
 
 

 

  
Abstract— In the digital cinema postproduction chain, image 

rescaling serves as a core function.  The quality of rescaling is 
critical to maintaining the visual impact of a digital film at 
play-out. In the EU funded project IP-RACINE, it is required to 
address color distortion, artifacts and image blur in fractional 
rescaling within 1 pixel for a typical image of resolution 2K. To 
this end, we proposed a hybrid warping framework for 
fractional image rescaling that not only unifies the two 
dominant image rescaling methods, namely discrete mapping 
and interpolation, but also offers greater flexibility in preserve 
properties of image contents. Within this framework we have 
devised a novel rescaling method based on constrained seam 
carving. Compared with unconstrained seam carving[1], the 
new method can preserve global geometry of image contents 

and confine nonlinear distortion to be within 1±  pixel; 
compared with nearest neighbour mapping, it generates less 
visible artifacts; compared with interpolation methods, it can 
maintain color fidelity and sharpness in the original image. 
 

Index Terms—Image rescaling, Digital cinema, Seam 
carving, Hybrid warp, Shape preserving.  

I. INTRODUCTION 

Film or cinema is a major driving force for the 
entertainment industry. Commanding large scale financing, 
this medium employs the state-of-the-art in production/ 
postproduction technology to achieve the most exacting 
visual quality. The whole cine chain from capture to play-out 
is now fast moving towards all digital form due to the recent 
advances in imaging sensor technology matched by the 
affordability of the necessary computing resources. In 
response to this trend, European Union has established a 
large project named IP-RACINE (short for Integrated Project 
Research Area Cinema), aiming to “create a technology chain 
and workflow that allow the European digital cinema 
industry to deliver a complete experience from scene to 
screen”.  The University of Glasgow has been collaborating 
in this project investigating cine image compression and 
rescaling. One of the requirements in IP-RACINE is to 
address image degradation that results from a small scale 
resizing operation (termed as fractional rescaling). The 
industrial partners in the project reported that they can 
observe colour distortion, image blur, and visible artefacts 
when using conventional image rescaling methods in 
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fractional scale.   
Given this context, the Glasgow University team has 

analyzed systematically two sets of commonly-used rescaling 
methods: discrete mapping and interpolation methods.  We 
observed that the discrete mapping methods are able to 
preserve image sharpness (and colour fidelity for colour 
images) although inevitably introducing geometrical aliasing 
in rescaled images. On the other hand, although interpolation 
methods aim to preserve geometry of image contents, 
nevertheless they cause images to be smoothed thereby 
losing some fine image details. To our best knowledge, the 
problem of preserving both image sharpness and geometry in 
fractional image rescaling has not yet been systematically 
studied in the literature. Therefore to advance the 
state-of-the-art in fractional image rescaling, it is important to 
investigate the sharpness-geometry trade-off problem. 

This paper reports our study in fractional image rescaling, 
and is organized as follows: section II reviews the major lines 
of research in image rescaling in the literature and then 
analyses the quality degradation specifically in fractional 
scale. Based on the analysis, a hybrid warping scheme is 
proposed as a framework for image rescaling to alleviate 
quality degradation. Following this framework, Section III 
then discusses a novel rescaling method based on seam 
carving which aims to generate less visible artifacts. Some 
experimental results are shown and discussed in Section IV 
and conclusions are drawn in Section V. 

II.  ANALYSIS OF IMAGE RESCALING 

A. Overview of Image Rescaling 

Image rescaling (image resizing) plays a major role in 
image manipulation. In addition to its direct use, image 
rescaling is of fundamental importance to many computer 
vision and image processing algorithms such as image 
warping [2], pyramid construction [3], image-based 
rendering [4], etc.  The process of image rescaling involves a 
re-sampling that transforms the pixels on the grid of the 
original image to the pixels on a new grid representing the 
rescaled image. Depending on the scale, techniques for image 
rescaling can be very different. For instance, for octave 
image shrinking (rescaled to 1/2n of the original scale), 
convolution-based techniques are well justified because  
similar processes occur in human vision [5] and their 
implementation is relatively simple.  For octave image 
expansion (rescaled to 2n of the original scale), 
super-resolution techniques such as reconstruction-based [6, 
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7] or synthesizing-based [8, 9] methods may be required to 
generate plausible extra visual information associated with 
the enlarged scale.  

