

Abstract—UML Profiles provided automotive software
designers a way to customize the UML to their particular
domain and purpose. In this paper, we fulfill the demand for a
suitable profile for In-vehicle Infotainment and Telematics
domain by sketching a UML profile for Human Machine
Interface applications. The HIT-profile classifies different
application and framework components, and enables their
mapping to framework APIs. The profile concentrates on the
structure of HMI application and framework interfac es, and
utilizes UML 2.1 standard for the behavioral modeling.

Index Terms— UML, Infotainment Human Machine
Interface Framework (iHMIFw), Model Driven Architec ture
(MDA), HIT-Profile.

I. INTRODUCTION

The development of modern In-vehicle Infotainment and
Telematics systems requires reducing the gap between
traditional hardware and software designs. Unified Modeling
Language (UML) [1] is widely used in software
development, and now it is heavily used in automotive
software system design. Especially the latest release of the
language, UML 2.1[11] with its extension proposals, brings
several advanced features to support also this domain. UML
2.1 holds a promise of a general design language that can be
understood by system designers as well as software and
hardware engineers.

Recent trends in automotive software design indicate that the
use of prefabricated building blocks for software
development is on the rise. The prefabricated artifacts are the
off-the-shelf (COTS) software infrastructure and
domain-specific service components that one can acquire
from different vendors and integrate them to deploy
large-scale software applications. Vehicle Navigation is a
good example of such an application on In-vehicle
Infotainment systems.

Hemant Sharma is Software Engineer at Delphi Delco Electronics Europe
GmbH, Bad Salzdetfurth, Germany. (e-mail: hemant.sharma @ delphi.com).
Dr. Roger Kuvedu-Libla is EMC-Comp.-Leader at Delphi Delco Electronics
Europe GmbH, Bad Salzdetfurth, Germany.
(e-mail: roger.kuvedu.libla @ delphi.com).
Dr. A. K. Ramani, is Professor at School of Computer Science, Devi Ahilya
University, Indore, INDIA. (e-mail: ramani.scs@dauniv.ac.in).

Creating models of user interfaces is not a completely new
idea. In recent years, research has emphasized modeling the
interaction and navigational part of user interfaces [1, 2]. The
UML has grown into the most widely used modeling
language, and it is used by many processes to specify models
of the software system under development. It is already
capable of modeling some of the aspects of HMIs. First of all,
there is the use case diagram to capture user requirements
before creating the user interface. From these requirements,
designers can make conclusions for the HMI, and the HMIs
can later be tested against them. The UML can flex its
muscles when it comes to modeling the details of every
interaction with the system. Designers can use the semantic
HMI model to create a sound system and give exact
instructions to the developers who will do the lexical design
of the system and implement it. But just like the processes,
the UML does not provide a means to model all the aspects of
the HMIs.

Generation of HMI using XML based tools, currently
becoming topic of interest, is inspired in Model Driven
Development (MDD) paradigm and in Model Driven
Architecture (MDA) [10]. This approach consists of
designing UML-based models for HMI, from which
generative code techniques are applied to automatically
produce HMI code and other software artifacts. MDD
paradigm has the goal to describe the system functionalities
using a set of models, shifting the software development
focus from code to models artifacts. An HMI model is a
representation of how the end-users interact with the software
system. MDD paradigm intends to create automatic
mechanisms to generate software artefacts from these
models.

This paper presents a new UML 2.1 profile, called “Profile
for HMI of Infotainment and Telematics System
(HIT-Profile). HIT-Profile defines a set of stereotypes for
extending UML meta classes as well as design practices to
describe HMI applications, target software platforms, and
mapping of them. It is especially targeted to In-vehicle
Infotainment and Telematics HMI framework
implementation using UML 2.1 description. For this reason,
HIT-Profile is used with a set of tools as depicted in Figure 1.
These tools include the UML tools Artisan [14], Telelogic
Rhapsody [15] and Enterprise Architect [16].

Towards UML Profile for
 Human Machine Interface Applications of

In-vehicle Infotainment Platforms

Hemant Sharma, Dr. Roger Kuvedu-Libla, and Dr. A. K. Ramani

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Figure 1: HMI Design Flow using HIT-Profile.

