

Abstract—Activity modeling is known as a powerful

technique for designing and specifying the flow logic of a
process. Due to the complexity of the described process, activity
models may involve multiple activities that are tangled with
each other. Such activities are known as crosscutting concerns
that are difficult to modularize using existing activity modeling
constructs. This paper presents an aspect-oriented approach to
supporting separation of crosscutting concerns in activity
models. An extension to activity modeling is introduced for
encapsulating crosscutting activities in well-modularized
aspects, which are in turn composed with base activities by a
specialized aspect weaver in a systematic way.

Index Terms—Aspect-oriented modeling, Crosscutting
concerns, Activity modeling.

I. INTRODUCTION
 Activity modeling, as one of the main UML techniques, is
frequently adopted in the specification of the behavioral
aspects of a system. Activity models are often applied to
document workflows in a system, e.g., the logic of a single
operation, the scenario of a use case, or the flow logic of a
business process. In UML 1.x [5], activity models are defined
as a special case of state machines, mainly for describing a
computational process in terms of control flow and data flow
in state-transition-oriented systems. Since the adoption of the
new UML 2.x specification [6], activity modeling is
redesigned and based on Petri Nets [16] semantics instead of
state machines, which “widens the number of flows that can
be modeled, especially those that have parallel flows.” [6] It
is believed that with such enriched expressive power and
well-defined semantics, activity modeling will gain more and
more popularity in the design and development of complex
software systems.

Nonetheless, due to the increasing complexity of software
systems, activity models may involve numerous activities
that are tangled within the boundary of a single module. In
other cases, a single activity may be scattered across several
different activity modules. Such activities are defined as
crosscutting concerns that are hard to modularize into
separate units using existing software composition
techniques. Examples are authentication, logging or error

Jing Zhang is with Motorola Autonomics Lab, Motorola Inc., Schaumburg, IL

60196 USA (phone: 847-576-6444; fax: 847-576-0658; e-mail:
j.zhang@motorola.com).

Yan Liu is with Motorola Autonomics Lab, Motorola Inc., Schaumburg, IL 60196
USA (e-mail: yanliu@motorola.com).

Michael Jiang is with Motorola Autonomics Lab, Motorola Inc., Schaumburg, IL
60196 USA (e-mail: michael.jiang@motorola.com).

John Strassner is with Motorola Autonomics Lab, Motorola Inc., Schaumburg, IL
60196 USA (e-mail: john.strassner@motorola.com).

handling activities that spread across the base functionality of
the system. The occurrence of tangling and scattering often
leads to several impediments to system comprehension and
maintenance:
1) Discovering or understanding a specific concern

representation that is spread over the system hierarchy is
difficult, because the concern is not localized in one
single module. This limits the ability to reason
analytically about such a concern.

2) Changing a concern requirement is also difficult and
time-consuming, because the engineers must go into
each relevant module and modify the specific elements
one by one. The change process is error-prone and
affects productivity and correctness [12].

Aspect-oriented software development (AOSD) [2] offers
a powerful technology for handling such concerns, whereby
the crosscutting is explicitly specified as an aspect. With the
intent to support separation of crosscutting concerns
involved in activity specification, this paper applies an
AOSD approach to activity modeling. An aspect-oriented
extension to activity modeling is proposed for encapsulating
crosscutting concerns in the constructs of aspects, which are
systematically integrated with the base activities by an
underlying aspect weaver. Motorola has previously
developed an industry-strength weaver for enabling
aspect-oriented weaving for UML statecharts that include
action semantics [10][18]. This paper extends the Motorola
aspect weaver with support for activity models. The goal is to
provide designers with more coherent and manageable
activity modules through the clean separation of concerns.

The remainder of the paper is structured as follows.
Section II gives a brief overview of activity modeling,
including the activity metamodel definition. Section III
presents the proposed aspect-oriented extension to activity
modeling as well as the underlying aspect weaving
mechanism. Section IV offers a case study using the
proposed aspect-oriented approach to specify a timeout
handler aspect for a network fault management system.
Finally, the last two sections discuss the related work and
conclusions.

