
 
 

 

  
Abstract — In this paper we present a new algorithm based on 

the Bee Colony Optimization (BCO) meta-heuristic for the 
Multidimensional Knapsack Problem (MKP), the goal of which 
is to find a subset of objects that maximizes a given objective 
function while satisfying some resource constraints. We show 
that our new algorithm obtains better results than Ant Colony 
Optimization algorithms and on most instances it reaches best 
known solutions. Especially we propose an efficient algorithm 
to produce randomly new solutions. 

 
Index Terms — Bee Colony Optimization, Multidimensional 

Knapsack Problem.  
 

I. INTRODUCTION 
Multidimensional Knapsack Problem is a NP-hard problem 

which has many practical applications, such as processor 
allocation in distributed systems, cargo loading, or capital 
budgeting. The goal of the MKP is to find a subset of objects 
that maximizes the total profit while satisfying some resource 
constraints. More formally, a MKP is stated as follows: 

 

maximize ∑ =
n

1j .xc jj  

subject to ijij bn
1j .xa ≤=∑ m..1i ∈∀  

                        }1,0{xj∈ n..1j∈∀  
 
, where aij is the consumption of resource i for object j, bi is 
the available quantity of resource i, cj is the profit associated 
with object j, and xj is the decision variable associated with 
object j and is set to 1 (resp. 0) if j is selected (resp. not 
selected). 

 
This problem was solved by using Ant Colony 

Optimization [1]-[3], genetic algorithm [4], and Tabu search 
[5]. In this paper we describe a new algorithm for solving 
MKPs. This algorithm is based on BCO, a stochastic 
meta-heuristic that has been applied to solve combinatorial 
optimization problems such as job shop scheduling problems, 
multi-agent systems, or ride-matching problem in the 
transportation domain. For more details about BCO 
algorithm, the reader referred to [6], [7]. Here we only 
produce basic ideas and model of this algorithm in Section 2. 
The mappings of multidimensional knapsack to honey bees 
forager deployment is then described in Section 3, including 
describing two extra characteristics of bee colony and two 
corresponding definitions in subsections 3.1, 3.2, and 

 
Manuscript received January 7, 2008. 
Papova Nhina Nhicolaievna - Moscow State University, Russia. 
Le Van Thanh - MSU, Russia (lethanhmsu@yahoo.com). 

concretizing the BCO algorithm for MKP in subsections 3.2, 
3.3, 3.4. In Section 4 we give efficient parameters in 
experiment. Subsequently, comparative study on the 
performance of the BCO approaches on the benchmark 
problems in Section 5. 

 

II. GENERAL MODEL OF BCO ALGORITHM 

There are two major characteristics of the bee colony in 
searching for food sources: waggle dance and forage (or 
nectar exploration). First scout bees search for food randomly 
from one flower patch to another. They evaluate the different 
patches according to the quality of the food and the amount of 
energy usage. And then they return to hive, communicate 
through a waggle dance which contains information about 
the direction of the flower patch (angle between the sun and 
patch), the distance from the hive (duration of the dance) and 
the quality rating (frequency of the dance). Using the 
information received from the waggle dance, bees go to the 
patch to gather food. According to the fitness, patches can be 
visited by more bees or may be abandoned.  

 
Relying to these features, a model of BCO algorithm was 

proposed as figure 1. The algorithm requires a number of 
parameters to be set, namely: number of scout bees (nBee), 
number of sites selected for neighborhood search (out of 
nBee visited sites) (nSite ≤  nBee), the initial size of each 
patch (ngh) (a patch is a region in the search space that 
includes the visited site and its neighborhood), number of 
bees recruited for the selected sites (nep) (these bees will try 
to find better solutions in the correlative patch of selected 
site), and the stopping criterion. 

 
Algorithm_1: 

 
1. Initialize population with nBee random solutions. 
2. Evaluate fitness of the population. 
3. While (stopping criterion not met) 

3.1. Select nSite sites for neighborhood search. 
3.2. Determine the patch size (ngh). 
3.3. Recruit nep bees for selected sites and evaluate 

fitnesses. 
3.4. Select the representative bees from each patch. 
3.5. Assign remaining bees to search randomly and 

evaluate their fitnesses. 
 
