
 
 

 

  
Abstract—Activity modeling is known as a powerful 

technique for designing and specifying the flow logic of a 
process. Due to the complexity of the described process, activity 
models may involve multiple activities that are tangled with 
each other. Such activities are known as crosscutting concerns 
that are difficult to modularize using existing activity modeling 
constructs. This paper presents an aspect-oriented approach to 
supporting separation of crosscutting concerns in activity 
models. An extension to activity modeling is introduced for 
encapsulating crosscutting activities in well-modularized 
aspects, which are in turn composed with base activities by a 
specialized aspect weaver in a systematic way. 
 

Index Terms—Aspect-oriented modeling, Crosscutting 
concerns, Activity modeling.  
 

I. INTRODUCTION 
   Activity modeling, as one of the main UML techniques, is 
frequently adopted in the specification of the behavioral 
aspects of a system. Activity models are often applied to 
document workflows in a system, e.g., the logic of a single 
operation, the scenario of a use case, or the flow logic of a 
business process. In UML 1.x [5], activity models are defined 
as a special case of state machines, mainly for describing a 
computational process in terms of control flow and data flow 
in state-transition-oriented systems. Since the adoption of the 
new UML 2.x specification [6], activity modeling is 
redesigned and based on Petri Nets [16] semantics instead of 
state machines, which “widens the number of flows that can 
be modeled, especially those that have parallel flows.” [6] It 
is believed that with such enriched expressive power and 
well-defined semantics, activity modeling will gain more and 
more popularity in the design and development of complex 
software systems.   

Nonetheless, due to the increasing complexity of software 
systems, activity models may involve numerous activities 
that are tangled within the boundary of a single module. In 
other cases, a single activity may be scattered across several 
different activity modules. Such activities are defined as 
crosscutting concerns that are hard to modularize into 
separate units using existing software composition 
techniques. Examples are authentication, logging or error 
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handling activities that spread across the base functionality of 
the system. The occurrence of tangling and scattering often 
leads to several impediments to system comprehension and 
maintenance: 
1) Discovering or understanding a specific concern 

representation that is spread over the system hierarchy is 
difficult, because the concern is not localized in one 
single module. This limits the ability to reason 
analytically about such a concern.  

2) Changing a concern requirement is also difficult and 
time-consuming, because the engineers must go into 
each relevant module and modify the specific elements 
one by one. The change process is error-prone and 
affects productivity and correctness [12]. 

Aspect-oriented software development (AOSD) [2] offers 
a powerful technology for handling such concerns, whereby 
the crosscutting is explicitly specified as an aspect. With the 
intent  to support separation of crosscutting concerns 
involved in activity specification, this paper applies an 
AOSD approach to activity modeling. An aspect-oriented 
extension to activity modeling is proposed for encapsulating 
crosscutting concerns in the constructs of aspects, which are 
systematically integrated with the base activities by an 
underlying aspect weaver. Motorola has previously 
developed an industry-strength weaver for enabling 
aspect-oriented weaving for UML statecharts that include 
action semantics [10][18]. This paper extends the Motorola 
aspect weaver with support for activity models. The goal is to 
provide designers with more coherent and manageable 
activity modules through the clean separation of concerns. 

The remainder of the paper is structured as follows. 
Section II gives a brief overview of activity modeling, 
including the activity metamodel definition. Section III 
presents the proposed aspect-oriented extension to activity 
modeling as well as the underlying aspect weaving 
mechanism. Section IV offers a case study using the 
proposed aspect-oriented approach to specify a timeout 
handler aspect for a network fault management system. 
Finally, the last two sections discuss the related work and 
conclusions. 
 

II. ACTIVITY MODELING 
As has been stated in the Section I, activity modeling is 

about specifying the behavioral aspect of a system. It is 
typically used to define a computational process in terms of 
the control flow and data flow among its constituent actions. 
This section provides a basic background introduction to 
activity modeling in order to set the context for our 
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aspect-oriented enhancement contribution in activity 
modeling. 