However, for a rescaling operation at an arbitrary scale, i.e. 
a scale that lies between two octave scales (termed as a 
fractional scale in this paper), the rescaling methods which 
work effectively for octave rescaling appears to be less 
effective because the patch-based computational formalism 
involved in those methods is difficult to adapt to an arbitrary 
scale. More versatile methods such as discrete mapping and 
interpolation methods seem to be more appropriate to 
fractional rescaling. 

The simplest and most popular discrete mapping method, 
the nearest neighbour mapping, can be also considered to be a 
0-order polynomial interpolation. Therefore in the literature, 
some researchers use the term “image interpolation” and 
“image rescaling” interchangeably. However in this paper, 
we distinguish image interpolation and image rescaling 
because interpolation is not necessarily the only means of 
rescaling an image. In the later part of the paper, we propose 
a new warping scheme which can be considered as a more 
general method to rescale images. 

Numerous methods have been proposed for image 
interpolation from different perspectives. For instance in the 
signal processing community, image interpolation is 
interpreted as the process of reconstructing the signal and its 
subsequent re-sampling [10, 11]. However, for Computer 
Graphics and CAD researchers, image interpolation is often 
regarded as a means to reconstructing the image surface, 
usually assumed to be continuous, therefore interpolants 
which exhibit good differential properties such as 
polynomials [12, 13] are preferred.   

Although different interpolation methods yield different 
qualities of rescaled images due to the different mathematical 
properties of the interpolants employed, it is yet hard to claim 
any one method outperforms all others. In practice the 
selection of image interpolation methods usually depends on 
task-specific properties [14]. Nevertheless, some good 
methods, such as Bilinear and Bicubic interpolation (1-order 
and 3-order polynomial interpolation) have proven popular 
because they often generate results of acceptable quality and 
are found to be numerically stable.   

B. Image Degradation in Fractional Rescaling  

Many image rescaling methods yield degradation in visual 
quality. A large volume of work has been published to 
address image degradation in rescaling, including earlier 
work in choosing different interpolants (as mentioned in 
Section II.A).  More recent methods adapt dynamically to 
image contents [15, 16] where local and global structures are 
learnt to supervise image representation in a way that the 
rescaled image looks better to human observers.  

In this paper, we limit our discussion to fractional 
rescaling, in which image degradation occurs primarily in the 
form of blurring or geometrical aliasing. The blurring arises 
when a well-focused digital cine picture is subjected to a very 
small change in scale, say 5%. When such a small-scale 
change is applied, the image details that have spatial 
frequencies near the Nyquist limit in the original image will 
be incremented with phase shifts that cause the signal to pass 

in and out of representability of the new pixel grid.  Figure 1 
gives an example of this blurring effect, where a test image 
with repeated 1-pixel stripe pattern was enlarged by 5% using 
bilinear and bicubic interpolation. It is clearly seen that the 
resultant images are significantly blurred.  

 

 
(a) Test image with repeated patterns 

 
(b) Enlarge image in (a) by 5% using bilinear interpolation 

 
(c) Enlarge image in (a) by 5% using bicubic interpolation 

Figure 1 Blurring effect in fractional rescaling 
 
Another form of image degradation is manifest as 

geometrical aliasing when discrete mapping methods are 
applied. An example is illustrated in Figure 2, where 
“zigzag” artifacts occur in image expansion using nearest 
neighbor mapping. The reason for this aliasing is also the 
phase shift due to fractional rescaling, which causes spatial 
quantization errors of the pixel grid of the rescaled image. 

While the Nyquist-Shannon sampling theorem tells us that 
some degradation is inevitable with fractional image 
rescaling, in practice the best we can do may well be to make 
image degradation less visually intrusive to the user. In other 
words, we have to alter the image degradation in such a way 
that is less visible to the human visual system and this is the 
core principle underpinning adaptive image rescaling 
methods [15, 16]. In the next section, we propose a general 
framework for fractional image rescaling that transforms 
image degradation using a hybrid warp.  