Rest of the paper is organized as follows: In the following
section an overview of related research is provided. Section 3
shortly explains the artifacts of Infotainment HMI. In section
4, we describe the HIT-Profile construction. Section 5
describes an example for model driven HMI development
using HIT-profile. In section 6, we elaborate the future
activities and finally conclude the paper.

II. BACKGROUND

A number of extension proposals have been presented for
real-time and embedded system design. The proposals can be
roughly divided into three categories: system and platform
design, performance modeling, and behavioral design. The
Embedded UML [3] is a UML profile proposal suitable for
embedded real-time system specification, design, and
verification. A UML Platform profile is proposed in [1],
which presents a graphical language for the specification. It
includes domain-specific classifiers and relationships to
model the structure and behavior of embedded systems. The
ACCORD/UML profile [6] defines a methodology for model
mappings during the different development stages. The
UML-RT profile [5] defines execution semantics to capture
behavior for simulation and synthesis. The UML Profile for
Schedulability, Performance and Time (or the Real-time
UML Profile) is standardized by OMG [4]. The profile
defines notations for building models of real-time systems
with relevant Quality of Service (QoS) parameters.

The UMLi [7] approach proposes a profile to capture the
conceptual, presentation and behaviour aspects of systems.
The UWE [8] approach focuses particularly on modeling
Web systems. The proposals in UMLi and UWE, for the
presentation design, have some similarities with our
HIT-Profile Interaction View.

Within the scope of MDA, for a given language (or a simple
metadata collection) two ways exist to define the language in
terms of the actual OO meta-modeling techniques: (a) by
defining a UML profile; (b) by defining a completely new
metamodel through MOF. UML profile is a specific way of
using UML to define (by means of a set of UML extension
mechanisms like stereotype, constraint, tagged value, etc.) a

specialized UML metamodel[12,13]. The second approach,
instead, is a more desirable solution when clearly UML
cannot capture nuances of design paradigms.

XIS Profile [9] promotes a platform-independent design for
interactive systems. This means that the XIS profile allows
the design of interactive systems at a PIM level
(“Platform-Independent model”, according to the MDA
terminology [10]), so systems can be targeted, using specific
model-to-code transformations, to different source-code
languages and platforms, such as Web, desktop or mobile
platforms (e.g., J2ME, .NET Compact Framework, or any
embedded systems that are meant to support interactive
systems).

III. MODELING INFOTAINMENT HMI ARTIFACTS

A. HIT-Profile Approach

HIT-Profile extensions are used to define the structure and
parameters of components of an HMI application and HMI
framework platform as well as their mapping.
Correspondingly, the HMI application design is divided into
three parts: application description, framework description,
and mapping. Both the application and framework
descriptions can be developed independently of each other.

HIT-Profile mainly concerns the structure of an HMI
application and our In-vehicle Infotainment HMI Framework
(iHMIFw). The application is seen as a set of active classes
with an internal behavior. The framework is seen as a
component library with a parameterized presentation in UML
for each library component. The profile does not restrict the
behavioral modeling, and by default, it utilizes standard
UML concepts for this.

HIT-Profile classifies different application and platform
components by defining various stereotypes and strict rules
how to use them. The objective is to enhance the support of
external tools [14, 15, 16] for automatic analyzing, profiling,
and modifying the UML description of an infotainment HMI
system. The classification also assigns defined parameters to
proper components.

In practice, the profile is applied in a tool framework depicted
in Figure 1. The platform mapping can be explicitly
performed by the designer, or assisted with tools. For the
profile, we plan to develop a UML profiling tool that shall
combine the UML description (model parsing) and
simulation statistics (simulation log-file) that is obtained
during the verification phase. Based on the profiling, also the
HMI description will be modified to fulfil context related
constraints.

B. Infotainment HMI Framework Architecture

This section provides an overview of architecture of our HMI
framework, for which HIT-profile is expected to serve as
description language.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Figure 2: iHMIFw Components.

The framework has been developed using MDA
methodology and partitioned into independent components
based on functional area. Figure 2 partially represent the
components of the HMI framework. The components are
organized to make the framework scalable and flexible. The
framework has a set of core components and some optional
components. Core components provide the bare minimum
functionality that is required for an HMI application.
Optional component may be configured along with
framework to provide additional functional interfaces.