Figure 1 shows the simplified activity metamodel in the 
Meta-Object Facility (MOF) [4] specification. An activity 
contains various kinds of nodes connected by edges to form a 
complete flow model. The sequencing of actions is controlled 
by control flow and object flow edges. An activity node can 
be an action, an object node or a control node. Some of the 
common kinds of actions are listed in Figure 1. An operation 
action may reference an activity specification, which means 
that the invocation of the operation involves the execution of 
the referenced activity. Send signal action and accept event 
action deal with event and signal transmission. An object 
node holds data that flow through the activity model. A pin is 
an object node that can be attached to actions for expressing 
inputs and outputs. Control nodes are responsible for routing 
control and data flows in an activity. For instance, decision 
node and merge node are used to designate conditional 
behavior, while fork node and join node are used to delineate 
parallel behavior. Activities can be divided into different 
partitions that represent different kinds of activity groups for 
identifying actions that have some characteristics in 
common. Activity actions can also be grouped into an 
interruptible region, within which all execution can be 
terminated if an interrupting activity edge is leaving the 
region. 

An example of an order processing activity model is 
illustrated in Figure 2 (adapted from [6]). Two concurrent 
flows are involved. One focuses on the normal procedure for 
order processing, including order receiving, order 
processing, payment handling and order shipment. Another 
flow indicates that during the same period of time that the 
first flow proceeds, the order will be cancelled whenever a 
cancellation signal is received. 

 

III. ASPECT-ORIENTED ACTIVITY MODELING 
As the complexity of the described system grows, activity 

specifications also grow in complexity. This growth requires 
lifecycle maintenance for the concerns that crosscut different 
activity modules. For instance, a new requirement asking for 
a tracing capability that logs all the information of all 
operation actions results in appending a trace activity to 
every operation action. The trace activity is a crosscutting 
concern that is hard to modularize into a single activity or 
action unit using existing activity modeling techniques.  Such 
a concern can be extremely difficult to comprehend and 
change due to its scattering nature. 

The application of aspect-oriented approaches [1][2] to 
activity modeling provides a solution to support this kind of 
modularization by encapsulating crosscutting concerns in a 
specialized unit called aspect. Following the aspect-oriented 
programming (AOP) [3][13] terminology, two fundamental 
constructs are involved in an aspect model.  

First, we need to specify “where” (i.e., the locations, or 
join points) in the models the crosscutting behavior emerges. 
Based on the activity metamodel definition, which defines an 
activity as being composed of a sequence of actions, join 
points refer to various kinds of actions that are allowed in 
activity modeling. A group of particular join points are 
represented in a special construct called pointcut, which 
defines a pattern to identify matching join points.  

Second, we need to specify “what” (i.e., the behavior) 
makes up the crosscutting concern. In activity modeling, the 
concern behavior is implemented using an activity model 

Figure 2. An Order Processing Activity Model 
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Figure 1. Simplified Activity Metamodel 
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referenced by a special action called advice. An advice may 
contain a proceed operation action that refers to the current 
join point action. An advice can also obtain the join point 
information through a set of predefined reflective APIs. 

These aspect-activity modeling concepts are defined upon 
a light-weight extension of UML through profiles and 
stereotypes [6]. As shown in Figure 3, an aspect is a special 
activity that encapsulates a crosscutting concern. Pointcuts 
and advice are denoted as special actions. An aspect-activity 
model contains a binding diagram that defines which advice 
is bound to which pointcuts. Those bindings are realized by a 
stereotype named binds. Aspects are deployed to the base 
activity models through a special association stereotyped by 

the name crosscuts. The thisJoinPoint class defines a set of 
APIs that are used to retrieve the reflective information of the 
matched join points (e.g., the signature of an operation 
action, or the kind of the join point action). 

As an illustrative example, Figure 4 specifies a trace aspect 
model, with an aspect called Aspect_Trace applied to a 
base activity model. The purpose is to keep track of certain 
actions involved throughout the execution of the base activity 
flow. This aspect contains one advice that is bound to four 
different pointcuts. The pointcut Cancel_* denotes all of 
the actions whose name starts with Cancel_ (e.g., the 
Cancel_Order action in Figure 2). The underneath pattern 
matching is based on the regular expression mapping against 
the pointcut name. The pointcut Op_Process_Order 
refers to an operation action that has one parameter of the 
type Order. Request_Payment and Cancel_Order_ 
Request match to a send signal action and an accept event 
action individually. The advice action Trace is 
implemented by an activity model, which extends the original 
join point action (denoted by proceed) with a log action 
that stores the join point information to an external file. An 
aspect model can also introduce inter-type members [3] that 
are to be inserted to the join point action implementations 
(e.g., the integer flag declared in Aspect_Trace). 