 

Figure 1. Pseudo code of the BCO algorithm 
 

This model and detailed models of BCO in this paper don’t 
present clearly the role of waggle dance, but reader could see 
an example of using waggle dance in [8]. 

Bee Colony Algorithm for  
the Multidimensional Knapsack Problem 

Papova Nhina Nhicolaievna, Le Van Thanh, Member, IAENG 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



 
 

 

 

III. APPLYING BCO TO MULTIDIMENSIONAL KNAPSACK 

This section details algorithms to perform 
Multidimensional Knapsack inspired by the behavior of 
honey bee colony. The fitness of a solution is value of 

sum∑ =
n

1j .xc jj . Let nIteration be number of iterations of 

step 3 until the present and maxIteration be the bound of 
nIteration then stopping criterion of algorithm_1 is 
equivalent to condition nIteration >= maxIteration. First we 
put forward an extra characteristic of bee colony, which is 
real interesting and efficient for increasing rate of search the 
best solution in a huge space. 

A.  Lived time of Food Source 
In the nature, each food source is harvested by bee colony 

for a certain time, which depends on the abundance of food 
source and amount of bees visited it. Therefore, we define the 
lived time of a food source x, denoted by livedT(x), to be the 
number of iterations of step 3 since food source was found 
indispensable to harvest out of food. It means each selected 
site x will be searched for better solution in maximum 
livedT(x) iterations. After this period, candidate solution x 
will be abandoned even if it is the best solution. 

 
Figure 2 helps us imagine the usefulness of lived time: after 

a certain number of iterations of step 3, dominated solutions 
converge to local maxima, and search for better solution 
around these solutions is almost meaningless. The fitness of 
these solutions is big enough to prevent new random 
solutions from being selected to nSite dominated sites. So 
that nSite selected sites for local search is almost unchanged 
between two consecutive iterations of step 3. The only way to 
find the optimal solution is wait a luckiness of search 
randomly in step 3.5. 

optimal solution 
nSite dominated sites  

 
 
 
 

 
 
 
 

 
 
abandoned sites 

 
Figure 2. A state of the BCO algorithm 

B. Distribution Function and Algorithm for Production 
Randomly New Solutions 

Unlike most of other heuristics for MKP, BCO produces a 
certain amount of random solutions in each circle, besides 
initial solutions in step 2. Therefore a good algorithm for 
production new solution affects considerably to convergent 
rate of the BCO algorithm. We will discuss some points to 
build a good enough algorithm. 

 

Let vector x = (x0, x1, …, xn) be a solution of MKP and pj be 

probability of xj = 1 (j ∈
___
,1 n ). Then this probability depends 

on cj, aij (i ∈
___
,1 m ) (the bigger cj and the smaller aij, the 

bigger pj). So that formula to define pj like below: 
 

pj = f * (cj)α  / (∑
i

a  ij ) β , where f – some function  (1) 

 
It’s probably that cj is much bigger than aij. In this case the 

role of aij in (1) is not considerable (i.e. pj depends on cj more 
than on ∑

i
a  ij ). But in fact values of cj and aij are unrelated. 

It means we need a formula of pj, in which the role of cj and aij 
is equivalent to each other. Let maxC be maximum value of cj 
and maxS be maximum of ∑

i
(a   ij / ∑

t
ait  ) then  

   
pj = f * (cj / maxC)α  / {(∑

i
(a   ij / ∑

t
ait  )) / maxS} β  (2) 

 
In formula (2) interrelation between cj and aij depends on 

values of α and β . However in some cases formula (2) 
unsuccessfully shows the roles of aij. For example, if exists 
h-th constraint bh ~ ∑

t
aht then this constraint is satisfied 

even if most of xt equal 1, i.e. probability of xj = 1 depends 
little on ahj. Let ahj be much bigger than other aht, pj in (2) 
considerably depends on ahj. Therefore we have next 
formula:  

 
pj = f*(cj/maxC)α /{( ∑

i
(a   ij / (bi* ∑

t
ait  )))/maxS’} β (3) 

, where maxS’ be maximum of ∑
i

(a   ij / (bi* ∑
t

ait  )). 

