

Abstract— the technology of wireless sensor networks

(WSNs) is in the vanguard of the investigation of the computer
networks and could be the next technologic market of a huge
sum of money. An advance in mote technology is ”mesh of
network” special software that lets each device wake up during
a fraction of a second when events occur and data has to be sent
and forwarded to neighbors. Sensor networks are designed to
carry out a group of tasks about information processing like
detection, search or classification. Applications of these
networks have a wide range. An example of such an application
is sensors with RFID readers mounted on them to read tag
information from the objects in a factory warehouse. Here, the
tag information recorded by the RFID reader is a critical piece
of information, which may not be available at a later point of
time and hence has to be reliably transported to the sink. We
study the various issues and analyze the design choices proposed
in literature in addressing the challenge of sensors-to-sink
reliable data communication in such applications. A cross layer
based protocol with MAC layer retransmissions and NACK
(Negative Acknowledgment) based rerouting of data packets is
developed to overcome link failures and provide reliability. The
protocol is implemented on TinyOS and the performance of
NACK based rerouting protocol in terms of percentage
successful message reception is compared with NACK based
retransmission protocol by running simulations on TOSSIM.
The NACK based rerouting protocol provides greater
reliability under different metrics like varying network size,
network traffic and percentage of failed links in the network.

Index Terms— Convergecast, MAC, NACK, RFID, TinyOS.

I. INTRODUCTION
 Overview of Sensor Networks

A sensor network consists of several sensing devices
deployed in a given geographical area for collaboratively
gathering/sensing specific information in the environment for
later analysis at a central base station. The sensor nodes self
organize after deployment to establish radio communication
paths to the sink. The sensing devices are low power devices
consisting of a microcontroller for information processing, a
microchip and antenna for radio communication and a sensor
for sensing environmental parameters like temperature,
humidity, light intensity etc [6].

Manuscript received October 9, 2007. (8th January 2008 and paper

number:ICICWS_52).
Purushotham BV, is a Research Scholar, School of Computing

Sciences, Vellore University, TN, INDIA (corresponding author to
provide phone: 91-94805-14894; e-mail: utham74@gmail.com).

Prakasha S is with the Dayananda Sagar College of Engineering,
Bangalore 560078. (e-mail: sprakashjpg@yahoo.co.in).

Dr. K Ganesan is with the School of Computing Sciences, Vellore
University, Vellore, TN, INDIA (-mail: kganesan@vit.ac.in).

Motivation
Current research in the areas of wireless communications,

micro-electromechanical systems and low power design is
progressively leading to the development of cost effective,
energy efficient, multifunctional sensor nodes. Sensing,
communication, processing and battery units are the primary
components of a sensor node. Individual sensors have the
capacity to detect events occurring in their area of
deployment.

Reliable data transport is an important facet of
dependability and quality of service in several applications of
wireless sensor networks. Different applications have
different reliability requirements, for example an application
to collect environmental parameters like temperature,
humidity etc periodically can ignore an occasional loss of a
value from a particular sensor but for an application in which
the data collected by every sensor is a critical piece of
information then end-to-end reliability has to be guaranteed
for every individual packet [1][19].

An example for an application that requires guaranteed
end-to-end reliability is an integration of Radio Frequency
Identification (RFID) and wireless sensor network for
automated inventory management and tracking [24]. In this
application setup the sensor devices called motes [25] are
attached with RFID readers to record RFID tag information
on the objects. These sensor motes have a critical piece of
information to be sent to the sink. Therefore reliable
sensor-to-sink communication has to be guaranteed for such
applications. This is the main motivation behind studying the
various issues and strategies of reliable communication in
this paper.

II. CROSS-LAYER OPTIMIZATIONS FOR SINGLE PACKET
RELIABLE TRANSFER

Need for Cross-Layer Approach
We study a cross-layer based mechanisms for meeting

the reliability requirements in applications where the data
collection/generation rate by the sensors is not periodic i.e.
random and the data being critical requiring guaranteed
delivery to the sink. The specific application of Radio
Frequency Identification (RFID) integration with wireless
sensor network to automate inventory management and
tracking applications [23][24] is considered as an example
for studying the various cross-layer (MAC and Routing
layers) optimization options for increasing the reliability of
data transfer. We have seen some of the approaches like
MAC-layer retransmission and end-to-end retransmission for
achieving reliable single packet data transfer. These
approaches cannot by themselves guarantee reliable transfer