View component is responsible for HMI View creation. It
provides interfaces to describe the appearance and behavior
of the view. Further, this component is also responsible to
define the view tree structure for an HMI application and
defining the view state transition. HMIBase defines the
structure of HMI applications. This component enables the
HMI application to interface with platform specific aspects
such as startup and shutdown of application. Communication
is responsible for communication between components of
HMI Application as well as communication with external
applications. Graphics Interface component interfaces to
graphics resources in the system. This includes graphics
libraries, display access handlers, image management and
font resource files. HMI Applications are allowed to use
specific widgets available in infotainment application
specific widget libraries. Widget Interface component
provide interface to the widget resources, the HMI
application intend to use. Context component provides
interfaces that help HMI Applications to define the context
for its individual views. Further, this component has
mechanism to read context configuration information from a
XML file.

The components of iHMIFw shall be included into the
models of HMI Application using HIT-Profile constructs.

C. Metamodel for Infotainment HMI Applications

The metamodel for HMI applications of In-vehicle
infotainment system is shown in Figure 3.

The HMI applications shall inherit the layered component
structure from iHMIFw. Presentation layer of the application
will be composed of a set of hmiView meta classes. Every
view must have an appearance and an associated behavior.
Therefore, the interface classes hmiViewAppearance and
hmiViewBehavior will be realized by applications.
Depending on the features implemented by a view, it will
have multiple widgets, realized using hmiWidget, contained
in one or more containers, realized using
hmiWidgetContainer. Actions and resulting response on
presentation layer will be managed by instances of
hmiController and its extensions. The applications will have
the ability to retain the knowledge about their context by
realization of hmiContext extensions.

Data and control communication between application and
framework components as well as the external
communication is managed by instances of communication
and service interfaces i.e. hmiCommunication and
hmiServiceInterface.

Figure 3: HMI Application Metamodel

IV. HIT PROFILE CONSTRUCTION

A. HIT –Profile Stereotypes

HIT-Profile contains stereotypes to support infotainment
HMI design. The structure of the HIT-Profile is presented in
Figure 3. Stereotypes of the profile have been partitioned into
separate packages, namely, application stereotype package
and framework stereotype package.

Application stereotypes help in modelling the HMI
application structure whereas framework stereotypes map the
iHMIFw constructs into application.

A view is composed of appearance and behaviour. An
application is composed of application components, which
are instantiated as application processes. Next, application
processes are grouped into process groups.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Figure 3: HIT-Profile

Stereotype Name

(extended metaclass)
Description

Application(class) Top Level HMI Application class.
ApplicationProcess
(Structural Feature)

Instance of functional HMI
application component.

Behaviour (class) Behavior description of HMI
component.

Appearance(class) Static Design Description of HMI
components.

Controller
(Structural Feature)

Work flow description of HMI.

CompositeWidget
(Structural Feature)

Collection of Basic Widgets

ServiceInterface
(class)

Generic Interface for Internal and
External Communication.

ServiceComponent
(Structural Feature)

Collection of Feature
Implementation.

View (class) Static Definition of HMI Screen.
hmiContext (class) Scenario Description class.
hmiCatalogue
(Structural Feature)

Data and Function Repository.

hmiFramework
(Structural Feature)

Top Level HMI Framework class.

hmiInterface (class) Framework Interface for HMI
Application.

hmiRepository
(Structural Feature)

Persistent Storage for HMI.

hmiCompInterface
(Structural Feature)

Communication Description
Interface.

 Table 1: HIT-Profile Stereotypes summery.

Correspondingly, iHMIFw is composed of components,
which are instantiated as component instances. Finally,
process groups are mapped to framework component
instances using framework mapping. The summary of
stereotypes of HIT-profile is presented in Table 1.
The stereotype <<Application>> is applied to define the
top-level class of an HMI application description. The top
level class has a class hierarchy defining different classes of
an application. The active classes having behaviour are called
functional components. Passive classes are structural
components, which do not have behaviour, but instead,
define composite structures and data structures storing
application data. Process grouping, represented by
<<ApplicationProcess>>, is a part of an HMI application
description and it defines the process structure for HMI
application. The structure is implementation-oriented and
may thus differ from the composite structure of an
application. Stereotypes <<Behaviour>> and
<<Appearance>> describe an HMI view. Logical
organization of all widgets of an HMI application is
represented by stereotype <<View>>. Interface to
framework components and other applications in the system
is described by <<ServiceInterface>> and
<<ServiceComponent>> stereotypes. <CompositeWidget>>
represents a collection of widgets that belong to a view.