The aspect and the base models are automatically 
composed together through a specialized aspect weaver for 
activity models, as indicated in Figure 5. The weaving 
procedure starts with instantiating advices based on the 
pointcuts they are bound to. All of the calls to the reflective 
API are resolved based on the current join point. The 
proceed actions are replaced by the original join point 

Figure 3. Aspect-Activity Modeling Profile 
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action. These advice instances are in turn woven into the base 
models in one of the following two ways: wrapping or 
inlining. In the wrapping mode, the original join point action 
is replaced by an operation invocation to the corresponding 
advice instance. For the inlining version, the contents of all 
the advice instances are directly embedded into the base 
activity models. The aspect-activity weaving process 
conforms to the one developed for aspect-statecharts in the 
current Motorola aspect weaver. For more details about the 
Motorola aspect weaver, please refer to [10][18]. 

 

IV. CASE STUDY: APPLYING TIMEOUT HANDLER TO A 
NETWORK FAULT MANAGEMENT SYSTEM 

In order to illustrate the proposed approach, this section 
provides a case study on applying a timeout handler aspect to 
a real world network fault management system using 
aspect-oriented activity models. 

A. Background 
The Intelligent Network Fault Management (INFM) [14] 

system is being developed within Motorola for providing 
solutions to manage faults in a CDMA cellular network. One 
of the most important features of a fault management system 
is alarm correlation, which provides functionalities to filter 
out informational alarms, report meaningful alarms that are 
regarded as actionable or as requiring operator attention and 
provide assistance in troubleshooting. Network operators 
rely on the alarm correlation feature to reduce the number of 
alarms to a limited number that could be handled within the 
required time constraints. The significant reduction, usually 
greater than 80% on average, is achieved by correlating the 
alarms using patterns and hidden correlations discovered by 
machine learning algorithms. 

INFM carries out the alarm correlation by applying 
frequent pattern discovery algorithms, which use certain 
parameters to control how candidate patterns are constructed 

from the learning data (i.e., alarm instances). When the 
number of alarm instances is fairly large, the time complexity 
of the algorithm increases dramatically, which causes a 
violation of real-time constraints and fails to provide prompt 
correlation operation. This motivates us to add a timeout 
handling capability to resolve such failures and maintain the 
healthy state of the fault management system. 

Figure 6 illustrates a fragment of the simplified activity 
model for specifying the flow of the alarm correlation 
process logic in the INFM system. The control flow starts 
with configuring the data source for streaming event data 
from either a database server or an FTP site. Once the 
connection is established, the process then initiates the 
parameters for the pattern discovery algorithm. After the 
algorithm execution is completed, a special operation will be 
invoked to process the patterns that are generated. 

B. Modeling Timeout Handler Activity Aspect 
Timeout is among the most common software failures that 

can occur in almost every operation or service invocation. 
The timing failure is usually associated with certain time 
constraints, which can be a real time constraint or a relative 
deadline with respect to certain events. For example, a time 
limit can be imposed on the alarm correlation process in a 
fault management system, as opposed to the relative deadline 
which states that “the alarm correlation must be completed 
before the next batch of alarms is received.” 

Figure 7 shows an aspect-activity model for managing the 
timeout failure for the INFM alarm correlation system. The 
proceed action refers to an operation that has sensitive 
timing concerns and needs to be analyzed upon the timeout 
failure. The aspect model intercepts and wraps this action 

Figure 5. Aspect Weaving on Activity Models 
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Figure 6. A Simplified Alarm Correlation Activity Model 
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with a sequence of failure management activities. The aspect 
process first initiates the counter for the allowed number of 
iterations. If the counter already exceeds the allowed number 
of iterations, it means that the failure cannot be resolved and 
has to be reported. The whole application thus must be 
aborted. Otherwise, the process will start a timer with a value 
T, in sync with the execution of the proceed action. The 
proceed action and the timer are surrounded by an 
interruptible activity region (denoted as a dashed rectangle 
with rounded corners), representing that whenever the flow 
leaves the region via interrupting edges, all of the activities in 
the region will be terminated. Specifically, if the proceed 
action completes execution successfully before it runs out of 
time, the control of the flow will return to the base process 
(via a bull's eye symbol) and continue with the next activity 
that follows the proceed action. Otherwise, the proceed 
process will be shut down properly and a timeout failure will 
be captured and passed to the failure analyzer and mitigator, 
which is responsible for determining the failure risk and 
calculating the corresponding mitigation strategies for 
reconfiguring algorithm parameters. The control loop for 
handling the timeout failure is thus realized by re-running the 
algorithm with the new parameter values.  