Study of Reliable Data Communication in
Wireless Sensor Networks

Purushotham BV, Prakasha S, and Dr. K Ganesan

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

of data from the sensor to sink as cases of broken routing
paths is not considered [4]. MAC-layer retransmissions
overcome the issue of temporary failure of links which could
be due o packet collisions or when the receiver is temporarily
unable to receive messages but for cases where a particular
routing path gets permanently broken then the retransmission
attempts will be unsuccessful in delivering the packet to the
destination. End-to-end retransmission of packets is similar
to the functionality provided by the transport layer in the
TCP/IP protocol stack for the internet [2].

We develop a cross-layer based approach by
experimentally studying and evaluating the MAC layer
retransmissions under different physical conditions on a real
test bed and also propose and evaluate a routing layer
mechanism for routing path rediscovery and packet recovery
in the event of routing path breaks.
Experimental Test Bed

The experimental test bed consists of 5 – 8 Mica2 motes
running TinyOS operating system.
Mica2 motes: Mica2 motes are the third generation wireless
sensor network devices offered by Crossbow Inc [25]. They
have the following characteristics:
Program Flash Memory: 128k bytes; Battery: 2x AA
batteries; User Interface: 3 LEDs; Size (in): 2.25 x 1.25 x
0.25; Weight (oz): 0.7; Multi-Channel Tranceiver: 315, 433,
or 868/916 MHz

nesC: Network embedded system C (nesC) is an open
source programming language that is specialized for sensor
networks [29]. It is an extension of C, which is a language
that is supported by many microcontrollers and includes the
necessary features to interface with hardware. nesC defines
a component based model in order to make it possible to
split applications into separate parts which communicates
with each other using bidirectional interfaces[27].

TinyOS: TinyOS is an event driven operating system
designed for sensor networks, where demands on
concurrency and low power consumption are high but the
hardware resources are limited [7]. TinyOS is written in
nesC and much of the design of nesC was actually done in a
way to increase the performance and utilization of TinyOS.
Tiny provides a number of system components that can be
reused in many applications. The components are wired
together to the final application by using implementation
independent wiring specification. The event-based
concurrency model TinyOS uses has a close relation to the
concurrency model that nesC uses. TinyOS uses two types of
concurrency, tasks and events. Tasks are run to completion
and cannot preempt each other [28]. They are to be used for
computation processes where timing requirements are not
strict. The tasks can be posted by the components.

Events also run to completion but can preempt other events
and tasks. They can be used to handle time critical operations
and hardware interrupts. The simple concurrency model that
TinyOS uses offers relatively high concurrency but with low
overhead in contrast to threaded concurrency, which requires
a lot of overhead. The data races that can occur when using
concurrency are detected by the compile time analysis that
nesC compiler offers [18][20].

TOSSIM: TOSSIM is a bit-level simulator for TinyOS
wireless sensor networks [28]. It has the following salient
features:

Completeness: The simulation covers as many system
behaviors as possible; Fidelity. The simulator is able to
capture the behavior of the nodes in detail;

Scalability: It has the capability to simulate a large
number of nodes simultaneously; else it would be impossible
to simulate an entire network;

Bridging: Errors often occur due to an incorrect
implementation of a proper algorithm. The simulator uses
the same code that is used to program the hardware, which
means that the errors in the implementation will be detected
[14].

MAC Layer Protocol
We experimentally study and evaluate the CSMA with

random back-off MAC layer protocol [13] for reliably

transmitting message on a single hop. An implementation of
the protocol is supplied as part of the TinyOS source code
distribution.

Evaluating Reliability in One Hop Unicast Message
Delivery

An experiment is conducted by setting up a test bed of 5
mica2 motes which includes one mote (base station or the
sink) connected to a PC running and other 4 motes
programmed to send messages to the sink on the radio
transceiver.

Figure 2.1: Percentage successful message delivery for
different transmitter-receiver distances

The goal of this experiment is to study the effect of
transmitting distance on the reception rate when the nodes are
interfering with one another’s transmission. The sink
broadcasts a message to all the 4 nodes in the listening range
and the nodes on receiving the message start the timer to fire
after 5 seconds so that all of them are triggered to send a
unicast message to the sink at the same time [3].

