
 
 

 

  
Abstract— The investigation presented here compares the 

advantage of using a Kalman filter as opposed to an alpha-beta 
filter for multi-target tracking systems.  The former is often 
used to speed up the computation time. However, it is shown 
here that due to the difficulty of data association the benefits are 
not as good as might be expected based on their relative results 
from single target tracking case.  Extensive analyses are 
performed by selecting various scenarios where the correlation 
factor affects the performance of alpha-beta filter.    
 

Index Terms—Filtering, Kalman filter, alpha-beta filter, 
Target tracking, State estimation. 

I. INTRODUCTION 
During the last two decades the improved technology 
available for surveillance systems has generated a great deal 
of interest in algorithms capable of tracking large number of 
objects using information from one or more sensors like 
radar, sonar etc.  Typical sensor systems, such as radar, 
obtain data returns corrupted with noise from true targets and 
possibly from other objects.  In general the tracking problem 
requires processing of incoming data to produce accurate 
position and velocity estimates [1][2][3].  There are two types 
of uncertainties involved with this incoming data, first the 
position inaccuracy, as the measurements are corrupted by 
noise, and second the measurement origin since there may be 
uncertainty as to which measurement originates from which 
target [4][5].  These uncertainties lead to a data association 
problem and the tracking performance depends not only on 
the measurement noise but also upon the uncertainty in the 
measurement origin [6][7][8]. Therefore, in a multi-target 
environment extensive computation may be required to 
establish the correspondence between measurements and 
tracks at each radar scan [9][10].  After the data association 
process, tracks are normally updated using either standard 
Kalman or alpha-beta filter [11][12][13].  Also tracks whose 
statistics deviate from the assumed model and shown to be 
following the same target are normally eliminated [14][15]. 
 
Kalman or alpha-beta filters could be ideal choice for a single 
target case where one noisy measurement is obtained at each 
radar scan.  In the multi-target tracking case, an unknown 
number of measurements are received at each radar scan and 
assuming no false measurements, each one has to be 
associated with an existing or new tracking filter.  When the 
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targets are well apart from each other then forming a 
measurement prediction ellipse around a track to associate 
the correct measurement with that track is a standard 
technique [16].  When targets are near to each other, more 
than one measurement may fall within the prediction ellipse 
of a filter and prediction ellipses of different filters may 
interact.  The number of measurements accepted by a filter 
will therefore be quite sensitive in this situation to the 
accuracy of the prediction ellipse.  Several approaches may 
be used for this situation [17][18], one of which is called the 
Track Splitting Filter algorithm.  In this algorithm, if n 
measurements occur inside a prediction ellipse, then the filter 
branches or splits in to n tracking filters [16].  This situation, 
which results in an increased number of filters being used, 
requires more processing power and storage memory.  Some 
mechanism for restricting the excessive number of tracks that 
originate from track splitting is required to avoid system 
crash.  Also, this process of track splitting eventually may 
result in more than one filter tracking the same target.  There 
are two standard techniques to keep this track explosion 
under control.  The first criterion is the support function that 
uses the likelihood function of a track as the pruning 
criterion.  Second the similarity criterion which uses a 
distance threshold to prune similar filter tracking the same 
target [19].  In this paper investigations are restricted to the 
application of the first criterion only.  A typical recursive 
multi-target tracking system is shown in figure 1. The 
algorithm is implemented using an AMD Athlon ™ 64, 2.2 
GHz microprocessor on a standard PC for convenience.  
However, real implementation should be on a much powerful 
processor for example on a DSP for faster computation. 
 

II. TARGET MODEL 
The motion of a target being tracked is assumed to be 
approximately linear and modeled by the equations; 
 

nnn wxx Γ+Φ=+1                (1) 
 

111 +++ += nnn xHz ν               (2) 
 
Where the state vector 
 

11 ][ ++ = n
T
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is a four-dimensional vector with x, y positions and their 
derivatives (velocity), wn the two-dimensional disturbance 
vector, zn+1 the two dimensional measurement vector and νn+1 
is the two-dimensional measurement error vector.  Also Φ is 
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the assumed (4x4) state transition matrix, Γ (4x2) is the 
excitation matrix and H (2x4) is the measurement matrix and 
they are defined respectively, 
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Here Δt is the sampling interval and corresponds to the time 
interval (scan interval, 1 second in our investigation) 
assumed constant, at which radar measurement data is 
received. 