 
If probability function only has a simple formula like (3) 

where f doesn’t depend on time, then the BCO algorithm 
rapidly converges to some local maxima. For this reason we 
propose a new definition – distribution function, denoted by 
df. This function describes another characteristic of bee 
colony in nature that patches of food source, where were 
visited more times in past, will be reduced visitation because 
of decrease of food’s quality. Value of function is measured 
by number of visitations by bees. For MKP, we concretize df 
as follows: 

 
df(j) = number of visited solutions x in steps 2, 3.4 and 3.5, 
j-th element of which is 1 (xj = 1). 

 
Function df(j) depends on time and  pj depends on df(j). We 

have formula (4): 
 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



 
 

 

pj(α , β ,γ ) = fj * (maxDF / df(j))γ  * (cj / maxC)α  / 

{( ∑
i

(a   ij / (bi* ∑
t

ait  ))) / maxS’} β   (4)   

, where maxDF is current maximum of df(t) (t ∈
___
,1 n ). 

 
The following algorithm for production new solutions 

bases on formula (3). But first we say roulette wheel selection 
again, because we will use it to make random for the BCO 
algorithm. 

 
Suppose we have n objects, each object has a particular 

probability of selection. Our task is taking one from them. 
Roulette wheel selection consists of following steps: 

1. Generate a random number in [0, ∑ yprobabilit ]. 

2. For i from 1 to n: 
If sum of probabilities from 0 to i reaches or 
exceeds upper random number then i is selected 
object and stop algorithm. 
 

Denote rws(g, O) to be function realizes roulette wheel 
selection for object set O on probability function g, this 
function returns selected element. Algorithm for production 
new solutions as follows: 
 
Algorithm_2: 
 

1. For (j ∈
___
,1 n ): 

1.1 Generate a random number in {0, 1, 2}.  
If this number equals 0 then fj = probability0, 
otherwise fj = probability1. 

1.2 Assign 0 to xj. 
2. Initialize object set S, including n elements from 1 to n. 
3. While (|S| > 0): S isn’t empty 

3.1 Assign 1 to xt, where t = rws(p(α , β ,γ ), S). 
3.2 S = S/{t ∪ break-set}, where  

break-set = {j ∈  S/{t} | ∃ i: aij + ∑
= 1x

a
r

ir  > bi}. 

 
 

Most of previous algorithms for initializing population 
assign 0 or 1 each bit of x according to a random number 
being 0 or 1. In algorithm_2 we have a change, a random 
number is also generated but this value only uses to 
determine probability of each bit of x to be 1. If this number 
is 0 then corresponding bit has less possibility of getting 1 
(set0) than in case this number isn’t 0 (set1). So that values 
probability0 and probability1 are added, satisfy probability0 
< probability1. In 1.1 we choose set {0, 1, 2} to make number 
of bits of set1 more than one of set0. It’s only a tricky but in 
experiment this choice gives satisfactory results, so that we 
produce it here in order to readers consult. 

C. Definition of Patch Size 
Let set Jx = (j0, j1, …) be set of indexes, which correspond 

with bits 1 of x, i.e.
Jxj

xj

∈
= 1 and 

Jxj
xj

∉
= 0. Then a vector 

x* = (x*0, x*1, …, x*n) belongs to the k-neighboring region 

of x (k ≤  |Jx|), which means x* is produced from x by 
following algorithm: 
 
Algorithm_3:  

 
1. Choose a set Jk of k elements from Jx, assign 0 to each 

element of it and evaluate pj( α ’, β ’, γ ’) with fj = 
probability0’, j∈  Jk . 

2. For each bit j’∉  Jx evaluate pj’(α ’, β ’,γ ’) with fj’ = 
probability1’. 

3. Let S = Jk ∪ [J /{Jx}]. 
4. While (|S| > 0):  

4.1 Assign 1 to xt, where t = rws(p(α ’, β ’,γ ’), S). 
4.2 S = S/{t ∪ break-set}, where  

break-set = {j∈  S/{t} | ∃ i: aij + ∑
= 1x

a
r

ir  > bi}. 

 
 

, where probability0’ and probability1’ have meaning similar 
to probability0 and .probability1. Note that in step 1, if j-th 
bit of x has dominated corresponding cj and non-dominated 
sum∑

i
(a   ij / (bi* ∑

t
ait  )) then probability of it to be 1 is 

big. Hence, we choose set Jk as follows: 
 
1. Let S = Jx. Jk = {}. 
2. While (|S| < k):   

2.1 t = rws(1/p(α ’’, β ’’,γ ’’) with f = 1, S).  
Add t to Jk. 