 

  
(a) test image; (b) 5% enlarged image by nearest neighbor 
mapping 

Figure 2 Geometrical aliasing in fractional rescaling 
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C. A General Framework for Fractional Rescaling 

As explained in Section II-B, image degradation caused by 
signal phase shifting in fractional rescaling is inevitable and 
we may alter the form of degradation to make it less visible. 
A first question is whether image degradation is 
transformable. If the answer is yes, then we may be able to 
tune the image degradation according to a specific need.  Let 
us assume a rescaled image can be obtained from an 
interpolated surface of the original image: 

),(),( yxfnmI s =        (1) 

where f is the interpolated surface of original image I(i,j). In 
traditional image interpolation, the new image Is is obtained 
by sampling the interpolated surface f at the positions linearly 
transformed from pixel indices (m,n): 

yx nymx λλ /,/ ==       (2) 

where λx, λy are scaling factors on dimension x and y 
respectively.  

A traditional way of looking at Eq(1) is that a better 
rescaling may be achieved by obtaining a better-behaved 
interpolated surface f. This idea has led the study of different 
interpolants including 0-order, 1-order and 3-order 
polynomials (that give nearest neighbour mapping, bilinear 
and bicubic interpolation respectively). Many other 
interpolants have  been reported in the literature, such as 
quadratic [13], sinc [11], spline [17], wavelet [18], etc., 
nevertheless, there is a limit to this line of investigation as 
discussed in Section II-B.  

Another way of looking at Eq(1) is that it represents a 
discrete warping function. If Eqs(2) hold true, then the warp 
in Eq(1) is a linear warp. From this point of view, all previous 
image interpolation methods assume a linear warp. Since it is 
difficult to attack the theoretical limit set by 
Nyquist-Shannon theorem using a linear warp, we believe a 
nonlinear warp has the potential to achieve better results. 
Based on this idea, we alter Eqs(2) to the following: 

yyxx nymx δλδλ +=+= /,/      (3) 

Eqs(3) represent a hybrid warp that increments the linear 
warp of Eq(2) with a displacement map (δx,δy). Eqs(3) then 
have the flexibility to be linear or nonlinear depending on 
(δx,δy). For instance, if (δx,δy) is nonlinear to (m,n) then 
Eqs(3) exhibit nonlinear properties. The mechanism 
expressed by Eq(1) and Eqs(3) is powerful as it not only 
provides greater flexibility to generate rescaled  images but 
also unifies many existing image rescaling methods. For 
instance, an interpolation can be obtained if δx=0 and δy=0, 
and a nearest neighbor mapping can be achieved if:  

yyy

xxx

nnround

mmround

λλδ
λλδ

/)/(

/)/(

−=
−=

        (4) 

In Eqs(4), round(·) denotes a rounding function which 
outputs the integer closest to its input variable.  

This is an interesting observation. If we adjust (δx,δy)  
within their upper and lower bounds in Eqs(4), we can 
generate a rescaled image “blended” between an 
interpolation and nearest neighbour mapping. This 
observation inspired us to consider the hybrid warp defined 
in Eq(1) and Eqs(3) to be capable of transforming image 
degradation. In our investigation, we found this hypothesis to 

hold. The next section presents a method of adjusting (δx,δy) 
that transforms the geometrical aliasing in a discrete 
mapping. 

III.  PROPOSED ALGORITHM 

(δx,δy) in Eqs(4) exhibit regular zigzag patterns. This is the 
reason for aliasing in nearest neighbor mapping as shown in 
Figure 2(b). To make the aliasing artefacts less noticeable, 
(δx,δy) must be adapted to the local image structure or 
contents. To this end, we have devised a content-adaptive 
discrete mapping method based on the seam carving 
techniques proposed in SIGGRAPH 2007 [1].  

The original seam carving method [1] is a nonlinear warp 
that can also be represented by Eq(1) and Eqs(3). While 
demonstrating its content-aware ability in image resizing, the 
original seam carving method introduces evident geometrical 
distortion of image contents because there is no constraint 
imposed on the range of (δx,δy) causing uncontrolled 
nonlinearity of the warp. To address this issue, we have 
introduced constraints to control nonlinearity caused by seam 
operations.  

Let us first briefly explain the concept of a seam. Assume 
we have an image I(i,j) and its corresponding energy map 
E(i,j), a seam is defined as a connected path of pixels along 
one image axis (vertically or horizontally). For instance, a 
vertical seam can be expressed as follows (a horizontal seam 
can be expressed similarly): 

1)1()(,  ..