 
 

Figure 1: Recursive Multi-Target Tracking System 
 
The system noise sequence wn is a two dimensional Gaussian 
white sequence for which 

0)( =nwE                  (7) 
Where E is the expectation operator. The covariance of wn is 

nmn
T
mn QwwE δ=)(             (8) 

Where Qn is a positive semi-definite (2x2) diagonal matrix 
and δnm is the Kronecker delta defined as 

⎩
⎨
⎧

⎭
⎬
⎫

=
≠

=
mn
mn

nm 1
0

δ  

The measurement noise sequence νn is a two-dimensional 
zero mean Gaussian white sequence with a covariance of 

nmn
T
mn RE δνν =)(             (9) 

where Rn is a positive semi-definite symmetric (2x2) matrix 
given by 
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σx
2 and σy

2 are the variances in the errors of the x, y position 
measurements, and σxy is the covariance between the x and y 
measurement errors. It is assumed that the measurement 
noise sequence and the system noise sequence are 
independent of each other, that is 

0)( =T
mn wE ν               (11) 

The initial state x0 is also assumed independent of the wn and 
νn sequences that is 

0)( 0 =T
nwxE                (12) 

0)( 0 =T
nxE ν                (13) 

 
x0 is a four dimensional random vector with mean 

0/00 ˆ)( xxE =  and a (4x4) positive semi-definite 
covariance matrix defined by 
 

[ ]TxxxxEP ))(( 00000 −−=          (14)  

where 0x  is the mean of the initial state x0. The Kalman 
filter is an optimal filter as it minimizes the mean squared 
error between the estimated state and the true (actual) state 
provided the target dynamics are correctly modeled. 
 
The standard Kalman filter equations for estimating the 
position and velocity of the target motion described by 
equations (1) and (2) are; 
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Where 

1/111/1 ,,,ˆ,ˆ +++++ nnnnnnn BPKxx  and 1+nP   
are the predicted state, estimated state, the Kalman gain 
matrix, the prediction covariance matrix, the covariance 
matrix of innovation, and the covariance matrix of estimation 
respectively. Qn

F  is the covariance of the measurement noise 
assumed by the filter that is normally taken equal to Qn.  
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In a practical situation, however, the value of Qn is not known 
so the choice of Qn

F should be such that the filter can 
adequately track any possible motion of the target. To start 
the computation an initial value is chosen for P0. Even if this 
is a diagonal matrix, then clearly from the above equations 
the covariance matrices 

nnnn PPB /111 ,, +++   
for a given n does not remain diagonal when Rn is not 
diagonal.  When the measurement errors in each co-ordinate 
are independent, that is Rn is diagonal, the Kalman filter may 
be de-coupled into two optimal tracking filters, known as 
alpha-beta filters [20].  This filter configuration simplifies the 
computational requirements considerably, because the states 
relating to each of the two co-ordinates can be estimated 
independently.  The equations for an alpha-beta filter to 
estimate x-position and velocity are: 
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Where α, β defines the gain values and Δt is the time interval. 
 

III. TRACK MAINTENANCE/UPDATE 
As shown on the previous page in figure 1, following the 
initial track formation incoming observations are considered 
for the continuation of existing tracks.  The continuation 
procedure consists of prediction, measurement association 
and state estimation (i.e. updating).  At each radar scan, the 
target position is predicted using eq. (15) and the uncertainty 
associated (eq. (21)) with this is used to place a measurement 
acceptance ellipse around the predicted position.  If the 
dynamics of the assumed target model is correct then each 
measurement from that particular target will fall inside the 
predicted ellipse (measurement acceptance ellipse).  
However, at times incorrect measurements (that are not 
original returns from that particular target) may have been 
used to update the target. In such case the target dynamic 
does not remain correct and true measurement may fall 
outside the prediction ellipse.  On the other hand, when 
targets are very close together, more than one measurement 
may fall within the prediction ellipse of a particular target.  
Therefore, one has to resolve such situations through various 
data association techniques [17][18].  The track splitting 
filter algorithm is one such technique in which the filter is 
allowed to split into the total number of measurements inside 
the ellipse [16].  This approach assumes that all the 
measurements falling inside the ellipse are equally probable 
for that particular target; therefore, all of them are used to 
update its state.  Once the filter determines that a 
measurement has fallen inside its prediction ellipse, it uses a 
measurement acceptance test and if the test is satisfied then 
that particular measurement is used for update. 
 