II. ACTIVITY MODELING
As has been stated in the Section I, activity modeling is

about specifying the behavioral aspect of a system. It is
typically used to define a computational process in terms of
the control flow and data flow among its constituent actions.
This section provides a basic background introduction to
activity modeling in order to set the context for our

An Aspect-Oriented Approach to Handling
Crosscutting Concerns in Activity Modeling

Jing Zhang, Yan Liu, Michael Jiang, and John Strassner

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

aspect-oriented enhancement contribution in activity
modeling.

Figure 1 shows the simplified activity metamodel in the
Meta-Object Facility (MOF) [4] specification. An activity
contains various kinds of nodes connected by edges to form a
complete flow model. The sequencing of actions is controlled
by control flow and object flow edges. An activity node can
be an action, an object node or a control node. Some of the
common kinds of actions are listed in Figure 1. An operation
action may reference an activity specification, which means
that the invocation of the operation involves the execution of
the referenced activity. Send signal action and accept event
action deal with event and signal transmission. An object
node holds data that flow through the activity model. A pin is
an object node that can be attached to actions for expressing
inputs and outputs. Control nodes are responsible for routing
control and data flows in an activity. For instance, decision
node and merge node are used to designate conditional
behavior, while fork node and join node are used to delineate
parallel behavior. Activities can be divided into different
partitions that represent different kinds of activity groups for
identifying actions that have some characteristics in
common. Activity actions can also be grouped into an
interruptible region, within which all execution can be
terminated if an interrupting activity edge is leaving the
region.

An example of an order processing activity model is
illustrated in Figure 2 (adapted from [6]). Two concurrent
flows are involved. One focuses on the normal procedure for
order processing, including order receiving, order
processing, payment handling and order shipment. Another
flow indicates that during the same period of time that the
first flow proceeds, the order will be cancelled whenever a
cancellation signal is received.

III. ASPECT-ORIENTED ACTIVITY MODELING
As the complexity of the described system grows, activity

specifications also grow in complexity. This growth requires
lifecycle maintenance for the concerns that crosscut different
activity modules. For instance, a new requirement asking for
a tracing capability that logs all the information of all
operation actions results in appending a trace activity to
every operation action. The trace activity is a crosscutting
concern that is hard to modularize into a single activity or
action unit using existing activity modeling techniques. Such
a concern can be extremely difficult to comprehend and
change due to its scattering nature.

The application of aspect-oriented approaches [1][2] to
activity modeling provides a solution to support this kind of
modularization by encapsulating crosscutting concerns in a
specialized unit called aspect. Following the aspect-oriented
programming (AOP) [3][13] terminology, two fundamental
constructs are involved in an aspect model.

First, we need to specify “where” (i.e., the locations, or
join points) in the models the crosscutting behavior emerges.
Based on the activity metamodel definition, which defines an
activity as being composed of a sequence of actions, join
points refer to various kinds of actions that are allowed in
activity modeling. A group of particular join points are
represented in a special construct called pointcut, which
defines a pattern to identify matching join points.

Second, we need to specify “what” (i.e., the behavior)
makes up the crosscutting concern. In activity modeling, the
concern behavior is implemented using an activity model

Figure 2. An Order Processing Activity Model

Receive_Order

order: Orderorder: Order

Op_Process_Order

order: Orderorder: Order

Cancel_Order_Request

Cancel_Order

Request_Payment()