],,2,1[)(,)}),({( 1

≤−−∀

∈= =

jijijts

Wjsjjs H
jv Ks

    (5) 

where sv denotes the vertical seam, W and H represent width 
and height of the image measured by number of pixels, and 
(s(j), j) forms a pair of horizontal and vertical coordinates of a 
pixel of the seam. 

Note that there are two constraints on a seam defined in 
Eq(5). The first is a connectivity constraint, i.e., two adjacent 
pixels in a seam must be constrained in a 8-neighbourhood. 
The second is a functional constraint, i.e.., that s(j) is a 
function of j, which implies that the seam has only one pixel 
in each row of the image. These constraints have influence on 
the effects of seam operations (insertion and removal). The 
connectivity constraint guarantees a seam to be discretely 
connected, thereby affecting the image “continuously”. The 
functional constraint ensures that one operation on a seam 
affects the image by only one pixel across (expanded or 
shrunk by one pixel in width or height) therefore causing 
maximally 1±  shifts of pixels.   

An optimal seam is considered as the one that minimizes 
its energy (sum of energy of its pixels): 

)(min* ss
s

E=         (6) 

Based on the definitions above, image rescaling can be 
performed by simply repeating the operation of removing or 
inserting optimum seams. The intuition here is that operation 
of a minimum energy seam will introduce least visual 
intrusion to the image. 

The problem of geometrical distortion may become 
evident following the original seam carving [1]. Figure 3(b) 
illustrates highly perceptible geometrical distortion of image 
contents, where the displayed image was derived from the 
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test image in Figure 3(a) by shrinking 50 pixels horizontally 
using the original seam carving algorithm. The resized image 
was then stretched back to its original size using a linear warp 
(bilinear interpolation) in order to illustrate the shifts of 
image contents. As it can be seen in Fig. 3(b), the distortion is 
obvious. For instance, the green and red peppers on the left 
part of Figure 3(b) look smaller in width than those in image 
Figure 3(a).  

 

 (a) 

 (b) 

 (c) 
Figure 3. Comparison of geometrical distortion in seam 

carving method: (a) pepper image (198x135); (b) image 
shrunk to (148x135) by the original seam carving [1] and 
stretched back to (198x135) using a linear warp; (c) image 
shrunk to (148x135) by constrained seam carving and 
stretched back to (198x135) using a linear warp. 

 
The reason for manifest geometrical distortion in Fig. 3(b) 

is that there is little constraint on forming the seams. The 
selected seams to be removed or inserted can be at arbitrary 
locations as long as they do not violate the definition in 
Eq(5). Because of the huge freedom given to such seams, the 
original seam carving algorithm does not allow control over 
the overall level of nonlinearity in seam operations. To 
illustrate this, we map the pixels in Figure 3(b) back to the 
corresponding pixels in Figure 3(a), and then calculate shifts 
δx between corresponding pixels (only δx was calculated 
because the image was rescaled only horizontally). Figure 
4(a) shows the shifts selected in the 50-th and 100-th rows. It 
can be seen that the shifts exhibit an apparent nonlinearity 
with the largest shift being about 15 pixels, giving rise to 
noticeable geometrical distortion in the resultant image. 

To reduce geometrical distortion in seam carving we must 
constrain the nonlinearity of seam operations. While a seam 
operation inevitably introduces nonlinearity by its nature, it 

may be possible to control the level of nonlinearity caused by 
seam operations. 

  

 
(a) 

 
(b) 

Figure 4 (a) Pixel shift measured on row 50 and row 100 of 
image in Figure 3(b); (b) Pixel shift measured on row 50 and 

row 100 of image in Figure 3(c) 
 
The basic idea is to limit the seam search range and the 

number of seams constructed within that range. An operation 
on a seam involves shifts of 1±  pixel for the pixels within 
the bounding rectangle of the seam, i.e. the minimum 
rectangle that contains the seam. Because there is no 
constraint on the seam rectangular bound in the original seam 
carving method, in the worst case, this bound can be as big as 
the whole image, that is to say, the whole image will be 
affected by shifts of 1±  pixel. When more seam operations 
are applied, the shifts of pixels then build up, since the seam 
bounding rectangles may overlap, and this explains the 
nonlinear property illustrated in Figure 4.   