C. Deploying the Timeout Handler Aspect on Base Model 
 The timout handler aspect is deployed to the base models 

of the INFM alarm correlation activity. In this particular case 
study, the timeout handler aspect is applied to the 
ExecuteAlgo action. The base models and the aspect 
models are then integrated through an underlying 
aspect-activity weaver. The woven model resulting from the 
inlining mode weaving is shown in Figure 8. The proceed 
action in the aspect specification is replaced by the 
ExecuteAlgo action. The initial and return symbol of the 

aspect models are connected to the pre- and post- flow of the 
ExecuteAlgo action, respectively. By adopting the 
aspect-oriented approach to specifying activities, the aspect 
models (usually non-functional activities) are defined 
independently from the base functionality. Such kind of 
separation of concerns greatly improves the reusability, 
changeability, and maintainability of the system. 

 

V. RELATED WORK 
Although the aspect-orientated application originated at 

the programming language level [13], it now extends to other 
software lifecycle stages and is applied to different levels of 
software abstractions. For example, there is a growing 
community investigating Aspect-Oriented Modeling (AOM) 
[1] techniques, providing various concepts, notations and 
mechanisms to handle crosscutting concerns at the modeling 
level. This section summarizes some of the existing research 
that relates to aspect and activity models. 

Barros et al. [7] propose a graphical composition operation 
supporting the addition of crosscutting requirements in 
activity models through node fusion, addition, and 
subtraction. In contrast to our current implementation of the 
aspect-activity extension, their approach considers all types 
of activity nodes as potential join points (i.e., not only action 
nodes, but also object and control nodes). However, as their 
approach is based on pure graph composition theory, it lacks 
semantic support for non-graphical activity node 

Figure 7. A Timeout Handler Aspect 
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specification, such as reflective APIs and regular 
expression-based operation pattern matching. 

Charfi et al. [9] introduce an aspect-oriented extension to 
Business Process Execution Language for Web Services 
(BPEL4WS) – a variation and application of activity 
modeling language. With web service composition captured 
in aspects, dynamic adaptation of composition logic can be 
supported. In their model, each BPEL activity is a possible 
join point during the execution of processes. The aspect 
language proposed by them is similar to ours except that they 
use XPath (a query language for XML documents) as the 
pointcut designator language, whereas our aspect-activity 
models are based on MOF/UML specification, which is more 
generic and can be applied to any activity modeling based on 
UML. 

Solberg et al. [17] present a Model-Driven Development 
(MDD) framework that uses aspect-orientation to facilitate 
separation of concerns. The primary and aspect models 
defined in a platform-independent manner are transformed to 
platform-specific models through separate mappings. The 
resulting models are in turn composed to obtain an integrated 
design view. Unlike our approach, they don’t provide an 
explicit support for modeling aspect constructs. Instead, the 
weaving mechanism is controlled by using extra composition 
directives that instantiate aspect models and bind them to the 
primary models. 

Grassi et al. [11] propose a UML-based graphical notation 
for specifying aspects for static and dynamic structure of the 
system model. Similarly, Cazzola et al. [8] present a 
high-level join point selection mechanism, which decouples 
the aspect definition from the base program structure and 
syntax. Both approaches focus on using activity models to 
represent pointcut patterns, rather than provide aspect 
support to activity models.  

 

VI. CONCLUSIONS 
One of the ultimate goals of software engineering is to 

construct software that is easily modified and extended. A 
desired result is to achieve modularization such that a change 
in a design decision is centralized to one location [15].  Our 
experience has led us to believe that aspect-oriented software 
development is a promising approach to support such 
modularization. Furthermore, aspect-orientation can be 
beneficial at various levels of abstraction and at different 
stages of the software lifecycle.  

This paper applies an aspect-oriented approach to 
supporting separation of crosscutting concerns in activity 
modeling. Aspect-specific constructs have been introduced 
as an extension to the activity models. The current 
implementation of the pointcut specification only allows join 
point to be referred to action nodes. The future work will 
cover other kinds of activity nodes and investigate more 
advanced pointcut selection patterns.   
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