Payment_Confirmed

Ship_Order

Figure 1. Simplified Activity Metamodel

ActivityNode

ObjectNode

ControlNode

Action

Activity

ActivityEdge

+edge

+act

*

0..1

+edge

+act

*

0..1

+node

+act

*

0..1

+node

+act

*

0..1

 +target+incoming
1*

 +target+incoming
1*

 +source+outgoing
1*

 +source+outgoing
1*

ControlFlow

ObjectFlow

SendSignalAction

AcceptEventAction

ActivityPartition

+edge

+inPartition

*

*

+edge

+inPartition

*

*

+node

+inPartition

*

*

+node

+inPartition

*

*

+superPartition

+subPartition

0..1

*

+superPartition

+subPartition

0..1

*

InterruptibleActivityRegion

+interruptingEdge

+interrupts

*

0..1

+interruptingEdge

+interrupts

*

0..1

+node

+interruptibleRegion

*

*

+node

+interruptibleRegion

*

*

FinalNode

ForkNode

JoinNode

MergeNode

DecisionNode

InitialNode

Pin

ParameterNode

OutputPin

InputPin

+inputpin

*

0..1

+inputpin

*

0..1

+outputpin

*

0..1

+outputpin

*

0..1

CreateObjectAction

DestroyObjectAction

VariableAction

Operation

+act
1

+act
1

ActivityGroup

+group

+inActivity
*

0..1

+group

+inActivity
*

0..1

+subGroup

+superGroup
*

0..1

+subGroup

+superGroup
*

0..1

+edge

+inGroup

*

*

+edge

+inGroup

*

*

+node

+inGroup

*

*

+node

+inGroup

*

*

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

referenced by a special action called advice. An advice may
contain a proceed operation action that refers to the current
join point action. An advice can also obtain the join point
information through a set of predefined reflective APIs.

These aspect-activity modeling concepts are defined upon
a light-weight extension of UML through profiles and
stereotypes [6]. As shown in Figure 3, an aspect is a special
activity that encapsulates a crosscutting concern. Pointcuts
and advice are denoted as special actions. An aspect-activity
model contains a binding diagram that defines which advice
is bound to which pointcuts. Those bindings are realized by a
stereotype named binds. Aspects are deployed to the base
activity models through a special association stereotyped by

the name crosscuts. The thisJoinPoint class defines a set of
APIs that are used to retrieve the reflective information of the
matched join points (e.g., the signature of an operation
action, or the kind of the join point action).

As an illustrative example, Figure 4 specifies a trace aspect
model, with an aspect called Aspect_Trace applied to a
base activity model. The purpose is to keep track of certain
actions involved throughout the execution of the base activity
flow. This aspect contains one advice that is bound to four
different pointcuts. The pointcut Cancel_* denotes all of
the actions whose name starts with Cancel_ (e.g., the
Cancel_Order action in Figure 2). The underneath pattern
matching is based on the regular expression mapping against
the pointcut name. The pointcut Op_Process_Order
refers to an operation action that has one parameter of the
type Order. Request_Payment and Cancel_Order_
Request match to a send signal action and an accept event
action individually. The advice action Trace is
implemented by an activity model, which extends the original
join point action (denoted by proceed) with a log action
that stores the join point information to an external file. An
aspect model can also introduce inter-type members [3] that
are to be inserted to the join point action implementations
(e.g., the integer flag declared in Aspect_Trace).

The aspect and the base models are automatically
composed together through a specialized aspect weaver for
activity models, as indicated in Figure 5. The weaving
procedure starts with instantiating advices based on the
pointcuts they are bound to. All of the calls to the reflective
API are resolved based on the current join point. The
proceed actions are replaced by the original join point

Figure 3. Aspect-Activity Modeling Profile

<< stereotype >>

Aspect
<< stereotype>>

Pointcut
<< stereotype>>

Advice

<< metaclass, browserNode >>

Activity
<< metaclass >>

<< metaclass, browserNode >>

Association

<< stereotype >>

binds

<< stereotype >>

crosscuts

Action:: Metamodel :: :: Metamodel ::

:: Metamodel ::

thisJoinPoint

getSignature(): Signature
getKind (): ActionKind

Figure 4. Trace Aspect, Pointcuts and Advice

Base_Activity Aspect_Trace<< crosscuts >>

<< Activity >> << Aspect >>

activity Trace

LogTjpToFile

proceed

<<Advice>>

Cancel_*

Trace
<< Advice >>

int flag;

Op_Process_Order

order: Order

Cancel_Order_Request

Request_Payment

<< Pointcut>>

<< Pointcut >>

<< Pointcut >>

<< Pointcut >>

activity Aspect_Trace<< Aspect >>

<< binds>>

<< binds>>

<< binds>>

<< binds>>

tjp : thisJoinPointtjp :

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

action. These advice instances are in turn woven into the base
models in one of the following two ways: wrapping or
inlining. In the wrapping mode, the original join point action
is replaced by an operation invocation to the corresponding
advice instance. For the inlining version, the contents of all
the advice instances are directly embedded into the base
activity models. The aspect-activity weaving process
conforms to the one developed for aspect-statecharts in the
current Motorola aspect weaver. For more details about the
Motorola aspect weaver, please refer to [10][18].