2.2 S = S/{t}. 
 
 
Above, we described almost all details of the BCO 

algorithm. Following, we discuss last part of this algorithm – 
neighborhood search.  

D. Neighborhood Search 
Neighborhood or local search moves from an initial 

solution by a sequence of neighborhood changes, which 
improve each time the value of the objective function until a 
local optimum is found. The connectivity property pertaining 
to local search states that starting with any feasible solution, 
there exists some sequence of moves that will reach an 
optimal solution. Neighborhood structures play a very 
important role in local search as the time complexity of a 
search depends on the size of the neighborhood and the 
computational cost of the moves. 

 
For our algorithm, each solution is a local optimum, i.e. if 

we change state of any bit of it then either some constraint is 
broken (from 0 to 1) or fitness of solution decrease (from 1 to 
0). So that for neighborhood search of x we execute by 
algorithm_4: 

 
Algorithm_4: 
 

1. bf = fitness of x. 

2. For (k ∈
_______
,2 ngh ): For (i∈

_______
,1 nep ): 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



 
 

 

2.1. Choose a random solution, which belongs to 
the k-neighboring region of x. 

2.2. Evaluate its fitness. If this value greater than 
bf then update bf. 

3. If bf > fitness of x then replace x with solution, 
corresponding to bf, lived time of x to be restarted (= 0). 

 
 

In algorithm_4 we change some ( ≥ 2) bits 1 of solution to 
0, and then complete bits 0 (change state to 1) to set Jx. It 
means that we changed from one local optimum to other 
optimum, and hoped its fitness will be better than the first’s. 
But using the same values of ngh and nep for each solution of 
nSite selected sites isn’t sensible because it intensifies 
executing time of algorithm. Therefore we split nSite sites to 
2 classes : best class and better class. Best class includes 
nBest bees, which have best fitness out of nBee bees, and 
better class includes (nSite – nBest) bees, which have next 
best fitness. Each class has particular values nep and livedT 
(nepb, livedTb for best ones and nep, livedT for better one). 
And fully worked-out model of the BCO algorithm consists 
of following steps: 

 
Algorithm_5: 

 
1. Initialize population with nBee random solutions with 

old = 0. nIteration = 0. 
2. Evaluate fitness of the population. 
3. While (nIteration < maxIteration) 

3.1. Select nSite and nBest sites for neighborhood 
search. 

3.2. Determine the patch size (ngh). 
3.3. Recruit nepb (and nep) bees for selected sites 

with old < livedTb (and livedT) to search 
around these sites by algorithm_4. 

3.4. Select the representative bees from each patch 
(if the representative bee is root bee than old++ 
otherwise old = 0). 

3.5. Assign remaining bees to search randomly 
with old = 0 and evaluate their fitnesses. 

 
 
Figure 3. Pseudo code of the BCO algorithm for MKP 

 

IV. PARAMETERS SETTING 

When solving a combinatorial optimization problem with a 
heuristic approach such as evolutionary computation, ACO 
or BCO, one usually has to find a compromise between two 
dual goals. On one hand, one has to intensify the search 
around the most “promising” areas that are usually close to 
the best solutions found so far. On the other hand, one has to 
diversify the search and favor exploration in order to discover 
new, and hopefully more successful, areas of the search 
space. The behavior of bees with respect to this 
intensification/diversification duality can be influenced by 
modifying parameter values, including maxIteration, nBee, 
nSite, nBest, nep, nepb, ngh, livedT, α , β ,γ , α ’, β ’,γ ’, 
α ’’, β ’’, γ ’’, probability0, probability1, probability0’, 
probability1’.  

 

It’s too many parameters to survey, thus we fix some 
parameters after some times of test runs:  

 
maxInteration ~ 500 
nBee = 600, nSite = 100, nBest = 10, ngh = 5, 
livedTb = 30, livedT = 20, 
α = β  = 1,γ  = 2,  
α ’= β ’=γ ’= 1,  
α ’’= 2, β ’’= 1,γ ’’= 0,  
probability0 = 0.2, probability1 = 0.8, probability0’ = 0.1, 
probability1’ = 0.9. 
  
