templates A5% and B5% (d) Image 

after CNN processing with templates A10% and B10% 
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