IV. CASE STUDY: APPLYING TIMEOUT HANDLER TO A
NETWORK FAULT MANAGEMENT SYSTEM

In order to illustrate the proposed approach, this section
provides a case study on applying a timeout handler aspect to
a real world network fault management system using
aspect-oriented activity models.

A. Background
The Intelligent Network Fault Management (INFM) [14]

system is being developed within Motorola for providing
solutions to manage faults in a CDMA cellular network. One
of the most important features of a fault management system
is alarm correlation, which provides functionalities to filter
out informational alarms, report meaningful alarms that are
regarded as actionable or as requiring operator attention and
provide assistance in troubleshooting. Network operators
rely on the alarm correlation feature to reduce the number of
alarms to a limited number that could be handled within the
required time constraints. The significant reduction, usually
greater than 80% on average, is achieved by correlating the
alarms using patterns and hidden correlations discovered by
machine learning algorithms.

INFM carries out the alarm correlation by applying
frequent pattern discovery algorithms, which use certain
parameters to control how candidate patterns are constructed

from the learning data (i.e., alarm instances). When the
number of alarm instances is fairly large, the time complexity
of the algorithm increases dramatically, which causes a
violation of real-time constraints and fails to provide prompt
correlation operation. This motivates us to add a timeout
handling capability to resolve such failures and maintain the
healthy state of the fault management system.

Figure 6 illustrates a fragment of the simplified activity
model for specifying the flow of the alarm correlation
process logic in the INFM system. The control flow starts
with configuring the data source for streaming event data
from either a database server or an FTP site. Once the
connection is established, the process then initiates the
parameters for the pattern discovery algorithm. After the
algorithm execution is completed, a special operation will be
invoked to process the patterns that are generated.

B. Modeling Timeout Handler Activity Aspect
Timeout is among the most common software failures that

can occur in almost every operation or service invocation.
The timing failure is usually associated with certain time
constraints, which can be a real time constraint or a relative
deadline with respect to certain events. For example, a time
limit can be imposed on the alarm correlation process in a
fault management system, as opposed to the relative deadline
which states that “the alarm correlation must be completed
before the next batch of alarms is received.”

Figure 7 shows an aspect-activity model for managing the
timeout failure for the INFM alarm correlation system. The
proceed action refers to an operation that has sensitive
timing concerns and needs to be analyzed upon the timeout
failure. The aspect model intercepts and wraps this action

Figure 5. Aspect Weaving on Activity Models

M O F

A c tiv ity
M e ta M o d e l

A s p e c t-
A c tiv ity

M e ta M o d e l

A c tiv ity
M o d e l

A s p e c t-
A c tiv ity
M o d e l

A s p e c t
W e a v e r

D e fin
e d B

y D e fin e d B y

D
ef

in
ed

 B
y

D
ef

in
ed

 B
y

C o m p o s e d
A c tiv ity
M o d e l

Figure 6. A Simplified Alarm Correlation Activity Model

ConnectDB

SetParam

ExecuteAlgo

ProcessPatterns

ConfigureConnection

ConnectFTP

[config == DB][config == DB]
[config == FTP]

[config == FTP]

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

with a sequence of failure management activities. The aspect
process first initiates the counter for the allowed number of
iterations. If the counter already exceeds the allowed number
of iterations, it means that the failure cannot be resolved and
has to be reported. The whole application thus must be
aborted. Otherwise, the process will start a timer with a value
T, in sync with the execution of the proceed action. The
proceed action and the timer are surrounded by an
interruptible activity region (denoted as a dashed rectangle
with rounded corners), representing that whenever the flow
leaves the region via interrupting edges, all of the activities in
the region will be terminated. Specifically, if the proceed
action completes execution successfully before it runs out of
time, the control of the flow will return to the base process
(via a bull's eye symbol) and continue with the next activity
that follows the proceed action. Otherwise, the proceed
process will be shut down properly and a timeout failure will
be captured and passed to the failure analyzer and mitigator,
which is responsible for determining the failure risk and
calculating the corresponding mitigation strategies for
reconfiguring algorithm parameters. The control loop for
handling the timeout failure is thus realized by re-running the
algorithm with the new parameter values.