Then that we used a set of MKP instances with 100 objects 

and 5 resource constraints to find sensible values of 
parameters nep and nepb. Results that in about 200 seconds, 
and nIteration ~ 400 the algorithm finds almost best known 
solutions with pair parameters (nep ~ 40, nepb ~ 120). 
Increasing nepb, value nIteration to find best solutions is 
reduced (time to find it increases considerably), but 
increasing nep has no more effective. Otherwise both 
decreasing nep and nepb reduce qualities of solutions, and 
the algorithm rapidly converge to local maxima.  

 
For all experiments reported below, we have set nep to 8% 

of n.m and nepb to 24% of n.m. 
 

V. EXPERIMENTS AND RESULTS 

Data set, rely on which to compare to other approaches, is 
benchmarks of MKP from OR-Library. We compare the 
results of the BCO algorithm with the two ACO algorithms of 
Leguizamon and Michalewicz [2] and Alaya, Solnon and 
Ghedira [3], and the genetic algorithm of Chu and Beasly [4]. 

 
Table_1 is results on 100 x 5 instances. For each instance, 

the table reports the best solutions found by Chu and Beasley 
as reported in [4] (C. & B.), the best and average solutions 
found by Alaya, Solnon and Ghedira as reported in [3] (A., S. 
& G.), and the best and average solutions found by 
Leguizamon and Michalewicz as reported in [2] (L. & M.), 
the best, average solutions, probability of successfully and 
average number of iterations to find best solution of the BCO 
algorithm_5 over 50 runs. Table_2 is results on 100 x 10 
instances. And Table_3 is results on new benchmarks of 
MKP in http://hces.bus.olemiss.edu (over 10 runs).  

 
In Table_3, we see that the results are not good enough, 

because sizes of data set are large. We guess a cooperative 
BCO be conformable to this data set. The BCO algorithm 
only runs well with medium (~ 100 x 10) search space. 

VI. CONCLUSION 
This paper has described a modified version of the BCO 
algorithm and its application to the search optimal solution 
for MKP. The algorithm gets satisfactory results. Although 
the main ideas of the BCO algorithm are easily 
understandable, it’s real complex to apply effectively to 
concrete problems. In process of research this problem, we 
tried to apply waggle dance to it, but it’s not successful. 
Hoping that in next papers, we or somebody could use 
thoroughly all characteristics of bee colony. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



 
 

 

Table_1: 
 
№ C. & B. A., S. & G. L. & M. BCO 

   Best     Best   Avg  Best   Avg  Best       Avg        %        N 
01 24381      24381   24342 24381   24331   23381       23377.8       70%       223  
02 24274      24274   24247 24274   24245   24274       24274.0     100%         84 
03 23551      23551   23529 23551   23527   24551       24545.3       56%       237 
04 23534      23534   23462 23527   23463   23534       23519.5       32%       278 
05 23991      23991   23946 23991   23949   23991       23985.0       76%       196 
06 24613      24613   24587 24613   24563   24613       24613.0     100%       101 
07 25591      25591   25512 25591   25504   25591       25591.0     100%         79 
08 23410      23410   23371 23361   23204   23410       23410.0     100%         99 
09 24216      24216   24172 24173   23762   24216       24216.0     100%       142 
10 24411      24411   24356 24411   24326   24411       24409.2       94%       144 
11 42757      42757   42704    42757       42756.0       98%       183    
12 42545      42510   42456    42545       42519.6       28%       323 
13 41968      41967   41934    41968       41955.8         6%       272 
14 45090      45071   45056    45090       45079.3       44%       227 
15 42218      42218   42194    42218       42199.0       22%       315 
16 42927      42927   42911    42927       42927.0     100%       121 
17 42009      42009   41977    42009       42009.0     100%       117 
18 45020      45010   44971    45020       45015.8       80%       223  
19 43441      43441   43356    43441       43400.4       44%       274 
20 44554      44554   44506    44554       44539.4       74%       279 
21 59822      59822   59821    59822       59822.0     100%         31 
22 62081      62081   62010    62081       62081.0     100%       109 
23 59802      59802   59759    59802       59801.2       96%       164 
24 60479      60479   60428    60479       60479.0     100%       112 
25 61091      61091   61072    61091       61091.0     100%         82 
26 58959      58959   58945    58959       58959.0     100%         87 
27 61538      61538   61514    61538       61538.0     100%       153 
28 61520      61520   61492    61520       61520.0     100%       131 
29 59453      59453   59436    59453       59453.0     100%         73 
30 59965      59965   59958    59965       59965.0     100%       149 