The measurement acceptance criterion uses a simple criterion 
i.e., if the dimension of the measurement vector Zn eq. 2 is M, 
then the norm dn

2 of the innovation vector νn at scan n for a 
filter is given by 

nn
T
nn Bd νν 12 −=                (24) 

where the M-dimensional  Gaussian probability density for 
the innovation is 
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with Bn  being the innovations covariance matrix for the 
specific filter and | Bn | its determinant.  Provided that the 
filter model for the track dynamics is accurate and that all the 
measurements used to update the track did indeed originate 
from one particular target, the quantity dn

2 is a sum of squares 
of M-independent zero mean and unit standard deviation 
Gaussian random variables.  Thus dn

2 will have a χ2 
distribution with M degrees of freedom.  The measurement 
acceptance criterion for a track is thus defined that if  dn

2 is 
less than a threshold J2 (with some known probability) then 
that particular measurement at scan n can be used for update 
[23]. 

IV. TRACK PRUNING 
A mechanism for restricting the excessive tracks that 
originate from the track splitting filter algorithm under 
measurement ambiguity is necessary because not only it will 
produce inaccurate tracking but also the computational and 
storage requirements increases exponentially if the 
interaction of ellipses occur for several scans.  One such 
mechanism is called track support function and is given by 
the following relationship [23]. 
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Where di

2  is given by eq. (24).  The support function can be 
calculated recursively from 
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         (27) 
If the support function of a track is smaller than a threshold 
value [23], it may not represent a true target in the sense that 
the measurements it has been using are inconsistent with the 
assumed target model.  Therefore, all those tracks whose 
support function is lower than a given threshold are pruned. 

V. ANALYSES 
As mentioned earlier, when the track splitting filter algorithm 
is used, the tracking filter splits into branches which are equal 
to the number of measurements found within the predicted 
acceptance ellipse.  This means the shape of the measurement 
ellipse is very important in the case of neighboring or 
crossing targets.  A four crossing target scenario is 
considered for our investigation as shown in figure 2 for low 
and high correlation factors of 0.1 and 0.9 respectively. 
 
These four targets are moving from a fixed location with 
same velocity and they cross each other after 30 seconds.  
The correlation factor is approximately kept constant 
throughout the run (100 Seconds) by maintaining the relative 
positions of the target and the platform (sensor is onboard a 
ship).  To obtain the two correlation factors only the initial 
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position of the platform is changed and all other parameters 
remain the same.  The scenario was run with ten different 
random seeds; table 1 gives the number of average tracks 
present for the two filters with low and high correlation 
factors.  As anticipated, because of the inferior measurement 
prediction ellipse [6], alpha-beta filter has considerably more 
branching near the crossing point (30th seconds) for the high 
correlation factor.   For low correlation the numbers of 
branches are almost the same.  
 

Figure 2: Crossing Target Scenario 
 

Table 1 
Scan No. Low 

correlation 
(0.1) Kalman 

High 
correlation 

(0.9) Kalman  

Low 
correlation 

(0.1)  
Alpha-Beta  

High 
correlation 

(0.9)  
Alpha-Beta

22 4 4 4 4 
23 4 4 4 4 
24 4 4 4 8 
25 4 5 5 10 
26 5 10 6 30 
27 7 24 7 40 
28 12 29 13 51 
29 15 32 18 45 
30 16 28 19 42 
31 16 26 20 42 
32 14 17 19 35 
33 13 12 18 30 
34 10 9 15 22 
35 8 5 10 15 
36 6 4 7 13 
37 4 4 6 12 
38 4 4 5 9 
39 4 4 4 7 
40 4 4 4 4 

 
 