C. Deploying the Timeout Handler Aspect on Base Model
 The timout handler aspect is deployed to the base models

of the INFM alarm correlation activity. In this particular case
study, the timeout handler aspect is applied to the
ExecuteAlgo action. The base models and the aspect
models are then integrated through an underlying
aspect-activity weaver. The woven model resulting from the
inlining mode weaving is shown in Figure 8. The proceed
action in the aspect specification is replaced by the
ExecuteAlgo action. The initial and return symbol of the

aspect models are connected to the pre- and post- flow of the
ExecuteAlgo action, respectively. By adopting the
aspect-oriented approach to specifying activities, the aspect
models (usually non-functional activities) are defined
independently from the base functionality. Such kind of
separation of concerns greatly improves the reusability,
changeability, and maintainability of the system.

V. RELATED WORK
Although the aspect-orientated application originated at

the programming language level [13], it now extends to other
software lifecycle stages and is applied to different levels of
software abstractions. For example, there is a growing
community investigating Aspect-Oriented Modeling (AOM)
[1] techniques, providing various concepts, notations and
mechanisms to handle crosscutting concerns at the modeling
level. This section summarizes some of the existing research
that relates to aspect and activity models.

Barros et al. [7] propose a graphical composition operation
supporting the addition of crosscutting requirements in
activity models through node fusion, addition, and
subtraction. In contrast to our current implementation of the
aspect-activity extension, their approach considers all types
of activity nodes as potential join points (i.e., not only action
nodes, but also object and control nodes). However, as their
approach is based on pure graph composition theory, it lacks
semantic support for non-graphical activity node

Figure 7. A Timeout Handler Aspect

InitializeCounter

counter < NReportFailure

[false]

[false]

[true]

[true]

proceed T

AnalyzeTimeoutFailure

ReconfigAlgo

counter++

p : Parameterp : Parameter

p : Parameterp : Parameter

activity TimeoutHandler <<Advice>>

Figure 8. Integrating the Timeout Handler Aspect with the
INFM Alarm Correlation Base Model

INFM

TimeoutHandlerAspect

InitializeCounter

counter < NReportFailure

[false]

[false]

[true]

[true]

T

AnalyzeTimeoutFailure

p : Parameterp : Parameter

ReconfigAlgo

p : Parameterp : Parameter

counter ++

ConnectDB

SetParam

ExecuteAlgo

ProcessPatterns

ConnectFTP

ConfigureConenction

[config == DB]

[config == DB] [config == FTP]

[config == FTP]

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

specification, such as reflective APIs and regular
expression-based operation pattern matching.

Charfi et al. [9] introduce an aspect-oriented extension to
Business Process Execution Language for Web Services
(BPEL4WS) – a variation and application of activity
modeling language. With web service composition captured
in aspects, dynamic adaptation of composition logic can be
supported. In their model, each BPEL activity is a possible
join point during the execution of processes. The aspect
language proposed by them is similar to ours except that they
use XPath (a query language for XML documents) as the
pointcut designator language, whereas our aspect-activity
models are based on MOF/UML specification, which is more
generic and can be applied to any activity modeling based on
UML.

Solberg et al. [17] present a Model-Driven Development
(MDD) framework that uses aspect-orientation to facilitate
separation of concerns. The primary and aspect models
defined in a platform-independent manner are transformed to
platform-specific models through separate mappings. The
resulting models are in turn composed to obtain an integrated
design view. Unlike our approach, they don’t provide an
explicit support for modeling aspect constructs. Instead, the
weaving mechanism is controlled by using extra composition
directives that instantiate aspect models and bind them to the
primary models.

Grassi et al. [11] propose a UML-based graphical notation
for specifying aspects for static and dynamic structure of the
system model. Similarly, Cazzola et al. [8] present a
high-level join point selection mechanism, which decouples
the aspect definition from the base program structure and
syntax. Both approaches focus on using activity models to
represent pointcut patterns, rather than provide aspect
support to activity models.

VI. CONCLUSIONS
One of the ultimate goals of software engineering is to

construct software that is easily modified and extended. A
desired result is to achieve modularization such that a change
in a design decision is centralized to one location [15]. Our
experience has led us to believe that aspect-oriented software
development is a promising approach to support such
modularization. Furthermore, aspect-orientation can be
beneficial at various levels of abstraction and at different
stages of the software lifecycle.