Based on the analysis above, we propose a constrained 
version of seam carving for fractional image rescaling. In the 
constrained seam carving, the whole image is divided into nr 
non-overlapping vertical (or horizontal) regions uniformly, 
where nr is the number of pixels the image expands (or 
shrinks) horizontally (or vertically). Each region allows only 
one seam operation, thereby limiting shifts of image contents 
to be within 1±  pixel in that region. Because the divided 
regions do not overlap, the rectangular bounds of seams in 
different regions do not overlap as well. Therefore the shifts 
caused by seam operations in different regions do not 
accumulate together. When all the regions are combined 
together to form the complete rescaled image, the global 
image content structure remains proportional to that of the 
original image because the regions are divided uniformly. 
While nonlinear distortion has been introduced within each 
region, this distortion has been bounded to a shift of 

1± pixel for each pixel. Figure 5 illustrates the principle of 
constrained seam carving, where the test image in Figure 3(a) 
has been divided into 5 uniform regions and one seam has 
been constructed in each region. 
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Figure 5 Constrained seam carving 

 
When we apply the constrained seam carving to the test 

image in Figure 3(a), we generate the rescaled image shown 
in Figure 3(c). In this case the test image was shrunk by 50 
pixels horizontally and then stretched back to its original size. 
It can be seen that the result in Figure 3(c) exhibits much less 
geometrical distortion than that in Figure 3(b) where the 
original seam carving was applied. To determine precisely 
the degree of distortion with the constrained seam carving, 
we calculated shifts in the 50-th and 100-th rows of Figure 
3(c) which are depicted in Figure 4(b). As can be observed, 
the pixel shifts in Figure 4(b) have been bounded to within 

1±  pixel as expected, contrasting significantly to the 15 
pixel shift in Figure 4(a). Moreover, the shifts in Figure 4(b) 
are not cumulative as opposed to those in Figure 4(a) and 
exhibit random properties, which more or less mitigate the 
effect of the distortion generated by seam operations. 

 

IV.  RESULTS 

Figure 3(c) and 4(b) illustrate that the constrained seam 
carving reduces significantly the level of geometrical 
distortion introduced by seam operations. In this section, we 
present results to illustrate content-adaptive ability of the 
constrained seam carving method. Figure 6 shows the results 
of 5% expansion of the test image in Figure 2(a) using nearest 
neighbour mapping and the constrained seam carving. It can 
be seen the constrained seam carving generates irregular 
aliasing which appears less intrusive than the regular aliasing 
generated by the nearest neighbor mapping. This result 
confirms that constrained seam carving is indeed able to be 
aware of image contents and alter the image accordingly. 

 

  
                     (a)                                         (b) 
 
Figure 6 Comparison between nearest neighbor mapping (a) 
and constrained seam carving (b) using the test image in 
Figure 2(a) 
 

Figure 7 gives the results from a real cine image. It can be 

seen that nearest neighbour mapping generated clearly 
noticeable artifacts, e.g. in the lip, nose and cheek areas in 
Figure 7(b). In contrast, the artifacts are well hidden in Figure 
7(c), where the seam carving technique finds low energy 
paths (which are not sensitive to human eyes) to replicate 
pixels. 
 

 
(a) A real cine image 

 
(b) Result by nearest neighbour mapping 

 
(c) Result by constrained seam carving 
Figure 7 Comparison between nearest neighbour mapping (b) 
and constrained seam carving (c) using a real cine image (a) 
 

V. CONCLUSIONS 

This paper discusses fractional image rescaling in digital 
cine applications. It is found that image degradation is 
inevitable in fractional image rescaling and that the 
degradation can be transformed by incrementing the warping 
function that represents an image rescaling operation with a 
displacement map. Based on this idea, a constrained seam 
carving method is devised to adjust the displacement map to 
alter the aliasing present in the rescaled image according to 
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the original image contents. Our experimental results confirm 
that this technique is able to rescale images adaptively 
according to their contents while preserving the geometry of 
the image contents globally in a linear manner. Application 
of this method to real cine sequences is currently ongoing. 
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