Figure 2.1 shows the effect of MAC level retransmission in
successfully receiving packets at the receiver. MAC level
retransmissions are enabled at the different nodes by using a
Boolean variable to track whether a “send complete” event
has been triggered and if not the call to send is made again
when the timer fires. The timer is set to fire repeatedly until
the send is successful. Though the underlying CSMA with
random-back off protocol resolves the contention to the
access of the radio channel and establishes guarantee for
successful message reception using ACK, it may not make
enough attempts to successfully send the message. As can be
seen from Figure 2.1, when retransmissions is enforced by
repeated calls to send until send is complete, successful
one-hop message delivery is guaranteed [11][12][15][16].

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Network Layer – NACK Based Route Rediscovery
The reliable multi-hop routing scheme that we saw in

section 2 used link quality estimation and good neighborhood
table management techniques to determine the parent in the
routing tree. We propose to add packet tracking in routing
nodes and NACK based scheme to reconstruct routing paths
during network partitions due to routing path failures [9].
Routing path failures occur when a forwarding node
(intermediate node) in the routing tree loses its link with its
parent requiring to re-do the parent selection process and as a
result the packet to be forwarded is dropped [10]. Moreover,
when there is no status tracking for the forwarded packets, if
the forwarding node is not successful in establishing a parent
then the packets that the node’s children had sent to be
forwarded gets lost and the senders have no way to know that
the messages are lost. A negative acknowledge message
(NACK) sent to the children is the only way to let the child
nodes know of the status of the routing path and hence the
status of their messages. The originating node or the node at
one level below the current node will take suitable action like
resending the packet to a different node that it chooses as a
parent. The details of the working of the algorithm is as
follows –
• Convergecast routing tree rooted at the sink is

established in the network. Each node identifies its
parent in the routing tree by considering either hop count
to the sink or the link quality as the metric [3].

• Any node on sensing an event, like for example the
RFID reader detecting/reading tag information of an
object, prepares to send it to the sink by packaging the
information into a packet, P. Every node maintains
sequence umber for the messages it generates [21][22].

• Any node on receiving a data packet P from its child
node saves a copy of it in the buffer B and forwards the
packet to its parent. If the node loses the link to its parent
due to parent node failure or drop in link quality, it
triggers the parent selection process. If the node is not
able to successfully find a parent to forward the packet P,
it sends a NACK packet to the child node, which sent the
packet indicating that it is not successful in forwarding
the packet, and hence the child node needs to resend the
packet to any other node it chooses as parent [8][9][10].

A node on receiving a NACK packet from the parent
triggers the parent selection process so that some other node
in the neighborhood (maintained as a neighborhood table
[3]) is chosen as the parent. To reiterate, a NACK packet
from a parent node means that the parent node is unsuccessful
in forwarding the packet sent. The distributed algorithm that
runs on every node in the network is listed below:

Algorithm 1 Modified routing algorithm to improve reliable
transfer of single message by using NACK based route
rediscovery for every processor pi
Initially parent = p, children = C, seq_no = 0, no de_id = i,
Buf = 0
 1: upon sensing an event E :
 2: begin
 3: create a data message M=(seq_no, node_id, data) with
the event information E;
 4: Add a copy of M to message buffer
 5: call SendMsg (M, p);
 6: seq_no ++;

 7: end
 8: procedure SendMsg(M, p)
 9: begin
10: send M using radio transceiver;
11: end
12: upon receiving a message:
13: begin
14: if message is M then
15: call SendMsg(M, p);
16: if message is NACK then
17: look for the copy of the message in the buffer Buf
;
18: if message is not found in Buf
19: call Look ForMsgInChild () to find the message in the
child’s buffer;
20: else
21: M = msg in Buf;
22: call ParentSelection () to find a new parent;
23: call SendMsg (M)
24: end
25: procedure LookForMsgInChild (src, seq_no)
26: begin
27: call SendMsg (NACK) to send message to child
28: end

III. IMPLEMENTATION ON TINYOS

The NACK based rerouting protocol is implemented on
TinyOS using the nesC [29] programming language. A
complete application utilizing the library components of
TinyOS is developed to test the protocol. The CSMA with
random backoff protocol available in the TinyOS distribution
is used as the MAC layer protocol for the application. A
simple hop-count metric based shortest path protocol is used
to construct the routing tree with the sink as the root.
Algorithm listing for constructing the routing tree is as
follows:
Algorithm 2 Shortest path routing tree construction using
hop-count as the metric for every processor pi