B. Tagged Values for HIT-Profile Stereotypes

The definition of HIT-Profile stereotypes is associated with
tag definitions. These tags of stereotypes shall map to either
attribute or interface of iHMIFw. Table 2 lists the tagged
values for some of the structural stereotypes of HIT-Profile.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Tagged Values Description

<<Application>>
ID System-wide unique identifier
Server Application for which HMI is client.
Context Supported context information.

<<Controller>>
Controller
States

List of Controller States

Current State Current state of controller
<<ServiceComponent>>

ID Service identifier.
Interface List List of provided interfaces
State Component Availability state

<<hmiFramework>>
State Current State of Framework
Config Framework Configuration Information.
CommInterface Framework’s internal and external

Communication Interface
<<hmiRepository>>

Type Type of repository (Data/ Function)
Size Maximum size

<<hmiComponentInterface>>
Subscription Application component list
InterfaceList List of exposed interfaces.

Table 2: Tagged values for HIT-Profile Stereotypes.

C. Mapping of Stereotype to iHMIFw Interfaces

When both an HMI application and corresponding
customization of iHMIFw framework have been modelled,
each group of stereotype is transformed to corresponding
implementation feature of framework component.

HIT-Profile iHMIFw

<<Application>> iHMIFW_clApplication
HMI Application class

<<Controller>> iHMIFw_clStateContext
State machine base class for
HMI Application

<<ServiceComponent>> iHMIFw_clSUCompBase
Base class Service Component.

<<hmiContext>> iHMIFw_clContextBase
Context base class for HMI
Application.

Table 3: HIT-Profile mapping.

In order to achieve seamless model transformation, we have
defined mapping of HIT-profile concepts into the iHMIFw
classes and class members. Since HIT-Profile is mainly a
collection of structural notations for expressing HMI
application’s composite structure and is orthogonal to the
functional behaviour, we do not consider generation of
functional code from UML models, which has been covered
adequately by many commercial UML tools [14, 15, 16].

Instead, we focus on the mapping of structure of HMI
application, context description and behavioural constructs.
Table 3 shows some example mappings.

V. HMI MODELING USING HIT-PROFILE

This section presents HIT-Profile utilization with the design
of a custom HMI application feature for Infotainment. The
examples show how HIT-profile has been applied along with
UML 2.1 diagrams, and how the HIT-Profile can be applied
in Model Driven design.

A. Example Scenario – HMI for Off-board Navigation

The HMI application is intended to show running guidance
and provide turn-by-turn navigation instruction. This
application shall be part of infotainment system which also
hosts the Navigation server application. Navigation server
application provides the guidance relevant information
update to HMI application. The HMI application is based on
iHMIFw and controls the guidance running at navigation
server application.

B. Platform Independent modeling

The design of the navigation HMI application description
will start from the definition of the class hierarchy. The
top-level application class and its components are created,
and the associations between components are defined.

Figure 6: PIM for Navigation HMI Application

NavHMIApp is the top level class of the application. Thus, it
is stereotyped as <<Application>>. The application contains
NavActiveView and NavInactiveView as route guidance
views and therefore stereotyped as <<View>>.
NavMapWidget and NavGuidanceWidget are examples of
widgets in a view and therefore stereotyped as <<Widget>>
to compose the active navigation view. The application
interacts with Navigation Server application via
NavServerProxy Interface. Behaviour of views is controlled
by <<Controller>> stereotyped NavStateManager class
along with <<ServiceComponent>> stereotyped
GuidanceService class.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

C. Platform Specific Mapping

For the transformation of PIM to C++ PSM, we use the UML
tool Enterprise Architect [16] with customized
transformation script. The tool is able to interpret the models,
and generate code out of them. The transformation script has
been developed using template based approach. Description
of details of transformation script is not the scope of this
paper.