 
Table_2: 

 
№ C. & B. A., S. & G. L. & M. BCO 

   Best     Best   Avg  Best   Avg  Best       Avg        %        N 
01 23064      23064   23016 23057   22996   23064       23060.9       52%       279  
02 22801      22801   22714 22801   22672   22801       22791.1       74%       212 
03 22131      22131   22034 22131   21980   22131       22129.0       96%       116 
04 22772 22717   22634 22772   22631   22772       22758.9       32%       234 
05 22751 22654   22547 22654   22578   22751       22722.9       50%       250 
06 22777 22716   22602 22652   22565   22777       22727.3       20%       322  
07 21875 21875   21777 21875   21758   21875       21874.6       98%       132 
08 22635 22551   22453 22551   22519   22635       22621.6       84%       201 
09 22511 22511   22351 22418   22292   22511       22492.3       72%       160 
10 22702 22702   22591 22702   22588   22702       22702.0     100%       107 
11 41395 41395   41329    41395       41385.3       42%       281 
12 42344 42344   42214    42344       42302.9       40%       218 
13 42401 42401   42300    42401       42372.6       46%       198 
14 45624 45624   45461    45624       45576.4         8%       311 
15 41884 41884   41739    41884       41862.2       50%       218 
16 42995 42995   42909    42995       42995.0     100%       109 
17 43559 43553   43464    43574       43548.0        6%       320 
18 42970 42970   42903    42970       42968.6       96%       153 
19 42212 42212   42146    42212       42212.0     100%         92 
20 41207 41207   41067    41207       41149.2       10%       332 
21 57375 57375   57318    57375       57375.0     100%         28  
22 58978 58978   58889    58978       58978.0     100%       103 
23 58391 58391   58333    58391       58379.4       60%       171 
24 61966 61966   61885    61966       61964.9       98%       124 
25 60803 60803   60798    60803       60803.0     100%         24 
26 61437 61437   61293    61437       61403.5       52%       223 
27 56377 56377    56324    56377       56371.2       76%       176 
28 59391 59391   59339    50391       50391.0     100%         40 
29 60205 60205   60146    60205       60205.0     100%         72 
30 60633 60633   60605    60633       60633.0     100%         28 

 
Table_3: 

 
№ 

 
Size n x m 

 
Best known solution BCO 

 
    Best       Avg         %           N 

01 100 x 15 3766 3758          3753         10%        225 

02 100 x 25 3958 3951          3947         20%        360 

03 150 x 25 5650 5637          5629         20%        342 

04 150 x 50 5764 5741          5737         10%        113 

05 200 x 25 7557 7531          7529         20%        237 

06 200 x 50 7672 7640          7635         20%        134 

 
 
 

 

REFERENCES 
[1] S.Fidanova, “Evolutionary algorithm for 

Multidimensional Knapsack Problem”. 
[2] G.Leguizamon and Z.Michalewicz, “A new version of 

Ant System for Subset Problem”. 
[3] I.Alaya, C.Solnon and K.Ghedira, “Ant algorithm for the 

multidimensional Knapsack Problem”. 
[4] P.C.Chu and J.E.Beasley, “A Genetic algorithm for the 

Multidimentional Knapsack Problem”. 
[5] Michel Vasquez and Jin-Kao Hao, “A Hybrid Approach 

for the 0–1 Multidimensional Knapsack problem”. 
[6] D.T.Pham, A.Ghanbarzadeh, “Multi-Objective 

Optimisation using the Bees algorithm”. 
[7] D.T.Pham , A.Ghanbarzadeh, E. Kos, S. Otri, S. Rahim, 

M. Zaidi, “The Bees algorithm – a novel tool for Complex 
Optimisation Problems”. 

[8] S.C.Chin, Y.H.L.Malcolm, I.S.Appa, L.G.Kheng, “Using 
a Bee colony algorithm for neighborhood search in Job 
Shop Scheduling problems”.  

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008