 Initially parent = 0, neighborTable = 0, node_id =
i, hop_count = 9999, isRouteUpdateSent = 0
1: upon timer fired event E :
2: begin
3: if node_id is equal to BASESTATION_ADDRESS
then
4: begin
5: create ROUTE_UPDATE message M with hop_count =
1
6: call SendBroadcastMsg (M);
7: end
8: end
9: upon receiving a message:
10: begin
11: if message M is a ROUTE_UPDATE message then
12: begin
13: if M(hop_count) is less than hop_count then
14: begin
15: hop_count = M(hop_count);
16: create new ROUTE_UPDATE message M with
hop_count value;
17: call SendBroadcastMsg (M);

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

18: end
19: end

Application Configuration

The application uses the following TinyOS library
components –
1. Main – The application begins its execution by running

the StdControl interface of this component.
2. GenericComm – This TinyOS library component is

used for radio communication. The SendMsg and
ReceiveMsg interfaces are used for sending and
receiving messages. These interfaces abstract the low
level details of radio communication.

TimerC – This library component is used for generating
timer events. It can be set to fire timer events periodically or
only once.

Message Structure and Types

The structure o f the message used in the implementation is

as given in Figure 3.1.
0 1 3 5 7 16
Messag
e Type

Origin
Addres
s

Source
Addres
s

Sequenc
e No.

Data

Figure 3.1: Message Structure

The numbers in Figure 3.1 indicates bytes used by
different fields. The total size of the message is 16 bytes. The
following message types are used in the implementation –
(i) ROUTE_UPDATE; (ii) DATA_MSG; (iii) NACK_MSG;
(iv) NEW_PARENT_FOUND

ROUTE_UPDATE: Messages of this type are used for
constructing the routing tree rooted at the sink. The sink
initiates the transfer of this message type by broadcasting this
message to all its one-hop neighbors with the value of the
hop_count field set to 1. The value 1 indicates that the
receiver is 1 hop away from the sink. Every node on
receiving a ROUTE_UPDATE message updates the
Neighborhood table by including the sender of the message
and the hop count value in the message. Also, every node
once broadcasts the ROUTE_UPDATE message with its hop
count value.

DATA_MSG: Messages of this type is used by the nodes
to send, receive and forward data. On receiving this message
the node adds it to the data buffer.

NACK_MSG: A node sends NACK messages when it is
unable to forward the data messages it received from its
neighbors. It sends a NACK message for every message
stored in the data buffer to source node o f that message.

NEW_PARENT_FOUND: a node sends this message to
its new parent after it chooses the new parent from the
neighborhood table on receiving a NACK message from its
old parent. This message type is useful in preventing loop
formation in the routing structure. For example, if node A
and node B have chosen a node C as its parent during the
initial routing path establishment and if node C fails by losing
its link to its parent or is unable to forward the messages
collected in its data buffer then it sends a NACK message to
both node A and node B.

Event Handling

The application needs to provide event handlers for the
following events –
1. Send done event: This event is generated when the

underlying MAC layer successfully sends the message.
sendDone event handler declaration is part of the
SendMsg interface. On successfully sending a
ROUTE_UPDATE message, the Boolean state variable
routeUpdateSent is set to 1. If the message type is
DATA_MSG and NACK_MSG, the corresponding
message in the Data Buffer is marked as sent.

2. Receive event: This event is generated when a node
receives a message on its radio. Figure 3.2 shows a section
of the Receive event handler source code. On receiving a
ROUTE_UPDATE message a task
processRouteUpdateMsg() is posted. Tasks are used to
perform longer processing operation, which can be
interrupted by a hardware event handler like receiving a
message. This task performs the parent selection. It selects
the source node of the message as its new parent if the hop
count to the sink is lesser than the hop count using the
current parent. On receiving a DATA_MSG, the message
is included in the data buffer. On receiving a NACK_MSG
the source node of the message is blacklisted, so that it is
not in consideration to be chosen as a parent and a parent
selection process is trigger ed to find a new parent [14][26].