This paper applies an aspect-oriented approach to
supporting separation of crosscutting concerns in activity
modeling. Aspect-specific constructs have been introduced
as an extension to the activity models. The current
implementation of the pointcut specification only allows join
point to be referred to action nodes. The future work will
cover other kinds of activity nodes and investigate more
advanced pointcut selection patterns.

REFERENCES
[1] AOM Website: http://www.aspect-modeling.org/
[2] AOSD Website: http://www.aosd.net/
[3] AspectJ Website: http://www.eclipse.org/aspectj/
[4] MOF Core Specification, v2.0, Object Management Group

(http://www.omg.org/cgi-bin/doc?formal/2006-01-01).
[5] UML Specification v1.5, Object Management Group

(http://www.omg.org/cgi-bin/doc?formal/03-03-01).
[6] UML 2.1.1 Superstructure Specification, Object Management Group

(http://www.omg.org/cgi-bin/doc?formal/07-02-03).
[7] Joao Paulo Barros and Luis Gomes, “Towards the Support for

Crosscutting Concerns in Activity Diagrams: a Graphical Approach,”
In the Fourth Workshop on Aspect-Oriented Modeling in the Sixth
International Conference on the Unified Modeling Language
(UML'03), San Francisco, CA, October 2003.

[8] Walter Cazzola and Sonia Pini, “Join Point Patterns: a High Level Join
Point Selection Mechanism,” 9th International Workshop on
Aspect-Oriented Modeling, Genoa, Italy, October 2006.

[9] Anis Charfi and Mira Mezini, “Aspect-Oriented Web Service
Composition with AO4BPEL,” In Proceedings of the European
Conference on Web Services (ECOWS’04), LNCS Volume 3250,
Erfurt, Germany, September 2004, pp. 168-182.

[10] Thomas Cottenier, Aswin van den Berg, and Tzilla Elrad, “Joinpoint
Inference from Behavioral Specification to Implementation,” In
Proceedings of the 21st European Conerence on Object-Oriented
Programming (ECOOP’07), LNCS Volume 4609, Berlin, Germany,
July 2007, pp. 476-500.

[11] Vincenzo Grassi and Andrea Sindico, “UML Modeling of Static and
Dynamic Aspects,” 9th International Workshop on Aspect-Oriented
Modeling, Genoa, Italy, October 2006.

[12] Jeff Gray, Yuehua Lin, and Jing Zhang, “Automating Change
Evolution in Model-Driven Engineering,” IEEE Computer, Vol. 39,
No. 2, February 2006, pp. 51-58.

[13] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin, “Aspect-Oriented
Programming,” In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP’97), Volume 1241,
Springer-Verlag, Jyväskylä, Finland, June 1997, pp. 220-242.

[14] Yan Liu, Jing Zhang, Michael Jiang, David Raymer and John Strassner,
“A Model-based Approach to Adding Autonomic Capabilities to
Network Fault Management System,” In Proceedings of IEEE/IFIP
Network Operations and Management Symposium (NOMS'08),
Salvador, Brazil, April 2008.

[15] David Parnas, “On the Criteria To Be Used in Decomposing Systems
into Modules,” Communications of the ACM, December 1972, pp.
1053-1058.

[16] James L. Peterson, “Petri Nets,” ACM Computing Surveys, September
1977, pp. 223-252.

[17] Arnor Solberg, Devon Simmonds, Raghu Reddy, Sudipto Ghosh, and
Robert France, “Using Aspect Oriented Techniques to Support
Separation of Concerns in Model Driven Development,” In
Proceedings of the 29th Annual International Computer Software and
Applications Conference (COMPSAC’05), Edinburgh, Scotland, UK,
July 2005, pp. 121-126.

[18] Jing Zhang, Thomas Cottenier, Aswin van den Berg, and Jeff Gray,
“Aspect Composition in the Motorola Aspect-Oriented Modeling
Weaver,” in Journal of Object Technology - Special Issue
Aspect-Oriented Modeling, Volume 6, Number 7, August 2007, pp.
89-108.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