 Figure 7 shows the source code of NavHMIApp and
NavActiveView classes obtained from PSM transformation.

Figure 7: Partial PSM for Navigation HMI Applicati on

The example shows that HIT-profile can effectively
describe the application and framework design aspects of an
Infotainment HMI application. Mapping of stereotypes of the
profile to framework APIs, visualize HIT-profile as
Architectural Description Language (ASL) for iHMIFw.

VI. CONCLUSION

The creation of profiles and UML extensions is necessary
when the standard model constructs do not give the
expressiveness required to represent the specific
characteristics of particular domains, as it happens with the
HMI modeling process for In-vehicle Infotainment
applications.

The UML profile for Infotainment HMI here presented,
defines a language that allows specifying, analyzing,
designing, constructing, visualizing and documenting the
software artifacts in a HMI application design flow,
providing a modeling framework for infotainment software
systems in which high level functional models can be refined
down to an implementation language.

There are, however, some open issues that need to be
investigated further. In the first place, we think that
platform-independent UML profiles are not enough,

especially for Infotainment HMI application framework.
Thus, iHMIFw framework is semi-developed HMI
application that leverages the user to implement most of the
common services, facilities and functionality of the
applications. In this sense, platform- independent models are
useful but insufficient for documenting application
frameworks, since some details about the platform specific
HMI implementation needs to be described, too. Another
issue is about interoperability. We cannot make the simplistic
assumption that all systems will be designed and modeled
using the same modeling tools. Therefore, appropriate bridge
between models is needed.

As part of our future work , the HIT-profile will further be
enriched by the specialization of the stereotypes and by
improvement of parameterization. It is our goal to get more
experience to build customized HMI patterns, and flexible
UML tool plug-in that allows simplifying the entire building
process of infotainment HMI software artifacts.

REFERENCES

[1] D Silva, Paolo Pinheiro & Paton, Norman W. (2000): UMLi: The

Unified Modeling Language for Interactive Applications. In:
<<UML>> 2000 - The Unified Modeling Language: Advancing the
Standard. LNCS Vol. 1939. Springer, pp. 117-132.

[2] Dolog, Peter; Bieliková, Mária (2002): Hypermedia Modeling Using
UML. In: Hanacek, Petr: Proc. of ISM'2002, April 2002.

[3] G. Martin et al., “Embedded UML: a Merger of Real-Time UML and
Co-design”. Proceedings of the 9th International Symposium on
Hardware/Software Codesign, April 2001, pp. 23-28.

[4] OMG, “UML Profile for Schedulability, Performance, and Time
Specification”. September 2003.

[5] B. Selic, and J. Rumbaugh, “Using UML for Modeling Complex
Real-Time Systems, White Paper, Rational”. March 1998.

[6] P. Tessier et al., “A Component-based Methodology for Embedded
System Prototyping”. Proceedings of the 14th IEEE International
Workshop on Rapid Systems Prototyping, June 2003, pp. 9-15.

[7] Silva, P. P., and Paton, N., “User interface modelling in UMLi. IEEE
Software”, 20(4), July–August 2003.

[8] Hennicker, R. and Koch, N.,“Modeling the User Interface of Web
App. with UML”, Workshop of the pUML-Group at UML 2001.

[9] Silva, A. , “The XIS Approach and Principles”. Proceedings of the
29th Euromicro Conference, IEEE Computer Society, 2003.

[10] OMG. Model Driven Architecture. http://www.omg.org/mda/
[11] OMG, “UML 2.1.1 Specification”. Feb. 2007.
[12] Vincenzo Grassi, Raffaela Mirandola and AntoninoSabetta, “A UML

Profile to Model Mobile Systems”. Seventh International Conference
on UML Modeling Languages and Applications, UML 2004. Lisboa,
Portugal.

[13] Alan Moore. Extending the UML RT profile to support the OSEK
infrastructure. In Proceedings of Fifth IEEE International Symposium
on OO Real-Time Distributed Computing, pp.341-347, 2002.

[14] Artisan Software website. http://www.artisansw.com .
[15] ILogix website. http://www.ilogix.com.
[16] Sparx Systems Website. http://www.sparxsystems.com.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