3. Timer Fired event: The timer is set to fire every 10 seconds
by calling the start command of the Timer interface. This
call to the start command is made in the implementation of
start command of the StdControl interface and hence the
timer is started on every mote when the application starts
up. Figure 3.3 shows the source code for the Timer Fired
event handler. The event handler contains the
implementation for sending Data messages, NACK
messages and Route update messages. Designating certain
nodes whose node ids fall in a given range as failed nodes
simulates failure condition for the nodes. On every
timer-fired event a check is made for unsent messages in
the databuffer and one of it is sent. The
checkUnSentMsgs() method implements this[17].

Figure 3.2: Receive Event Handler

Figure 3.3: Timer Fired Event Handler

Data Message Buffer Management
Every node maintains a data buffer containing the data

messages received from its children in the routing tree and
the data messages generated by it. The message buffer is
searched for the first buffer entry whose message is sent and
the message originating address is not the address of the
current node. If a buffer entry is found, then this entry no
longer needs to be saved and hence removed from the buffer
and the new message is added into its position. If no such

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

buffer entry is found then the message is dropped.

Figure 3.3: Timer Fired Event Handler

IV. CONCLUSION AND FUTURE WORK
Conclusion
In this thesis we have developed a cross-layer based

mechanism with MAC layer retransmissions and NACK
based rerouting of data packets for providing guaranteed
reliability of sensors-to-sink single packet delivery. The
implementation of the protocol as an application on TinyOS
is described. Extensive simulations of the protocol are done
on TOSSIM to compare the performance in terms of
successful packet reception at the sink with NACK based
retransmission scheme for the metrics varying network
sizes, network traffic and percentage of link failures. The
NACK based rerouting protocol developed provides much
better reliability than NACK based retransmission protocol.

Future Work
This work can be extended in the following way: A

realistic experimental scenario can be established to study the
reliable transfer of RFID tag messages by using RFID readers
mounted on sensing nodes and considering different rates of
data generation that depends on the actual factory warehouse
setting.

REFERENCES
[1] C. Wan, A. Campbell, L. Krishnahmurthy. PSFQ: A Reliable

Transport Mechanism for Wireless Sensor Networks. ACM
International Workshop on Wireless Sensor Networks and
Applications, Atlanta, Georgia. Sept 2002.

[2] Y. Sankarasubramaniam, O. B. Akan, and I. F. Akyildiz, “ESRT:
Event-to-sink reliable transport in wireless sensor networks,”
presented at the ACM Mobile Ad hoc, Annapolis, MD, Jun. 2003.

[3] A. Woo, T. Tong, D. Culler. “Taming the Underlying Challenges of
Reliable Multi hop Routing in Sensor Networks”, Senys ’03, Los
Angeles, California, USA.

[4] R. Stann and J. Heidemann, “RMST: Reliable data transport in sensor
networks,” in Proc. 1st IEEE Int. Workshop Sensor Net Protocols
Applications. (SNPA), Anchorage, AK, May 2003, pp. 102–112.

[5] S. Madden. M. Franklin and J. Hellentein. TAG a Tiny Agregation
Service for Ad - Hoc Sensor Networks. OSDI. Dec 2002.

[6] M. Marin-Perianu, P. Havinga. “Experiments with Reliable Data
Delivery in Wireless Sensor Networks” in Proc. Intelligent Sensors,
Sensor Networks and information Processing Conference, 2005, pp.
109 - 114.

[7] Tiny OS Homepage [Online]. Available:
http://webs.cs.berkeley.edu/tos/

[8] J. Hill, R. Szewczyk, A.Woo, S. Hollar, D. Culler and K. Pister,
“System architecture directions for network sensors,” in Proc. 9th Int.
Conf. Arch. Support Program Languages & OS, Nov. 2000, pp.
93–104.

[9] Gnawali, O.; Yarvis, M.; Heidemann, J.; Govindan, R. “Interaction of
retransmission, blacklisting, and routing metrics for reliability in sensor
network routing”. Sensor and Ad Hoc Communications and Networks,
2004. IEEE SECON 2004. Page(s):34 – 43.

[10] D. Tian and N. D. Georgan as, “Energy efficient routing with
guaranteed deliver y in wireless sensor networks,” in Proc. IEEE
(WCNC’03), Institute of Electrical and Electronics Engineers. New
Orleans, USA: IEEE Press, Mar. 2003.