The fact of the matter is, this increased branching requires 
extra overhead computation for data association and track 
maintenance.  The computation ratio for Kalman vis a v 
alpha-beta filter is in the order of 1 to 7 approximately.  We 
selected a number of similar scenarios to compare the 
speed-up between the two filters and the average speed-up is 
plotted in figure 3 against various numbers of targets.  It can 
be seen from the figure that as the ambiguity increases, the 
speed-up deteriorates to a ratio of 1 to 3.  Therefore, the 
advantage of using an alpha-beta filter under high correlation 
is not really great.  One of the main reasons for excessive 
branching, in the case of alpha-beta filter under high 
correlation, is due to the shape of the prediction ellipse which 
is almost like a circle around the predicted position of the 
track.  However, the shape of prediction ellipse in case of 
Kalman filter is like a true ellipse aligned in the direction of 

the target heading as shown in figure 4.  For our second part 
of investigation the scenario geometry was modified and the 
measurement data was generated corresponding to one of the 
target before crossing (30th seconds) and the second after the 
crossing as shown in figure 5, duration of the tracking is 100 
seconds.  In this investigation we want to find how effective 
is the support function criterion for the two filters when 
correlation is high.   
 

 
Figure 3: Kalman & Alpha-Beta Speed-up Comparison 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4: Prediction ellipse for Kalman & Alpha-Beta Filter 
 
Tables 2 and 3 show the initial angles when the target starts 
its motion and the intersection angles when it changes its 
direction.  The correlation ranges during tracking period for 
these angles are also shown.  The idea is to feed different 
kinds of data to analyze filter’s behavior.  Both filters 
Kalman and alpha-beta filters were used to track these 
scenarios for the two values of correlation.  Basically each 
run consists of 10 iterations and a new seed is selected for 
every iteration. The support function and the measurement 
acceptance values are obtained during these iterations and 
finally the average is computed.  Figure 6 shows the value of 
these parameters with low correlation factors corresponding 
to table 2 and it can be seen that after initial track formation 
the target is following its path.  This actually means that the 
measurement acceptance criterion remains less than a given 
probability threshold value, which in our case is 99 %.  At the 
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intersection point where a new target appears the track is lost, 
which would be the case by a tracking filter as the 
measurement from the second target will fall outside the 
prediction ellipse.  However, in figure 7 where the correlation 
factor is high (corresponding to table 3), the behavior of the 
two filters is totally different.  Kalman filter is consistent by 
losing the track at the intersection point but alpha-beta filter 
kept on tracking the target assuming it is the best supported 
track.    
 

VI. CONCLUSIONS 
In this paper we have compared the relative merits of the 
optimal Kalman filter with the sub-optimal alpha-beta filter.  
The interesting point for investigation is the amount of 
correlation during tracking period.  Much investigation has 
been carried out in determining the position error accuracy of 
these two filters that reveals there is not much difference 
between the two estimates.  However, one aspect which has 
not been given much attention in the past is the shape of the 
prediction ellipse under different correlation factors.   It has 
been demonstrated by our investigation that in multi-target 
environments containing neighboring as well as crossing 
targets, more branching occur in the case of the alpha-beta 
filter due to the shape of the prediction ellipse.  It has been 
shown that in a high correlation scenario, the de-coupled 
alpha-beta filter is more likely to accept unrealistic 
measurements compared with the Kalman filter.  Therefore, 
the speed of computation when using an alpha-beta filter in a 
multi-target scenario is not high as one would predict from 
single target considerations. In fact it was found to be only 3 
to 4 times faster than a standard Kalman filter for crossing 
target scenarios containing up to 10 targets.  However, one 
important aspect must be kept in mind that number of 
branches depends on couple of factors, for example the time 
the target cross each other and their angle of intersection at 
the time of crossing.  In future we would like to carry out our 
research work for more in-depth analyses of these two filters 
considering the results obtained in our investigation here plus 
other more realistic scenarios. 

 

 
Figure 5: Scenario Geometry 

 
 

 
Table 2 

Scenario no. Initial angle Intersection 
angle 

Correlation 
range 

Average 
correlation 

1 45° 90° 0.02-0.20 0.17 
2 90° 135° 0.01-0.18 0.05 
3 90° 180° 0.02-0.50 0.30 
4 45° 135° 0.02-0.33 0.27 

Table 3 
Scenario no. Initial angle Intersection 

angle 
Correlation 

range 
Average 

correlation 
1 45° 90° 0.90-0.99 0.99 
2 90° 135° 0.97-0.99 0.99 
3 90° 180° 0.93-0.99 0.99 
4 45° 135° 0.98-0.99 0.99 

 

Figure 6: Low Correlation Behavior 
 

 
Figure 7: High Correlation Behavior 
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