[11] A. Woo and D. Culler, “A transmission control scheme for media
access in sensor networks,” in Proc. ACM/IEEE International.
Conf. Mobile Computing and Networking, Rome, Italy, July 2001, pp.
221–235.

[12] Wei Ye, John Heidemann and Deborah Estrin, "Medium Access
Control with Coordinated, Adaptive Sleeping for Wireless Sensor
Networks," IEEE/ACM Transactions on Networking, Vol. 12, No. 3,
June 2004.

[13] B. Deb, S. Bhatnagar, and B. Nath, “Information assurance in sensor
networks,” in Proc. 2nd ACM Intl. Workshop on Wireless Sensor
Networks and Applications (WSNA), San Diego, CA, Sept. 2003.

[14] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin,
“Highly-Resilient, Energy Efficient Multipath Routing in Wireless
Sensor Networks,” Mobile Computing and Communications Review
(MC2R), vol. 1, no. 2, 2002.

[15] D. Tian and N. D. Georganas, “Energy efficient routing with
guaranteed delivery in wireless sensor networks,” Institute of
Electrical and Electronics Engineers. New Orleans, USA: IEEE Press,
Mar. 2003.

[16] B. Deb, S. Bhatnagar, and B. Nath, “Re inform Reliable information
forwarding using multiple paths in sensor networks,” in Proc. 28th
Annual IEEE Conference on Local Computer Networks (LCN 2003),
20-24 Oct. 2003 Page(s):406 - 415.

[17] B. Deb, S. Bhatnagar, and B. Nath, “Re inform Reliable information
forwarding using multiple paths in sensor networks,” in Proc. 28th
Annual IEEE Conference on Local Computer Networks (LCN 2003),
20-24 Oct. 2003 Page(s):406 - 415.

[18] S.-J. Park, R. Vedantham, R. Sivakumar, and I. F. Akyildiz, “A
scalable approach or reliable downstream data deliver y in wir eless
sensor networks,” in Proc. Symposium on Mobile Ad Hoc
Networking & Computing (MobiHoc’01), Tokyo, Japan, May 2004.

[19] S.-J. Park and R. Sivakumar, “Poster: Sink-to-sensors reliability in
sensor networks,” in Proc. 4th ACM Intl. Symp. OnMobile Ad Hoc
Networking and Computing (MOBIHOC), Annapolis, MD, June 2003.

[20] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F.
Silva, “Directed diffusion for wireless sensor networks,”
IEEE/ACM Transactions on Networking, vol. 11, no. 1, pp. 2–16,
Feb. 2003.

[21] C. Englund and H. Wallin. RFID in wireless sensor network. Master's
Thesis, Gotenborg, Sweden, April 2004.

[22] McKelvin, M. L., Williams, M. L., and Berry, N. M. 2005. Integrated
radio frequency identification and wireless sensor network
architecture for automated inventory management and tracking
applications. In Proceedings of the 2005 Conference on Diversity in
Computing, New York, NY, 44-47.

[23] Crossbow Inc Homepage [Online]. Available: www.xbow.com
[24] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D.

Culler, “The esC language: A holistic approach to networked
embedded systems,” in SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’03), June 2003.

[25] A. Woo and D. Culler. Evaluation of efficient link reliability
estimators for own power wireless networks. Technical Report
UCB//CSD-03-1270, U.C. Berkeley, Computer Science Division,
September 2003.

[26] E. D. Demaine, A. Lopez-Ortiz and J.I.Munro. Frequency estimation
of internet packet streams with limited space. In Proceedings of the
10th Annual European Symposium on Algorithms ESA 2002, pages
348–360, September 2002.

[27] David Gay, Philip Levis, David Culler, and Eric Brewer. necC 1.1
language reference manual.
http://nescc.sourceforge.net/papers/nesc-ref.pdf , May 2003.

[28] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM:
Accurate and scalable simulation of entire tinyos applications.
Proceedings of the ACM Symposium on Networked Embedded
Systems, Nov 2003.

[29] Mainwaring, Alan. Polastre, Joseph. Szewczyk, Robert. Culler,
David. Anderson, John. Wireless Sensor Networks for Habitat
Monitoring. First ACM Workshop on Wireless Sensor Networks and
Applications. September 28, 2002. Atlanta, GA, USA.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

